首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is renewed interest in the use of maggots (Lucilia sericata) to aid in healing of chronic wounds. In such wounds neutrophils precipitate tissue damage rather than contribute to healing. As the molecules responsible for the beneficial actions of maggots are contained in their excretions/secretions (ES), we assessed the effects of ES on functional activities of human neutrophils. ES dose-dependently inhibited elastase release and H(2)O(2) production by fMLP-activated neutrophils; maximal inhibition was seen with 5-50 microg of ES/ml. In contrast, ES did not affect phagocytosis and intracellular killing of Candida albicans by neutrophils. Furthermore, 0.5 microg of ES/ml already inhibited neutrophil migration towards fMLP. ES dose-dependently reduced the fMLP-stimulated expression of CD11b/CD18 by neutrophils, suggesting that ES modulate neutrophil adhesion to endothelial cells. ES did not affect the fMLP-induced rise in [Ca(2+)](i) in neutrophils, indicating that ES act down-stream of phospholipase C-mediated activation of protein kinase C. In agreement, ES inhibited PMA-activated neutrophil functional activities. ES induced a rise in intracellular cAMP concentration in neutrophils and pharmacological activators of cAMP-dependent mechanisms mimicked their inhibitory effects on neutrophils. The beneficial effects of maggots on chronic wounds may be explained in part by inhibition of multiple pro-inflammatory responses of activated neutrophils by ES.  相似文献   

2.
Epithelial ovarian cancer (EOC) frequently metastasises to the omentum, a process that requires pro-angiogenic activation of human omental microvascular endothelial cells (HOMECs) by tumour-secreted factors. We have previously shown that ovarian cancer cells secrete a range of factors that induce pro-angiogenic responses e.g. migration, in HOMECs including the lysosomal protease cathepsin D (CathD). However, the cellular mechanism by which CathD induces these cellular responses is not understood. The aim of this study was to further examine the pro-angiogenic effects of CathD in HOMECs i.e. proliferation and migration, to investigate whether these effects are dependent on CathD catalytic activity and to delineate the intracellular signalling kinases activated by CathD. We report, for the first time, that CathD significantly increases HOMEC proliferation and migration via a non-proteolytic mechanism resulting in activation of ERK1/2 and AKT. These data suggest that EOC cancer secreted CathD acts as an extracellular ligand and may play an important pro-angiogenic, and thus pro-metastatic, role by activating the omental microvasculature during EOC metastasis to the omentum.  相似文献   

3.
4.
Li B  Zhao WD  Tan ZM  Fang WG  Zhu L  Chen YH 《FEBS letters》2006,580(17):4252-4260
Small cell lung cancer (SCLC) cells migration across human brain microvascular endothelial cells (HBMECs) is an essential step of brain metastases. Here we investigated signalling pathways in HBMECs contributing to the process. Inhibition of endothelial Rho kinase (ROCK) with Y27632 and overexpression of ROCK dominant-negative mutant prevented SCLC cells, NCI-H209, transendothelial migration and the concomitant changes of tight junction. Conversely, inhibition of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) had no effects. Furthermore, endothelial RhoA protein was activated during NCI-H209 cells transendothelial migration. Rho/ROCK participated in NCI-H209 cells transendothelial migration through regulating actin cytoskeleton reorganization. These results suggested that Rho/ROCK was required for SCLC cells transendothelial migration.  相似文献   

5.
Oxytocin either increases or inhibits cell growth in different cell subtypes. We tested here the effect of oxytocin on cell proliferation and migration of human dermal microvascular endothelial cells (HMEC) and tumor-associated endothelial cells purified from human breast carcinomas (B-TEC). Oxytocin receptors were expressed in both cell subtypes at mRNA and protein levels. Through oxytocin receptor, oxytocin (1 nmol/L-1 mumol/L) significantly increased cell proliferation and migration in both HMEC and B-TEC, and addition of a selective oxytocin antagonist fully reverted these effects. To verify whether a different expression of adhesion molecule-related genes could be responsible for the oxytocin-induced cell migration, untreated and treated cells were compared applying a microarray technique. In HMEC, oxytocin induced the overexpression of the matrix metalloproteinase (MMP)-17, cathepsin D, and integrin beta(6) genes. In B-TEC, oxytocin significantly switched on the gene profile of some MMP (MMP-11 and MMP-26) and of integrin beta(6). The up-regulation of the integrin beta(6) gene could be involved in the oxytocin-induced cell growth, because this subunit is known to determine activation of mitogen-activated protein kinase-extracellular signal-regulated kinase 2, which is involved in the oxytocin mitogenic effect. In B-TEC, oxytocin also increased the expression of caveolin-1 at gene and protein levels. Because oxytocin receptor localization within caveolin-1-enriched membrane domains is necessary for activation of the proliferative (instead of the inhibitory) response to oxytocin, its enhanced expression can be involved in the oxytocin-induced B-TEC growth as well. Altogether, these data indicate that oxytocin contributes to cell motility and growth in HMEC and B-TEC.  相似文献   

6.
Huang YT  Chen SU  Chou CH  Lee H 《Cellular signalling》2008,20(8):1521-1527
Sphingosine 1-phosphate (S1P) is a multifunctional phospholipid which acts through a specific family of G protein-coupled receptors. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) form trans-homophilic binding at lateral cell border. Upon stimulation, its cytoplasmic tyrosine residues could be phosphorylated and interact with various downstream signaling molecules. In this study, we demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in human umbilical cord vein cells (HUVECs). By pharmacological inhibitors, it was suggested that G(i) and Src family kinases were involved in PECAM-1 phosphorylation. Moreover, cSrc and Fyn siRNA significantly suppressed S1P-induced PECAM-1 phosphorylation. These results suggested that S1P-induced PECAM-1 phosphorylation through G(i) and subsequent cSrc and Fyn. Our findings provide further understanding of S1P and PECAM-1 signaling as well as their functions in endothelial cells.  相似文献   

7.
8.
Endothelial cell migration is essential for tumor angiogenesis, and interleukin-8 (IL-8) has been shown to play an important role in tumor growth, angiogenesis, and metastasis. This study aimed to investigate the molecular mechanism of IL-8 induced endothelial cell migration. Our results indicated that IL-8 induced a rapid rearrangement of the actin cytoskeleton in EA.Hy926 cells, generating extensions resembling membrane ruffling and stress fibers. These processes required parallel upregulation of the small GTPases Rac1 and RhoA. Moreover, we demonstrated that IL-8 activated PI3K following the same kinetics observed from IL-8 induction of cytoskeletal rearrangement, suggesting the participation of PI3K in these processes. Taken together, our study demonstrates that PI3K-Rac1/RhoA signaling pathway plays a vital role in IL-8 induced endothelial cell migration, and provides new insight into the molecular mechanisms by which IL-8 contributes to tumor angiogenesis and metastasis.  相似文献   

9.
Craniosynostosis is the premature fusion of skull sutures and has a severe pathological impact on childrens’ life. Mechanical forces are capable of triggering biological responses in bone cells and regulate osteoblastogenesis in cranial sutures, leading to premature closure. The mechanosensitive proteins polycystin‐1 (PC1) and polycystin‐2 (PC2) have been documented to play an important role in craniofacial proliferation and development. Herein, we investigated the contribution of PC1 to the pathogenesis of non‐syndromic craniosynostosis and the associated molecular mechanisms. Protein expression of PC1 and PC2 was detected in bone fragments derived from craniosynostosis patients via immunohistochemistry. To explore the modulatory role of PC1 in primary cranial suture cells, we further abrogated the function of PC1 extracellular mechanosensing domain using a specific anti‐PC1 IgPKD1 antibody. Effect of IgPKD1 treatment was evaluated with cell proliferation and migration assays. Activation of PI3K/AKT/mTOR pathway components was further detected via Western blot in primary cranial suture cells following IgPKD1 treatment. PC1 and PC2 are expressed in human tissues of craniosynostosis. PC1 functional inhibition resulted in elevated proliferation and migration of primary cranial suture cells. PC1 inhibition also induced activation of AKT, exhibiting elevated phospho (p)‐AKT (Ser473) levels, but not 4EBP1 or p70S6K activation. Our findings indicate that PC1 may act as a mechanosensing molecule in cranial sutures by modulating osteoblastic cell proliferation and migration through the PC1/AKT/mTORC2 cascade with a potential impact on the development of non‐syndromic craniosynostosis.  相似文献   

10.
It was reported over a decade ago that tissue inhibitor of metalloproteinases-1 (TIMP-1) suppresses angiogenesis in experimental models but the mechanism is still incompletely understood. This in vitro study focused on the molecular basis of TIMP-1-mediated inhibition of endothelial cell (EC) migration, a key step in the angiogenic process. Both recombinant human TIMP-1 and the synthetic MMP inhibitors, GM6001 and MMP-2-MMP-9 Inhibitor III, suppressed migration of human dermal microvascular endothelial cells (HDMVEC) in a dose-dependent fashion. The MMP-dependent inhibition of migration was associated with increased expression of the junctional adhesion proteins, VE-cadherin and PECAM-1, and VE-cadherin accumulation at cell-cell junctions. TIMP-1 also caused MMP-independent dephosphorylation of focal adhesion kinase (FAK) (pY397) and paxillin, which was associated with reduced number of F-actin stress fibers and focal adhesions. Moreover, TIMP-1 stimulated expression of PTEN that has been shown to reduce phosphorylation of FAK and inhibit cell migration. Our data suggest that TIMP-1 inhibits HDMVEC migration through MMP-dependent stimulation of VE-cadherin and MMP-independent stimulation of PTEN with subsequent dephosphorylation of FAK and cytoskeletal remodeling.  相似文献   

11.
12.
Sphingosylphosphorylcholine (SPC) is one of the biologically active phospholipids that may act as extracellular messengers. Particularly important is the role of these lipids in the angiogenic response, a complex process involving endothelial cell migration, proliferation, and morphologic differentiation. Here we demonstrate that SPC and its hydrolytic product, sphingosine, induce chemotactic migration of human and bovine endothelial cells. The response is approximately equal to that elicited by vascular endothelial cell growth factor. The effect of SPC and sphingosine was associated with a rapid down-regulation of Edg1, a sphingosine 1-phosphate (SPP)-specific receptor involved in endothelial cell chemotaxis. Both SPC and sphingosine induced differentiation of endothelial cells into capillary-like structures in vitro. Thus, SPC and sphingosine join SPP among the biologically active lipids with angiogenic potential. Since neuronal abnormalities accompany pathological accumulation of SPC in brain tissue, it is possible that SPC is a modulator of angiogenesis in neural tissue upon its release from brain cells following trauma or neoplastic growth.  相似文献   

13.
Activin receptor-like kinase 1 (ALK1) is an endothelial-specific type I receptor of the TGFbeta receptor family that is implicated in angiogenesis and in the pathogenesis of the vascular disease, hereditary hemorrhagic telangiectasia (HHT). In the absence of a specific ligand, ALK1 cellular functions have been mainly studied through the use of a constitutively active form of this receptor (ALK1ca) and are still debated. We previously reported that ALK1ca inhibits proliferation and migration of human endothelial cells suggesting that ALK1 plays an important role in the maturation phase of angiogenesis (Lamouille et al., 2002, Blood 100: 4495-4501). In the present work, we further analyzed the role of ALK1 in the migration of human dermal microvascular endothelial cell (HMVEC-d) and observed that silencing endogenous ALK1 expression with siRNAs accelerates endothelial cell migration in the wound assay. Further, we demonstrate that ALK1-induced inhibition of migration is Smad-independent. Using a panel of kinase inhibitors, we found that HMVEC-d wound closure was completely inhibited by a JNK inhibitor and to a lower degree by an ERK kinase inhibitor. Further, HMVEC-d wounding induced activation of both JNK and ERK, and these were inhibited by ALK1ca expression. Taken together, these results support a significant role for ALK1 as a negative regulator of endothelial cell migration and suggest the implication of JNK and ERK as mediators of this effect.  相似文献   

14.
Endothelium of the cerebral blood microvessels, which constitutes the major component of the blood-brain barrier, controls leukocyte and metastatic cancer cell adhesion and trafficking into the brain parenchyma. In this study, using rat primary brain microvascular endothelial cells (BMEC), we demonstrate that the vascular endothelial growth factor (VEGF), a potent promoter of angiogenesis, up-regulates the expression of the intracellular adhesion molecule-1 (ICAM-1) through a novel pathway that includes phosphatidylinositol 3 OH-kinase (PI3K), AKT, and nitric oxide (NO), resulting in the migration of BMEC. Upon VEGF treatment, AKT is phosphorylated in a PI3K-dependent manner. AKT activation leads to NO production and release and activation-deficient AKT attenuates NO production stimulated by VEGF. Transfection of the constitutive myr-AKT construct significantly increased basal NO release in BMEC. In these cells, VEGF and the endothelium-derived NO synergistically up-regulated the expression of ICAM-1, which was mediated by the PI3K pathway. This activity was blocked by the PI3K-specific inhibitor, wortmannin. Furthermore, VEGF and NO significantly increased BMEC migration, which was mediated by the up-regulation of ICAM-1 expression and was dependent on the integrity of the PI3K/AKT/NO pathway. This effect was abolished by wortmannin, by the specific ICAM-1 antibody, by the specific inhibitor of NO synthase, N(G)-l-monomethyl-arginine (l-NMMA) or by a combination of wortmannin, ICAM-1 antibody, and l-NMMA. These findings demonstrate that the angiogenic factor VEGF up-regulates ICAM-1 expression and signals to ICAM-1 as an effector molecule through the PI3K/AKT/NO pathway, which leads to brain microvessel endothelial cell migration. These observations may contribute to a better understanding of BMEC angiogenesis and the physiological as well as pathophysiological function of the blood-brain barrier, whose integrity is crucial for normal brain function.  相似文献   

15.
Cerebral amyloid angiopathy (CAA) is a disease in which amyloid β (Aβ) is deposited on the walls of blood vessels in the brain, making those walls brittle and causing cerebral hemorrhage. However, the mechanism underlying its onset is not well understood. The aggregation and accumulation of Aβ cause the occlusion and fragility of blood vessels due to endothelial cell damage, breakdown of the blood-brain barrier, and replacement with elements constituting the blood vessel wall. In this study, we observed the effect of Aβ on human primary brain microvascular endothelial cells (hBMECs) in real-time using quantum dot nanoprobes to elucidate the mechanism of vascular weakening by Aβ. It was observed that Aβ began to aggregate around hBMECs after the start of incubation and that the cells were covered with aggregates. Aβ aggregates firmly anchored the cells on the plate surface, and eventually suppressed cell motility and caused cell death. Furthermore, Aβ aggregation induced the organization of abnormal actin, resulting in a significant increase in intracellular actin dots over 10 μm2. These results suggest that the mechanism by which Aβ forms a fragile vessel wall is as follows: Aβ aggregation around vascular endothelial cells anchors them to the substrate, induces abnormal actin organization, and leads to cell death.  相似文献   

16.
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with a 5-year survival ratio <5%. Invasive growth is a major determinant of the poor prognosis in GBM. In this study, we demonstrate that high expression of PPFIA binding protein 1 (PPFIBP1) correlates with remarkable invasion and poor prognosis of GBM patients. Using scratch and transwell assay, we find that the invasion and migration of GBM cells are promoted by overexpression of PPFIBP1, while inhibited by knockdown of PPFIBP1. Then, we illustrate that overexpression of PPFIBP1 facilitates glioma cell infiltration and reduces survival in xenograft models. Next, RNA-Seq and GO enrichment analysis reveal that PPFIBP1 regulates differentially expressed gene clusters involved in the Wnt and adhesion-related signaling pathways. Furthermore, we demonstrate that PPFIBP1 activates focal adhesion kinase (FAK), Src, c-Jun N-terminal kinase (JNK), and c-Jun, thereby enhancing Matrix metalloproteinase (MMP)-2 expression probably through interacting with SRCIN1 (p140Cap). Finally, inhibition of phosphorylation of Src and FAK significantly reversed the augmentation of invasion and migration caused by PPFIBP1 overexpression in GBM cells. In conclusion, these findings uncover a novel mechanism of glioma invasion and identify PPFIBP1 as a potential therapeutic target of glioma.Subject terms: Oncogenes, Molecular neuroscience  相似文献   

17.
Heparanase is a mammalian endoglycosidase that degrades heparan sulfate (HS) at specific intra-chain sites. Blood-borne neutrophils, macrophages, mast cells, and platelets exhibit heparanase activity that is thought to be stored in specific granules. The degranulated heparanase is implicated in extravasation of metastatic tumor cells and activated cells of the immune system. Degranulation and heparanase release in response to an inflammatory stimulus or platelet activation would facilitate cellular extravasation directly, by altering the composition and structural integrity of the extracellular matrix, or indirectly, by releasing HS-bound proinflammatory cytokines and chemokines. We hypothesized that in addition to such indirect effect, the released heparanase may also locally affect and activate neighboring cells such as endothelial cells. Here, we provide evidence that addition of the 65-kDa latent heparanase to endothelial cells enhances Akt signaling. Heparanase-mediated Akt phosphorylation was independent of its enzymatic activity or the presence of cell membrane HS proteoglycans and was augmented by heparin. Moreover, addition of heparanase stimulated phosphatidylinositol 3-kinase-dependent endothelial cell migration and invasion. These results suggest, for the first time, that heparanase activates endothelial cells and elicits angiogenic responses directly. This effect appears to be mediated by as yet unidentified heparanase receptor.  相似文献   

18.
Microbial penetration of the blood-brain barrier (BBB) into the central nervous system is essential for the development of meningitis. Considerable progress has been achieved in understanding the pathophysiology of meningitis, however, relatively little is known about the early inflammatory events occurring at the time of bacterial crossing of the BBB. We investigated, using real-time quantitative PCR, the expression of the neutrophil chemoattractants alpha-chemokines CXCL1 (Groalpha) and CXCL8 (IL-8), and of the monocyte chemoattractant beta-chemokine CCL2 (MCP-1) by human brain microvascular endothelial cells (HBMEC) in response to the meningitis-causing E. coli K1 strain RS218 or its isogenic mutants lacking the ability to bind to and invade HBMEC. A nonpathogenic, laboratory E. coli strain HB101 was used as a negative control. CXCL8 was shown to be significantly expressed in HBMEC 4 hours after infection with E. coli K1, while no significant alterations were noted for CXCL1 and CCL2 expression. This upregulation of CXCL8 was induced by E. coli K1 strain RS218 and its derivatives lacking the ability to bind and invade HBMEC, but was not induced by the laboratory strain HB101. In contrast, no upregulation of CXCL8 was observed in human umbilical vein endothelial cells (HUVEC) after stimulation with E. coli RS218. These findings indicate that the CXCL8 expression is the result of the specific response of HBMEC to meningitis-causing E. coli K1.  相似文献   

19.
Gap junction channels formed of connexins directly link the cytoplasm of adjacent cells and have been implicated in intercellular signaling that may regulate the functions of vascular cells. To facilitate connexin manipulation and analysis of their roles in adult endothelial cells, we developed adenoviruses containing the vascular connexins (Cx37, Cx40, and Cx43). We infected cultured human umbilical vein endothelial cells with control or connexin adenoviruses. Connexin expression was verified by immunoblotting and immunofluorescence. Infection with the Cx37 adenovirus (but not control or other connexin adenoviruses) led to a dose-dependent death of the endothelial cells that was partially antagonized by the gap junction blocker alpha-glycyrrhetinic acid and altered the intercellular transfer of Lucifer yellow and neurobiotin. Cell morphology, Annexin V and TUNEL staining, and caspase 3 assays all implicated apoptosis in the cell death. These data suggest that connexin-specific alterations of intercellular communication may modulate endothelial cell growth and death.  相似文献   

20.
Lymphocyte extravasation into the brain is mediated largely by the Ig superfamily molecule ICAM-1. Several lines of evidence indicate that at the tight vascular barriers of the central nervous system (CNS), endothelial cell (EC) ICAM-1 not only acts as a docking molecule for circulating lymphocytes, but is also involved in transducing signals to the EC. In this paper, we examine the signaling pathways in brain EC following Ab ligation of endothelial ICAM-1, which mimics adhesion of lymphocytes to CNS endothelia. ICAM-1 cross-linking results in a reorganization of the endothelial actin cytoskeleton to form stress fibers and activation of the small guanosine triphosphate (GTP)-binding protein Rho. ICAM-1-stimulated tyrosine phosphorylation of the actin-associated molecule cortactin and ICAM-1-mediated, Ag/IL-2-stimulated T lymphocyte migration through EC monolayers were inhibited following pretreatment of EC with cytochalasin D. Pretreatment of EC with C3 transferase, a specific inhibitor of Rho proteins, significantly inhibited the transmonolayer migration of T lymphocytes, endothelial Rho-GTP loading, and endothelial actin reorganization, without affecting either lymphocyte adhesion to EC or cortactin phosphorylation. These data show that brain vascular EC are actively involved in facilitating T lymphocyte migration through the tight blood-brain barrier of the CNS and that this process involves ICAM-1-stimulated rearrangement of the endothelial actin cytoskeleton and functional EC Rho proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号