首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Karve TM  Preet A  Sneed R  Salamanca C  Li X  Xu J  Kumar D  Rosen EM  Saha T 《PloS one》2012,7(6):e37697
Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells.  相似文献   

2.
3.
Long non‐coding RNAs (lncRNAs), a group of non‐protein‐coding RNAs with more than 200 nucleotides in length, are involved in multiple biological processes, such as the proliferation, apoptosis, migration and invasion. Moreover, numerous studies have shown that lncRNAs play important roles as oncogenes or tumour suppressor genes in human cancers. In this paper, we concentrate on actin filament‐associated protein 1‐antisense RNA 1 (AFAP1‐AS1), a well‐known long non‐coding RNA that is overexpressed in various tumour tissues and cell lines, including oesophageal cancer, pancreatic ductal adenocarcinoma, nasopharyngeal carcinoma, lung cancer, hepatocellular carcinoma, ovarian cancer, colorectal cancer, biliary tract cancer and gastric cancer. Moreover, high expression of AFAP1‐AS1 was associated with the clinicopathological features and cancer progression. In this review, we sum up the current studies on the characteristics of AFAP1‐AS1 in the biological function and mechanism of human cancers.  相似文献   

4.
Cancer is the leading cause of morbidity and mortality worldwide. Some studies have shown that high heat kills cancer cells. Irisin is a protein involved in heat production by converting white into brown adipose tissue, but there is no information about how its expression changes in cancerous tissues. We used irisin antibody immunohistochemistry to investigate changes in irisin expression in gastrointestinal cancers compared to normal tissues. Irisin was found in human brain neuroglial cells, esophageal epithelial cells, esophageal epidermoid carcinoma, esophageal adenocarcinoma and neuroendocrine esophageal carcinoma, gastric glands, gastric adenosquamous carcinoma, gastric neuroendocrine carcinoma, gastric signet ring cell carcinoma, neutrophils in vascular tissues, intestinal glands of colon, colon adenocarcinoma, mucinous colon adenocarcinoma, hepatocytes, hepatocellular carcinoma, islets of Langerhans, exocrine pancreas, acinar cells and interlobular and interlobular ducts of normal pancreas, pancreatic ductal adenocarcinoma, and intra- and interlobular ducts of cancerous pancreatic tissue. Histoscores (area × intensity) indicated that irisin was increased significantly in gastrointestinal cancer tissues, except liver cancers. Our findings suggest that the relation of irisin to cancer warrants further investigation.  相似文献   

5.
We hypothesize that 14-3-3 sigma gene expression and its regulation by methylation can characterize histological types of primary human epithelial ovarian cancer. To test this hypothesis, ovarian cancer cell lines and 54 ovarian cancer tissue samples were analyzed for expression and methylation of 14-3-3 sigma gene using methylation specific PCR. The results of our experiments demonstrate that 14-3-3 sigma gene was methylated and inactivated in ES-2 ovarian cell line, which was derived from clear cell adenocarcinoma. Treatment of this cell line with demethylating agent 5-aza-2'-deoxycytidine restored the expression of 14-3-3 sigma gene. In human ovarian cancer tissues, the expression of 14-3-3 sigma protein was inactivated in most of the ovarian clear cell carcinoma tissues. Interestingly, 14-3-3 sigma protein expression was positive in significantly higher percentages of serous (89.5%), endometrioid (90%), and mucinous (81.8%) ovarian adenocarcinoma tissues. The ovarian clear cell carcinoma samples with inactivated 14-3-3 sigma protein were highly methylated, suggesting that inactivation of 14-3-3 sigma gene is through DNA methylation. Using direct DNA sequencing, 14-3-3 sigma gene methylation on all the 17 CpG sites was significantly higher in ovarian clear cell carcinoma as compared to other histological types of ovarian cancer (serous, endometrioid, and mucinous). This is the first report suggesting that 14-3-3 sigma gene expression and methylation status can characterize histological features of different types of ovarian cancer.  相似文献   

6.
B7-H4 protein is expressed on the surface of a variety of immune cells and functions as a negative regulator of T cell responses. We independently identified B7-H4 (DD-O110) through a genomic effort to discover genes upregulated in tumors and here we describe a new functional role for B7-H4 protein in cancer. We show that B7-H4 mRNA and protein are overexpressed in human serous ovarian cancers and breast cancers with relatively little or no expression in normal tissues. B7-H4 protein is extensively glycosylated and displayed on the surface of tumor cells and we provide the first demonstration of a direct role for B7-H4 in promoting malignant transformation of epithelial cells. Overexpression of B7-H4 in a human ovarian cancer cell line with little endogenous B7-H4 expression increased tumor formation in SCID mice. Whereas overexpression of B7-H4 protected epithelial cells from anoikis, siRNA-mediated knockdown of B7-H4 mRNA and protein expression in a breast cancer cell line increased caspase activity and apoptosis. The restricted normal tissue distribution of B7-H4, its overexpression in a majority of breast and ovarian cancers and functional activity in transformation validate this cell surface protein as a new target for therapeutic intervention. A therapeutic antibody strategy aimed at B7-H4 could offer an exciting opportunity to inhibit the growth and progression of human ovarian and breast cancers.  相似文献   

7.
GIPC1 is a cytoplasmic scaffold protein that interacts with numerous receptor signaling complexes, and emerging evidence suggests that it plays a role in tumorigenesis. GIPC1 is highly expressed in a number of human malignancies, including breast, ovarian, gastric, and pancreatic cancers. Suppression of GIPC1 in human pancreatic cancer cells inhibits in vivo tumor growth in immunodeficient mice. To better understand GIPC1 function, we suppressed its expression in human breast and colorectal cancer cell lines and human mammary epithelial cells (HMECs) and assayed both gene expression and cellular phenotype. Suppression of GIPC1 promotes apoptosis in MCF-7, MDA-MD231, SKBR-3, SW480, and SW620 cells and impairs anchorage-independent colony formation of HMECs. These observations indicate GIPC1 plays an essential role in oncogenic transformation, and its expression is necessary for the survival of human breast and colorectal cancer cells. Additionally, a GIPC1 knock-down gene signature was used to interrogate publically available breast and ovarian cancer microarray datasets. This GIPC1 signature statistically correlates with a number of breast and ovarian cancer phenotypes and clinical outcomes, including patient survival. Taken together, these data indicate that GIPC1 inhibition may represent a new target for therapeutic development for the treatment of human cancers.  相似文献   

8.
9.
Konno R 《Human cell》2001,14(4):261-266
Gene expression of human ovarian carcinoma cell lines and epithelial ovarian tumors was examined by oligonucleotide microarray for about 6000 human cDNAs. (1) Comparison of gene expression between CDDP-sensitive human ovarian serous adenocarcinoma cell lines and CDDP-resistant cell lines revealed that gamma-glutamylcysteine synthetase, glutathione peroxidase-like protein, dehydrogenase (UGDH), NAD(P)H: quinoneoxireductase, glucose-6-phosphatase, ornithine decarboxylase and dihydrodiol dehydrogenase were associated with a mechanism of CDDP-resistance. Comparison of gene expression between taxol-sensitive human ovarian cell lines and taxol-resistant cell lines showed that up-regulation of 30 kinds of gene expression including MDR and semaphorin E in taxol-resistant cell lines. (2) Comparison of gene expression among serous adenocarcinomas, clear cell adenocarcinomas and non-cancerous ovarian tissues by hierarchical clustering demonstrated that clear difference between carcinomas and non-cancerous ovarian tissues but not obvious difference between serous and clear adenocarcinomas. Genes that were up- and down-regulated specifically in these two types of ovarian carcinomas were further selected by the criteria that difference in the mRNA level by more than 4-fold between tumors and non-cancerous tissues. Tissue type specific alterations of gene expression are likely to play important roles in the carcinogenesis of epithelial ovarian tumors. cDNA microarray is a powerful and high-throughput tool to analyze gene expression of cancer development.  相似文献   

10.
11.
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC) cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma) and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1high) population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas) by the ALDEFLUOR assay. ALDH1high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1high cells. ALDH1high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis.  相似文献   

12.
13.
The CD40 receptor is a member of the tumour necrosis factor receptor family and is widely expressed on various cell types. The antitumour activity of CD40 agonist antibody has been observed in B-cell-derived malignancies, but its activity on ovarian cancer remains unclear. However, in this paper, we first confirmed that the anti-CD40 agonist antibody could inhibit the growth of ovarian cancer cells and induce apoptosis. This study investigated the expression of CD40 by ovarian carcinoma tissues and cell lines, at the same time, we evaluated the effect of a recombinant soluble human CD40L (rshCD40L) and an anti-CD40 agonist antibody on cell growth and apoptosis. Flow cytometry and immunohistochemistry assay demonstrated that CD40 was expressed on ovarian carcinoma cell lines and primary ovarian carcinoma cells derived from ascites, as well as on ovarian carcinoma tissues. The growth inhibition of rshCD40L and the anti-CD40 agonist antibody on ovarian carcinoma cells was examined by MTT assay, and the proportion of apoptotic tumour cells was analysed by flow cytometry and Hoechst staining. Our study showed that CD40 was expressed on all ovarian carcinoma cell lines and was examined in 86.2% (162/188) of ovarian cancer tissue samples, but not in normal ovarian tissues (n?=?20). Treatment with rshCD40L or anti-CD40 agonist antibody significantly inhibited ovarian carcinoma cell growth and induced apoptosis. Theses results suggest that CD40 is expressed on ovarian carcinoma cells, moreover, that rshCD40L and anti-CD40 agonist antibody have therapeutic potential to inhibit human ovarian cancer growth.  相似文献   

14.
15.
Aromatase expression in ovarian epithelial cancers   总被引:6,自引:0,他引:6  
Our study focused on aromatase cytochrome P450 (CYP19) expression in ovarian epithelial normal and cancer cells and tissues. Aromatase mRNA expression was analyzed by real-time PCR in ovarian epithelial cancer cell lines, in human ovarian surface epithelial (HOSE) cell primary cultures, and in ovarian tissue specimens (n=94), including normal ovaries, ovarian cysts and cancers. Aromatase mRNA was found to be expressed in HOSE cells, in BG1, PEO4 and PEO14, but not in SKOV3 and NIH:OVCAR-3 ovarian cancer cell lines. Correlation analysis of aromatase expression was performed according to clinical, histological and biological parameters. Aromatase expression in ovarian tissue specimens was higher in normal ovaries and cysts than in cancers (P<0.0001). Using laser capture microdissection in normal postmenopausal ovaries, aromatase was found to be predominantly expressed in epithelial cells as compared to stromal component. Using immunohistochemistry (IHC), aromatase was also detected in the epithelium component. There was an inverse correlation between aromatase and ERalpha expression in ovarian tissues (P<0.001, r=-0.34). In the cancer group, no significant differences in aromatase expression were observed according to tumor histotype, grade, stage and survival. Aromatase activity was evaluated in ovarian epithelial cancer (OEC) cell lines by the tritiated water assay and the effects of third-generation aromatase inhibitors (AIs) on aromatase activity and growth were studied. Letrozole and exemestane were able to completely inhibit aromatase activity in BG1 and PEO14 cell lines. Interestingly, both AI showed an antiproliferative effect on the estrogen responsive BG1 cell line co-expressing aromatase and ERalpha. Aromatase expression was found in ovarian epithelial normal tissues and in some ovarian epithelial cancer cells and tissues. This finding raises the possibility that some tumors may respond to estrogen and provides a basis for ascertaining an antimitogenic effect of AI in a subgroup of ovarian epithelial cancers.  相似文献   

16.
17.
Identification and characterization of a novel cancer/testis antigen gene CAGE   总被引:10,自引:0,他引:10  
We applied serological analysis of cDNA expression library technique to identify cancer-associated genes. We screened cDNA expression libraries of human testis and gastric cancer cell lines with sera of patients with gastric cancers. We identified a gene whose expression is testis-specific among normal tissues. We cloned and characterized this novel gene. It contains D-E-A-D box domain and encodes a putative protein of 630 amino acids with possible helicase activity. It showed wide expression in various cancer tissues and cancer cell lines. The corresponding gene was named cancer-associated gene (CAGE). PCR of human x hamster Radiation Hybrids showed localization of CAGE on the human chromosome Xp22. Transient transfection of CAGE showed predominantly nuclear localization. Both Western blot and plaque assay indicated seroreactivity of CAGE protein. We found that demethylation played a role in the activation of CAGE in some cancer cell lines that do not express it. Cell synchronization experiments showed that the expression of CAGE was related with cell cycle. This suggests that CAGE might play a role in cellular proliferation. Because CAGE is expressed in a variety of cancers but not in normal tissues except testis, this gene can be a target of antitumor immunotherapy.  相似文献   

18.
Armadillo-related proteins function in both signal transduction and cell adhesion, it also plays a central role in tumorigenesis. Plakophilin 3 (PKP3) is a member of the armadillo protein family. PKP3 has demonstrated a role in melanoma, breast cancer, gastric cancer, and other kind of cancers; however its role in ovarian cancer was not fully understood. In this study we explored the function and mechanisms of PKP3 in ovarian cancer. An elevated level of PKP3 was found in ovarian cancer tissues compared with normal tissues. PKP3 also modulate cellular proliferation and invasion in ovarian cancer. The ability of cellular proliferation, formation, and invasion was significantly decreased after the silencing of PKP3 in SKOV3 cells. While an over-expression of PKP3 in A2780?cells up-regulates the ability of cellular proliferation, formation, and invasion. As for the mechanism of PKP3, mTOR pathway was activated to regulate autophagy according to the interaction of PKP3 with the upstream of MAPK pathway. The result of this study support PKP3 as the oncogene candidate and a potential target for the treatment of ovarian cancer.  相似文献   

19.
Aldehyde dehydrogenase isoform 1 (ALDH1) has been proved useful for the identification of cancer stem cells. However, our knowledge of the expression and activity of ALDH1 in common epithelial cancers and their corresponding normal tissues is still largely absent. Therefore, we characterized ALDH1 expression in 24 types of normal tissues and a large collection of epithelial tumor specimens (six cancer types, n = 792) by immunohistochemical staining. Using the ALDEFUOR assay, ALDH1 activity was also examined in 16 primary tumor specimens and 43 established epithelial cancer cell lines. In addition, an ovarian cancer transgenic mouse model and 7 murine ovarian cancer cell lines were analyzed. We found that the expression levels and patterns of ALDH1 in epithelial cancers are remarkably distinct, and they correlate with their corresponding normal tissues. ALDH1 protein expression levels are positively correlated with ALDH1 enzymatic activity measured by ALDEFLUOR assay. Long-term in vitro culture doesn''t significantly affect ALDH1 activity in epithelial tumor cells. Consistent with research on other cancers, we found that high ALDH1 expression is significantly associated with poor clinical outcomes in serous ovarian cancer patients (n = 439, p = 0.0036). Finally, ALDHbr tumor cells exhibit cancer stem cell properties and are resistant to chemotherapy. As a novel cancer stem cell marker, ALDH1 can be used for tumors whose corresponding normal tissues express ALDH1 in relatively restricted or limited levels such as breast, lung, ovarian or colon cancer.  相似文献   

20.
Mesothelin is a glycosylphosphatidylinositol-linked cell surface molecule expressed in the mesothelial lining of the body cavities and in many tumor cells. Based on the finding that a soluble form of mesothelin specifically binds to ovarian carcinoma cell line OVCAR-3, we isolated cDNAs encoding a mesothelin-binding protein by expression cloning. The polypeptides encoded by the two cloned cDNA fragments matched to portions of CA125, an ovarian cancer antigen and a giant mucin-like glycoprotein present at the surface of tumor cells. By flow cytometric analysis and immunoprecipitation, we demonstrate that CA125 binds to mesothelin in a specific manner. Binding of CA125 to membrane-bound mesothelin mediates heterotypic cell adhesion as anti-mesothelin antibody blocks binding of OVCAR-3 cells expressing CA125 to an endothelial-like cell line expressing mesothelin. Finally, we show that CA125 and mesothelin are co-expressed in advanced grade ovarian adenocarcinoma. Taken together, our data indicate that mesothelin is a novel CA125-binding protein and that CA125 might contribute to the metastasis of ovarian cancer to the peritoneum by initiating cell attachment to the mesothelial epithelium via binding to mesothelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号