首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rates of the phosphorylation and dephosphorylation of 2-deoxyglucose were measured in rat brain in vivo using tracer kinetic techniques. The rate constant for each reaction was estimated from two separate experiments with different protocols for tracer administration. Tracer amounts of [1-14C]2-deoxyglucose (1 microCi) were injected through the internal carotid artery (intraarterial experiment), or through the atrium (intravenous experiment). Brains were sampled by freeze-blowing at various times after the injection. In the intraarterial experiment, the rate constant for the forward reaction from 2-deoxyglucose to 2-deoxyglucose phosphate was calculated by dividing the initial rate of 2-deoxyglucose phosphate production by the 2-deoxyglucose content in brain. The rate constant for the reverse reaction from 2-deoxyglucose phosphate to 2-deoxyglucose was calculated from the decay constant of 2-deoxyglucose phosphate. The rate constants estimated were 10.1 +/- 1.4%/min (SD) and 3.00 +/- 0.01%/min (SD), respectively, for the forward and reverse reactions. In the intravenous experiment, rate constants for both reactions were estimated by compartmental analysis. By fitting data to program SAAM-27, the rate constants for the forward and reverse reactions were estimated as 11.4 +/- 0.4%/min (SD) and 5.1 +/- 0.4%/min (SD), respectively. The rate constants determined were compared to those for the reactions between glucose and glucose-6-phosphate, estimated previously from labeled glucoses. It is concluded that the rate of glucose utilization measured by the 2-deoxyglucose method reflects the rate of the hexokinase reaction and not the rate of glucose utilization or brain energy utilization.  相似文献   

2.
The [14C]deoxyglucose [Sokoloff et al., J. Neurochem. 28, 897-916 (1977)] and [6-14C]glucose [Hawkins et al., Am. J. Physiol. 248, C170-C176 (1985)] quantitative autoradiographic methods were used to measure regional brain glucose utilization in awake rats. The spatial resolution and qualitative appearance of the autoradiograms were similar. In resting animals, there was no significant difference between the two methods among 18 gray and three white matter structures over a fourfold range in glucose utilization rates (coefficient of correlation = 0.97). In rats given increasing frequencies of photoflash visual stimulation, the two methods gave different results for glucose utilization within visual pathways. The linearity of the metabolic response was studied in the superior colliculus using an on-off checkerboard stimulus between 0 and 33 Hz. The greatest increment in activity occurred between 0 and 4 Hz stimulation with both methods, probably representing recruitment of neuronal elements into activity. Above 4 Hz, there was a progressive increase in labeling with [14C]deoxyglucose up to 1.7 times control at 33 Hz. With [6-14C]-glucose, there was no further increment in change above a 30% increase seen at 4 Hz. Measurement of tissue glucose revealed no drop in the visually stimulated structures compared to control. We interpret these results to indicate that, with increasing rates of physiological activity, the products of deoxyglucose metabolism accumulate progressively, but the products of glucose metabolism are removed from brain in 10 min.  相似文献   

3.
Abstract Incorporation of [U-14C]palmitic acid ([14C]PA) into the specific phenolic glycolipid-I (PGL-I) of freshly harvested, nude mouse-derived Mycobacterium leprae was investigated in an axenic modified Dubos medium. Incorporation was approximately linear for 10–14 days at pH 7.2, 33°C. No incorporation of radiolabeled phenol, acetate, tyrosine, phenylalanine, bicarbonate, proprionate or UDP-glucose was detected. Procedures known to remove residual host tissue did not diminish the rate of [14C]PA incorporation, indicating that bacterial metabolism was being measured. The antileprosy compounds, rifampicin and dapsone, significantly reduced incorporation of the label. The ability to quantitate PGL-I synthesis in the extracellular bacillus should facilitate a better understanding of the optimum conditions for metabolism in M. leprae .  相似文献   

4.
Oligodendrocytes were isolated from the white matter of ox brains. Light microscopy revealed that the cells were greater than or equal to 90% phase-bright with a mean diameter of 7.6 micron. Transmission electron microscopy was employed to identify the classic morphology associated with mature oligodendrocytes. Homogenates of the isolated cells showed negligible activity of neuronal and astrocytic cell markers. Using a suspension culture method cells were incubated with [14C]glucose. This simple precursor labelled the five complex lipids choline glycerophospholipid, ethanolamine glycerophospholipid, inositol glycerophospholipid + serine glycerophospholipid, and the two cerebroside species. The incorporation of label was shown to be dependent on glucose concentration, protein concentration, and the length of incubation. In addition the glucose uptake blocker phloretin (1 mM) reduced the degree of labelling by up to 97%, and the metabolic poisons KCN (1 mM) and iodoacetate (0.5 mM) had varying deleterious effects on the amounts of labelling of the five lipids measured.  相似文献   

5.
The incorporation of [3H]arachidonate [( 3H]AA) and [14C]eicosapentaenoate [( 14C]EPA) into glycerophospholipids was studied in isolated brain cells from rainbow trout, a teleost fish whose lipids are rich in (n-3) polyunsaturated fatty acids (PUFAs). EPA was incorporated into total lipid to a greater extent than AA, but the incorporation of both PUFAs into total glycerophospholipids was almost identical. The incorporation of both AA and EPA was greatest into phosphatidylethanolamine (PE). However, when expressed per milligram of individual phosphoglycerides, both AA and EPA were preferentially incorporated into phosphatidylinositol (PI), the preference being significantly greater with AA. On the same basis, significantly more EPA than AA was incorporated into phosphatidylcholine (PC). When double-labelled cells were challenged with calcium ionophore A23187, the 3H and 14C released from the cells closely paralleled each other, peaking at 10 min after addition of ionophore. The 12-monohydroxylated derivative was the pre-dominant lipoxygenase product from both AA and EPA with a rank order of 12-hydroxyeicosatetraenoic acid (12-HETE) greater than leukotriene B4 (LTB4) greater than 5-HETE greater than 15-HETE for the AA products and 12-hydroxyeicosapentaenoic acid (12-HEPE) greater than 5-HEPE greater than LTB5 greater than 15 HEPE for EPA products. The 3H/14C (dpm/dpm) ratios in the glycerophospholipids, total released radioactivity, and the lipoxygenase products suggested that PC rather than PI was the likely source of eicosanoid precursors in trout brain cells.  相似文献   

6.
Many of the cytosolic proteins of the rat brain appear to have the capacity to incorporate L-[14C]arginine posttranslationally. Scanning of the electrophoretic pattern of the labeled proteins showed two main radioactive peaks: peak A, found in the region of proteins of MW above 200 kD, and peak B, found in the region of 33 kD. The ratio of peaks A/B tends to decrease with the age of the rats. Another zone of radioactivity has an apparent MW similar to that of albumin (approximately 66 kD). No differences were found between the effects of ionic strength and of inhibitors on the arginyl transferase of brain and those described for the transferases of other organs.  相似文献   

7.
Abstract: In the presence of substance P (SP; 10 μM), serotonin (5-HT; 1 μM) triggered a cation permeability in cells of the hybridoma (mouse neuroblastoma X rat glioma) clone NG 108-15 that could be assessed by measuring the cell capacity to accumulate [14C]guanidinium for 10-15 min at 37°C. In addition to 5-HT (EC50, 0.33 μM), the potent 5-HT3 receptor agonists 2-methyl-serotonin, phenylbiguanide, and m-chlorophenylbiguanide, and quipazine, markedly increased [14C]guanidinium uptake in NG 108-15 cells exposed to 10 μM SP. In contrast, 5-HT3 receptor antagonists prevented the effect of 5-HT. The correlation (r= 0.97) between the potencies of 16 different ligands to mimic or prevent the effects of 5-HT on [14C]guanidinium uptake, on the one hand, and to displace [3H]zacopride specifically bound to 5-HT3 receptors on NG 108-15 cells, on the other hand, clearly demonstrated that [14C]guanidinium uptake was directly controlled by 5-HT3 receptors. Various compounds such as inorganic cations (La3+, Mn2+, Ba2+, Ni2+, and Zn2+), D-tubocurarine, and memantine inhibited [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT and SP, as expected from their noncompetitive antagonistic properties at 5-HT3 receptors. However, ethanol (100 mM), which has been reported to potentiate the electrophysiological response to 5-HT3 receptor stimulation, prevented the effects of 5-HT plus SP on [14C]guanidinium uptake. The cooperative effect of SP on this 5-HT3-evoked response resulted neither from an interaction of the peptide with the 5-HT3 receptor binding site nor from a possible direct activation of G proteins in NG 108-15 cells. Among SP derivatives, [D-Pro9]SP, a compound inactive at the various neurokinin receptor classes, was the most potent to mimic the stimulatory effect of SP on [14C]guanidinium uptake in NG 108-15 cells exposed to 5-HT. Although the cellular mechanisms involved deserve further investigations, the 5-HT-evoked [14C]guanidinium uptake appears to be a rapid and reliable response for assessing the functional state of 5-HT3 receptors in NG 108-15 cells.  相似文献   

8.
Dopaminergic innervation of the caudate nucleus in adult rats can be partially restored by the grafting of embryonic substantia nigra into the overlying parietal cortex with concomitant compensation of certain behavioral abnormalities. In this study the function of such grafts was investigated neurochemically by quantification of transmitter metabolism and glucose utilization in the reinnervated target. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal bundle received a single graft to the dorsal caudate-putamen and were screened for rotational behavior following 5 mg/kg methamphetamine. The grafts restored dopamine concentrations in the caudate-putamen from initially less than 0.5% to an average of 13.6% of normal in rats with behavioral compensation. The ratio of 3,4-dihydroxyphenylacetic acid to dopamine, which is a measure of the rate of transmitter turnover, were equivalent in transplanted and normal control rats. Moreover, measurements of DOPA accumulation for a 30-min period after DOPA decarboxylase inhibition indicated similar fractional dopamine turnover rates in normal and transplant-reinnervated tissues. Correlations between rotational behavior and dopamine concentrations showed that reinnervation to only 3% of normal was sufficient to counterbalance the motor asymmetry. Measurements of glucose utilization by [14C]deoxyglucose autoradiography indicated equivalent metabolic rates for the grafted tissue and the intact substantia nigra. 6-Hydroxydopamine denervation of the caudate-putamen had no significant effect on neuronal metabolism in that region, nor did subsequent reinnervation from a graft. Grafts, however, were associated with a 16% reduction of glucose uptake in the ipsilateral globus pallidus, indicating a significant transsynaptic influence of the nigral transplants on neuronal metabolism in the host brain. Overall the results indicate that behaviorally functional neuronal grafts spontaneously metabolize dopamine and utilize glucose at rates characteristic of the intact nigrostriatal system. This provides further evidence that ectopic intracortical nigral transplants can reinstate dopaminergic neurotransmission in regions of the host brain initially denervated by the 6-hydroxydopamine lesion.  相似文献   

9.
10.
The incorporation of [3H]myo-inositol into individual phosphoinositides and of [3H]glycerol into glycerolipids was determined in sciatic nerve obtained from normal and streptozotocin diabetic rats and incubated in vitro. The uptake of inositol into lipid was approximately linear with time. More than 80% of the label was present in phosphatidylinositol with the remainder divided about equally between phosphatidylinositol phosphate and phosphatidylinositol-4,5-bisphosphate. Labeling was unchanged 2 weeks after induction of diabetes, but was reduced by 32% after 20 weeks of the disease. Glycerol incorporation occurred primarily into phosphatidylcholine and triacylglycerol and was depressed up to 45% into major phosphoglycerides in nerves from both 2- and 20-week diabetic animals. Triacylglycerol labeling was also substantially decreased, and the reduction was comparable in intact and epineurium free nerve, suggesting that a metabolically active pool of this compound, which is sensitive to hyperglycemia and/or insulin deficiency, is located in or immediately adjacent to the nerve fibers. The considerable decline in incorporation of these lipid precursors in diabetic nerve may be related to impaired inositol transport and to decrease overall energy utilization by the tissue.  相似文献   

11.
The fate of carbamoyl phosphate in white spruce seedlings revolves around the production of spontaneous degradation products, cyanate, bicarbonate, and carba-mate. When [14C]-carbamoyl phosphate and [14C]-cyanate are assimilated, urea is a common early metabolic intermediate that appears in the alcohol soluble N. By contrast, urea is not detected among the products of [14C]-bicarbonate. Carbamoyl phosphate and glutamic acid are implicated as having pivotal roles in the production of amides, arginine, and biotin. Within 2-h exposures to radioactive substrates considerably more carbon from bicarbonate was diverted into amino acids Incorporated into proteins than with carbon-nitrogen substrates. Specific activities of bound amino acid residues support the view that proteins formed from these [14C]-substrates have different rates of metabolic turnover.  相似文献   

12.
Abstract: The production of 14CO2 and [14C]acetylcholine from [U-14C]glucose was determined in vitro using tissue prisms prepared from the dorsolateral striatum (a region developing extensive neuronal loss following ischemia) and the paramedian neocortex (an ischemia-resistant region) following 30 min of forebrain ischemia and recirculation up to 24 h. Measurements were determined under basal conditions (5 mMK+) and following K+ depolarization (31 mM K+). The production of 14CO2 by the dorsolateral striatum was significantly reduced following 30 min of ischemia for measurements in either 5 or 31 mM K+ but recovered toward preischemic control values during the first hour of recirculation. Further recirculation resulted in 14CO2 production again being reduced relative to control values but with larger differences (20–27% reductions) detectable under depolarized conditions at recirculation times up to 6 h. Samples from the paramedian neocortex showed no significant changes from control values at all time points examined. [14C]Acetylcholine synthesis, a marker of cholinergic terminals that is sensitive to changes in glucose metabolism in these structures, was again significantly reduced only in the dorsolateral striatum. However, even in this tissue, only small (nonstatistically significant) differences were seen during the first 6 h of recirculation, a finding suggesting that changes in glucose oxidation during this period were not uniform within all tissue components. The results of this study provide evidence that in a region susceptible to ischemic damage there were specific changes during early recirculation in the metabolic response to depolarization. This apparent inability to respond appropriately to an increased need for energy production could contribute to the further deterioration of cell function in vivo and ultimately to the death of some cells.  相似文献   

13.
We have investigated regional and temporal alterations in Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) and calcineurin (Ca2+/calmodulin-dependent protein phosphatase) after transient forebrain ischemia. Immunoreactivity and enzyme activity of CaM kinase II decreased in regions CA1 and CA3, and in the dentate gyrus, of the hippocampus early (6-12 h) after ischemia, but the decrease in immunoreactivity gradually recovered over time, except in the CA1 region. Furthermore, the increase in Ca2+/calmodulin-independent activity was detected up to 3 days after ischemia in all regions tested, suggesting that the concentration of intracellular Ca2+ increased. In contrast to CaM kinase II, as immunohistochemistry and regional immunoblot analysis revealed, calcineurin was preserved in the CA1 region until 1.5 days and then lost with the increase in morphological degeneration of neurons. Immunoblot analysis confirmed the findings of the immunohistochemistry. These results suggest that there is a difference between CaM kinase II and calcineurin in regional and temporal loss after ischemia and that imbalance of Ca2+/calmodulin-dependent protein phosphorylation-dephosphorylation may occur.  相似文献   

14.
Abstract: Metabolic compartmentation of amino acid metabolism in brain is exemplified by the differential synthesis of glutamate and glutamine from the identical precursor and by the localization of the enzyme glutamine synthetase in glial cells. In the current study, we determined if the oxidative metabolism of glutamate and glutamine was also compartmentalized. The relative oxidation rates of glutamate and glutamine in the hippocampus of free-moving rats was determined by using microdialysis both to infuse the radioactive substrate and to collect 14CO2 generated during their oxidation. At the end of the oxidation experiment, the radioactive substrate was replaced by artificial CSF, 2 min-fractions were collected, and the specific activities of glutamate and glutamine were determined. Extrapolation of the specific activity back to the time that artificial CSF replaced 14C-amino acids in the microdialysis probe yielded an approximation of the interstitial specific activity during the oxidation. The extrapolated interstitial specific activities for [14C]glutamate and [14C]glutamine were 59 ± 18 and 2.1 ± 0.5 dpm/pmol, respectively. The initial infused specific activities for [U-14C]glutamate and [U-14C]glutamine were 408 ± 8 and 387 ± 1 dpm/pmol, respectively. The dilution of glutamine was greater than that of glutamate, consistent with the difference in concentrations of these amino acids in the interstitial space. Based on the extrapolated interstitial specific activities, the rate of glutamine oxidation exceeds that of glutamate oxidation by a factor of 5.3. These data indicate compartmentation of either uptake and/or oxidative metabolism of these two amino acids. The presence of [14C]glutamine in the interstitial space when [14C]glutamate was perfused into the brain provided further evidence for the glutamate/glutamine cycle in brain.  相似文献   

15.
Irreversible photolabeling by [3H]flunitrazepam of four proteins with apparent molecular weights 51,000 (P51), 53,000 (P53), 55,000 (P55), and 59,000 (P59) was investigated in various rat brain regions by SDS-polyacrylamide gel electrophoresis, fluorography, and quantitative determination of radioactivity bound to proteins. On maximal labeling of these proteins, only 15-25% of [3H]flunitrazepam reversibly bound to membranes becomes irreversibly attached to proteins. Results presented indicate that for every [3H]flunitrazepam molecule irreversibly bound to membranes, three molecules dissociate from reversible benzodiazepine binding sites. This seems to indicate that these proteins are either closely associated or identical with reversible benzodiazepine binding sites, and supports the hypothesis that four benzodiazepine binding sites are associated with one benzodiazepine receptor. When irreversible labeling profiles of proteins P51, P53, P55, and P59 were compared in different brain regions, it was found that labeling of individual proteins varied independently, supporting previous evidence that these proteins are associated with distinct benzodiazepine receptors.  相似文献   

16.
The role of methionine as a precursor in mugineic acid (MA) biosynthesis was studied by feeding 15N-ammonium sulfate, 14C-amino acids, and [1-14C, 15N]-methionine to iron-deficient barley roots ( Hordeum vulgare L. cv. Minorimugi), grown hydroponically. The incorporation of isotopes into amino acids was also examined. Methionine appears to be the most efficient precursor of the mugineic acid family (MAs) of phytosiderophores; homoserine was also incorporated into the MAs, but other amino acids such as glutamate, alanine, and γ-amino butyric acid did not act as precursors of MAs. Carbon-14 and 15N of methionine were incorporated into MAs. This specific incorporation of 14C and 15N indicated that the nitrogen atoms of MAs were derived from two molecules of methionine. It is suggested that deoxymugineic acid (DMA) is probably the first phytosiderophore to be synthesized on the biosynthetic pathway of MAs.  相似文献   

17.
The impact of inoculation with Paxillus involutus on the utilization of organic carbon compounds by birch roots was studied by feeding [14C]Glu or [14C]malate to the partners of the symbiosis, separately or in association, and by monitoring the subsequent distribution of 14C. Inoculation increased [14C]Glu and [14C]malate absorption capacities by up to eight and 17 times, respectively. Six- and 15-d-old mycorrhizal roots showed about four-fold higher [14C]Glu and [14C]malate absorption capacities compared with 60-d-old mycorrhizal roots, suggesting that the early stages of mycorrhiza formation induced higher requirements for C skeletons. Moreover, the results demonstrated that inoculation strongly modified the fate of [14C]Glu and [14C]malate. It was demonstrated that exogenously supplied Glu and malate might serve as C skeletons for amino acid synthesis in mycorrhizal birch roots and in the free-living fungus. Gln was the major 14C-sink in mycorrhizal roots and in the free-living P. involutus. In contrast, citrulline and insoluble compounds were the major 14C sinks in non-mycorrhizal roots, whatever the 14C source. It was concluded that mycorrhiza formation leads to a profound alteration of the metabolic fate of exogenously supplied C compounds. The ecological significance of amino acid and organic acid utilization by mycorrhizal plants is further discussed.  相似文献   

18.
The distribution of carbon-11-labeled L-deprenyl, an irreversible inhibitor of monoamine oxidase type B (MAO-B), was determined in the baboon brain by positron emission tomography. The irreversible blood-to-brain transfer constant (influx constant, Ki) was measured using a complete metabolite-corrected arterial plasma concentration curve. This influx constant was used as a measure of functional enzyme activity for sequential determinations of MAO-B recovery following a single high dose of unlabeled l -deprenyl. The half-life for turnover of MAO-B was thus determined to be 30 days. Using appropriate irreversible inhibitors, this procedure should be generally useful for determining enzyme turnover rates in any organ in vivo and can be applied to some human studies as well.  相似文献   

19.
When rat brain membranes were incubated with the benzodiazepine agonist [3H]flunitrazepam or the partial inverse benzodiazepine agonist [3H]Ro 15-4513 in the presence of ultraviolet light one protein (P51) was specifically and irreversibly labeled in cerebellum and at least two proteins (P51 and P55) were labeled in hippocampus. After digestion of the membranes with trypsin, protein P51 was degraded into several peptides. When P51 was photolabeled with [3H]Ro 15-4513, four peptides with apparent molecular weights of 39,000, 29,000, 21,000, and 17,000 were observed. When P51 was labeled with [3H]flunitrazepam, only two peptides with apparent molecular weights of 39,000 and 25,000 were obtained. Protein P55 was only partially degraded by trypsin, and whether it was labeled with [3H]flunitrazepam or [3H]Ro 15-4513 it yielded the same two proteolytic peptides with apparent molecular weights of 42,000 and 45,000. These results support the existence of at least two different benzodiazepine receptor subtypes associated with proteins P51 and P55. The different receptors seem to be differentially protected against treatment with trypsin. In addition, these results indicate that in the benzodiazepine receptor subtype associated with P51 benzodiazepine agonists and partial inverse benzodiazepine agonists irreversibly bind to different parts of the molecule.  相似文献   

20.
Abstract: [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4°C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of ~70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37°C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors. Although synaptosomal aniracetam binding sites may well be associated with AMPA-sensitive glutamate receptors, specifically bound [3H]aniracetam could not be displaced by cyclothiazide or GYKI 52466, which act as a positive and negative modulator of AMPA receptors, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号