首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dental pulp stem cells (DPSCs) are shown to reside within the tooth and play an important role in dentin regeneration. DPSCs were first isolated and characterized from human teeth and most studies have focused on using this adult stem cell for clinical applications. However, mouse DPSCs have not been well characterized and their origin(s) have not yet been elucidated. Herein we examined if murine DPSCs are neural crest derived and determined their in vitro and in vivo capacity. DPSCs from neonatal murine tooth pulp expressed embryonic stem cell and neural crest related genes, but lacked expression of mesodermal genes. Cells isolated from the Wnt1-Cre/R26R-LacZ model, a reporter of neural crest-derived tissues, indicated that DPSCs were Wnt1-marked and therefore of neural crest origin. Clonal DPSCs showed multi-differentiation in neural crest lineage for odontoblasts, chondrocytes, adipocytes, neurons, and smooth muscles. Following in vivo subcutaneous transplantation with hydroxyapatite/tricalcium phosphate, based on tissue/cell morphology and specific antibody staining, the clones differentiated into odontoblast-like cells and produced dentin-like structure. Conversely, bone marrow stromal cells (BMSCs) gave rise to osteoblast-like cells and generated bone-like structure. Interestingly, the capillary distribution in the DPSC transplants showed close proximity to odontoblasts whereas in the BMSC transplants bone condensations were distant to capillaries resembling dentinogenesis in the former vs. osteogenesis in the latter. Thus we demonstrate the existence of neural crest-derived DPSCs with differentiation capacity into cranial mesenchymal tissues and other neural crest-derived tissues. In turn, DPSCs hold promise as a source for regenerating cranial mesenchyme and other neural crest derived tissues.  相似文献   

2.
This paper described that neural stem cells (hsNSCs) were isolated and expanded rapidly from human fetal striatum in adherent culture. The population was serum- and growth factor-dependent and expressed neural stem cell markers. They were capable of multi-differentiation into neurons, astrocytes, and oligodendrocytes. When plated in the dopaminergic neuron inducing medium, human striatum neural stem cells could differentiate into tyrosine hydroxylase positive neurons. hsNSCs were morphologically homogeneous and possessed high proliferation ability. The population doubled every 44.28h and until now it has divided for more than 82 generations in vitro. Normal human diploid karyotype was unchanged throughout the in vitro culture period. Together, this study has exploited a method for continuous and rapid expansion of human neural stem cells as pure population, which maintained the capacity to generate almost fifty percent neurons. The availability of such cells may hold great interest for basic and applied neuroscience.  相似文献   

3.
BACKGROUND INFORMATION: Substantial evidence indicates the existence of NCSCs (neural crest-derived stem cells) in embryonic mandibular processes; however, they have not been fully investigated or isolated. The aim of the present study was to isolate stem cells from mandibular process during embryonic development by MACS (magnetic-activated cell sorting). The findings show that the cells are multipotent and self-renewing. RESULTS: LNGFR (low-affinity nerve-growth-factor receptor)+ cells were isolated from rat embryonic mandibular processes by MACS. The cells were grown in clonal culture by limiting dilution to assess their developmental potential. Clone analysis indicated that, first, LNGFR+ cells are multipotent, being able to generate at least neurons and Schwann cells, similar to peripheral neural crest stem cells. Secondly, multipotent LNGFR+ cells generate multipotent progenies, indicating that they are capable of self-renewal and therefore are stem cells. Thirdly, manipulation of the medium supplementation alters the fate of the isolated LNGFR+ cells. CONCLUSIONS: These results indicate that LNGFR antibodies label NCSCs with high specificity and purity, and suggest that positive selection using these antibodies may become the method of choice for obtaining multipotent cells from rat embryonic mandibular processes for tissue engineering or regenerative therapeutic use.  相似文献   

4.
胚胎大鼠脑和脊髓神经干细胞的分离和培养   总被引:11,自引:2,他引:11  
Fu SL  Ma ZW  Yin L  Lu PH  Xu XM 《生理学报》2003,55(3):278-283
研究采用显微解剖、无血清细胞培养和免疫荧光细胞化学染色等实验技术 ,成功地建立了胚胎大鼠脑和脊髓神经干细胞 (NSCs)的分离和培养方法。结果显示 ,( 1)在含成纤维细胞生长因子 2 (FGF 2 )和表皮生长因子(EGF)的无血清培养液中 ,两种来源的NSCs经体外培养 8- 10代后 ,其细胞数呈指数级增加 ,其中脑来源的NSCs数由原代培养时的 1× 10 6 增加至 1× 10 12 ,脊髓来源的NSCs数从 1× 10 6 增加至 1× 10 11。增殖的细胞表达神经上皮干细胞蛋白 (nestin) ;( 2 )在含 1%胎牛血清 (FBS)的培养条件下 ,它们都能被诱导分化为神经元、少突胶质细胞和星型胶质细胞。但其分化比例可随细胞传代次数的增加而改变 ,其中 ,大脑来源的NSCs分化为神经元的比例从第二代 (P2 )的 11 95± 2 5 %下降至第五代 (P5)的 1 97± 1 16% (P <0 0 1) ,而少突胶质细胞的分化比例则基本保持不变 ,这一分化格局同样可在脊髓来源的NSCs中发现。结果表明 ,我们所分离和培养的细胞在体外经多次传代后仍具有很强的增殖能力和多向分化潜能 ,它们都表达nestin ,属于中枢神经系统的干细胞  相似文献   

5.
Abstract Stem-cell-based therapies may offer treatments for a variety of intractable diseases. A fundamental goal in stem-cell biology concerns the characterization of diverse populations that exhibit different potentials, growth capabilities, and therapeutic utilities. We report the characterization of a stem-cell population isolated from tissue explants of rat amniotic membrane. Similar to mesenchymal stem cells, these amnion-derived stem cells (ADSCs) express the surface markers CD29 and CD90, but were negative for the lymphohematopoietic markers CD45 and CD11b. ADSCs exist in culture in a multidifferentiated state, expressing neuroectodermal (neurofilament-M), mesodermal (fibronectin), and endodermal (α-1-antitrypsin) genes. To assess plasticity, ADSCs were subjected to a number of culture conditions intended to encourage differentiation into neuroectodermal, mesodermal, and endodermal cell types. ADSCs cultured in a defined neural induction media assumed neuronal morphologies and up-regulated neural-specific genes. Under different conditions, ADSCs were capable of differentiating into presumptive bone and fat cells, indicated by the deposition of mineralized matrix and accumulated lipid droplets, respectively. Moreover, ADSCs cultured in media that promotes liver cell differentiation up-regulated liver-specific genes (albumin) and internalized low-density lipoprotein (LDL), consistent with a hepatocyte phenotype. To determine whether this observed plasticity reflects the presence of true stem cells within the population, we have derived individual clones from single cells. Clonal lines recapitulate the expression pattern of parental ADSC cultures and are multipotent. ADSCs have been cultured for 20 passages without losing their plasticity, suggesting long-term self-renewal. In sum, our data suggest that ADSCs and derived clonal lines are capable of long-term self-renewal and multidifferentiation, fulfilling all the criteria of a stem-cell population.  相似文献   

6.
To find a promising alternative to neurons or schwann cells (SCs) for peripheral nerve repair applications, this study sought to isolate stem cells from fetal rat dorsal root ganglion (DRG) explants. Molecular expression analysis confirmed neural stem cell characteristics of DRG-derived neurospheres in terms of expressing neural stem cell-specific genes and a set of well-defined genes related to stem cell niches and glial fate decision. Under the influence of neurotrophic factors, bFGF and NGF, the neurospheres gave rise to neurofilament-expressing neurons and S100-expressing Schwann cell-like cells by different pathways. This study suggests that a subpopulation of stem cells that reside in DRGs is the progenitor of neurons and glia, which could directly induce the differentiation toward neurons, or SCs.  相似文献   

7.
Objectives: Somatic stem cells can be obtained from a variety of adult human tissues. However, it was not clear whether human parathyroid glands, which secrete parathyroid hormones and are essential in maintaining homeostasis levels of calcium ions in the circulation, contained stem cells. We aimed to investigate the possibility of isolating such parathyroid‐derived stem cells (PDSC). Materials and methods: Surgically removed parathyroid glands were obtained with informed consent. Cell cytogenetics was used to observe chromosomal abnormalities. Surface phenotypes were characterized by flow cytometry. Telomerase repeat amplification protocol (TRAP) assay was performed to observe the telomerase activity. RT‐PCR and real‐time PCR was was used to detect gene expressions. Real‐time calcium uptake imaging was performed for extent of calcium uptake and transmission electron microscopy and immunofluorecent staining for smooth muscle actin. Results: After enzymatic digestion and primary culture, plastic‐adherent, fibroblast‐like cells appeared in culture and a morphologically homogeneous population was derived from subsequent limiting dilution and clonal expansion. Karyotyping was normal and doubling time of clonal cell growth was estimated to be 70.7 ± 14.5 h (mean ± standard deviation). The surface phenotype of the cells was positive for CD73, CD166, CD29, CD49a, CD49b, CD49d, CD44, CD105, and MHC class I, and negative for CD34, CD133, CD117, CD114, CD31, CD62P, EGF‐R, ICAM‐3, CD26, CXCR4, CD106, CD90 and MHC class II, similar to mesenchymal stem cells (MSC). Detectable levels of telomerase activity along with pluripotency Sall4 gene expression were observed from the isolated PDSCs. Expression of calcium‐sensing receptor gene along with alpha‐smooth muscle actin was induced and cellular uptake of extracellular calcium ions was observed. Furthermore, PDSCs possessed osteogenic, chondrogenic and adipogenic differentiation potentials. Conclusions: Our results reveal that PDSCs were similar phenotypically to MSCs and further studies are needed to formulate induction conditions to differentiate PDSCs into parathyroid hormone‐secreting chief cells.  相似文献   

8.
Vertebrate neural crest development depends on pluripotent, migratory precursor cells. Although avian and murine neural crest stem (NCS) cells have been identified, the isolation of human NCS cells has remained elusive. Here we report the derivation of NCS cells from human embryonic stem cells at the neural rosette stage. We show that NCS cells plated at clonal density give rise to multiple neural crest lineages. The human NCS cells can be propagated in vitro and directed toward peripheral nervous system lineages (peripheral neurons, Schwann cells) and mesenchymal lineages (smooth muscle, adipogenic, osteogenic and chondrogenic cells). Transplantation of human NCS cells into the developing chick embryo and adult mouse hosts demonstrates survival, migration and differentiation compatible with neural crest identity. The availability of unlimited numbers of human NCS cells offers new opportunities for studies of neural crest development and for efforts to model and treat neural crest-related disorders.  相似文献   

9.
Zhang SL  Wang YS  Zhou T  Yu XW  Wei ZT  Li YL 《Cytotechnology》2012,64(4):477-484
Cervical cancer is one of the most common gynecologic malignancies and poses a serious health problem worldwide. Identification and characterization of cervical cancer stem cells may facilitate the development of novel strategies for the treatment of advanced and metastatic cervical cancer. Breast cancer-resistance protein (Bcrp1)-positive cells were selected from a population of parent HeLa cells using flow cytometry. The invasion capacity of Bcrp1-positive and -negative cells was analyzed with a Boyden chamber invasion test. The tumorigenicity of these cells was determined by in vivo transplantation in non-obesity diabetes/severe combined immunodeficiency (NOD/SCID) mice. The Bcrp1-positive subpopulation accounted for about 7% of the parent HeLa cell population. The proliferative capacity of the Bcrp1-positive cells was greater than that of the Bcrp1-negative cells (P < 0.05). In the invasion assay, the Bcrp1-positive cells demonstrated a greater invasive capacity through the artificial basement membrane than their Bcrp1-negative counterparts. Following transplantation of 104 cells, only the Bcrp1-positive cells formed tumors in NOD/SCID mice. When 105 or 106 cells were transplanted, the tumor incidence and the tumor mass were greater in the Bcrp1-positive groups than those in the Bcrp1-negative groups (P < 0.05). The Bcrp1-positive subpopulation cervical cancer stem cells.  相似文献   

10.
<正>Dear Editor,Large numbers of individuals experience low back pain(LBP)during their lifetime[1,2].LBP excruciates approximately 80%aging population and causes significant socio-economic problem[3,4].LBP often originates from the intervertebral disc degeneration(IVDD).The intervertebral disc(IVD)is a specialized biomechanical complex composed of a hyper-hydrated and oligocellular central structure,  相似文献   

11.
Summary We describe here a modified nonenzymatic method for the isolation of rat aortic endothelial cells with vasoformative properties. Aortic rings placed on plastic or gelatin-coated surfaces generated outgrowths primarily composed of endothelial cells. Prompt removal of aortic explants after endothelial migration minimized fibroblast contamination. However, fibroblasts, because of their high proliferative rate tended to overgrow the endothelial cells even when present in small numbers. This potential pitfall was avoided by weeding out fibroblasts with the rounded tip of a bent glass pipette. Primary endothelial colonies free of fibroblasts were segregated in cloning rings, trypsin-treated, and transferred to gelatin-coated dishes. Endothelial cells were cultured in MCDB 131 growth medium containing 10% fetal bovine serum, endothelial cell growth supplement, and heparin. Using this technique, pure endothelial cell strains were obtained from single aortic rings. Confluent endothelial cells formed a contact-inhibited monolayer with typical cobblestone pattern. The endothelial cells were positive for Factor VIII-related antigen, took up DiI-Ac-LDL, and bound the Griffonia Simplicifolia-isolectin-B4. Endothelial cells cultured on collagen gel formed a polarized monolayer, produced basement membrane, displayed Weibel-Palade bodies and caveolae, and were connected by tight junctions. In addition, they reorganized into a network of microvascular cords and tubes when overlaid with a second layer of collagen and formed microvascular sprouts in response to fibroblast-conditioned medium. This isolation procedure yields stable strains of vasoformative endothelial cells, which can be used to study aortic endothelium-related angiogenesis and its mechanisms.  相似文献   

12.
13.
14.
The bone marrow mesenchymal stem cells (BMSCs) are multipotent stem cells, which can differentiate in vitro into many cell types. However, the vast majority of experimental materials were obtained from human, mouse, rabbit and other mammals, but rarely in poultry. So, in this study, Thirty- to sixty-day old chicken was chosen as experimental animal, to isolate and characterize BMSCs from them. To investigate the biological characteristics of chicken BMSCs, immunofluorescence and RT-PCR were used to detect the characteristic surface markers of BMSCs. Growth curves were drawn in accordance with cell numbers. To assess the differentiation capacity of the BMSCs, cells were induced to differentiate into osteoblasts, adipocytes, and endothelial cells. The surface markers of BMSCs, CD29, CD44, CD31, CD34, CD71 and CD73, were detected by immunofluorescence and RT-PCR assays. The growth curves of different passages were all typically sigmoidal. Karyotype analysis showed that these in vitro cultured cells were genetically stable. In addition, BMSCs were successfully induced to differentiate into osteoblasts, adipocytes, and endothelial cells. The results suggest that the BMSCs isolated from chicken possess similar biological characteristics with those separated from other species, and their multi-lineage differentiation potentiality herald a probable application for cellular transplant therapy in tissue engineering.  相似文献   

15.
16.
Non-parenchymal cell suspensions were prepared from rat livers by three different methods based on a collagenase, a pronase and a combined collagenase-pronase treatment. The highest yield of Kupffer and endothelial cells was obtained with the pronase treatment. Attempts were made for a further purification of these cells by Metrizamide density gradient centrifugation after preferentially loading lysosomal structures in Kupffer cells with Triton WR 1339, Jectofer®, Neosilvol®, Zymosan or colloidal carbon. After loading with Triton WR 1339 or Jectofer®, highly purified endothelial cell suspensions were obtained, but the final Kupffer cell preparations were contaminated with about 20% of endothelial cells. Kupffer and endothelial cells purified in this way showed an altered ultrastructure and contained increased activities of the lysosomal enzymes acid phosphatase, arylsulphatase B and cathepsin D. As an alternative procedure for the purification of Kupffer and endothelial cells, a method based on centrifugal elutriation was employed. With this procedure, highly purified preparations of Kupffer or endothelial cells with a well preserved ultrastructure were obtained. Compared with endothelial cells, purified Kupffer cells had a three times higher cathepsin D activity, whereas the arylsulphatase B activity was three times higher in endothelial cells. The high cathepsin D activity in Kupffer cells could be nearly completely inhibited by the specific cathepsin D inhibitor pepstatin, which excludes a possible contribution to this activity by proteases endocytosed during the isolation of the cells.  相似文献   

17.
Isolation and characterization of human mammary stem cells   总被引:12,自引:0,他引:12  
Since stem cells are present throughout the lifetime of an organism, it is thought that they may accumulate mutations, eventually leading to cancer. In the breast, tumours are predominantly oestrogen and progesterone receptor-positive (ERalpha/PR+). We therefore studied the biology of ERalpha/PR-positive cells and their relationship to stem cells in normal human mammary epithelium. We demonstrated that ERalpha/PR-positive cells co-express the putative stem cell markers p21(CIP1/WAF1), cytokeratin (CK) 19 and Musashi-1 when examined using dual label immunofluorescence on tissue sections. Next, we isolated a Hoechst dye-effluxing 'side population' (SP) from the epithelium using flow cytometry and demonstrated them to be undifferentiated cells by lack of expression of myoepithelial and luminal cell-specific antigens such as CALLA and MUC1. Epithelial SP cells were shown to be enriched for the putative stem cell markers p21(CIP1/WAF1), Musashi-1 and ERalpha/PR-positive cells. Lastly, SP cells, compared to non-SP, were highly enriched for the capacity to produce colonies containing multiple lineages in 3D basement membrane (Matrigel) culture. We conclude that breast stem cells include two populations: a primitive ERalpha/PR-negative stem cell necessary for development and a shorter term ERalpha/PR-positive stem cell necessary for adult tissue homeostasis during menstrual cycling. We speculate these two basic stem cell types may therefore be the cells of origin for ERalpha-positive and -negative breast tumours.  相似文献   

18.
人胎儿脊髓神经干细胞的分离培养   总被引:6,自引:0,他引:6  
Liu XC  Zhu Y 《生理学报》2006,58(4):384-390
本文旨在探讨是否能够从低温保存的流产儿分离培养出脊髓神经干细胞。将14周流产儿在4℃下保存,2、6和12h后取脊髓,将颈段、胸段、腰骶段分别进行无血清培养,并用胎牛血清诱导分化。用克隆培养的方法验证培养细胞的干细胞特性;用免疫荧光细胞化学的方法检测神经干细胞标志nestin及干细胞诱导分化后神经元标志MAP2、星形胶质细胞标志GFAP、胆碱能标志ChAT,并比较不同时间点以及不同部位分离的神经T细胞的差异。在各个时间点,从颈段、胸段、腰骶段脊髓均分离培养出具有连续增殖能力的神经球,其中腰骶段分离出的神经球数量最多,12h组各段分离出的神经球较2、6h组显著减少。各段培养中的神经球均为nestin阳性,诱导分化后均能够产生GFAP阳性星形胶质细胞、MAP2阳性神经元以及ChAT阳性胆碱能神经元。各段培养中的神经干细胞的克隆形成能力相似。以上结果表明,从低温保存的人胎儿能够分离培养出脊髓神经干细胞,这为基础研究以及未来治疗应用提供了新的细胞来源。  相似文献   

19.

Neural stem cells (NSCs) are multipotent, self-renewable cells who are capable of differentiating into neurons, astrocytes, and oligodendrocytes. NSCs reside at the subventricular zone (SVZ) of the adult brain permanently to guarantee a lifelong neurogenesis during neural network plasticity or undesirable injuries. Although the specious inaccessibility of adult NSCs niche hampers their in vivo identification, researchers have been seeking ways to optimize adult NSCs isolation, expansion, and differentiation, in vitro. NSCs were isolated from rhesus monkey SVZ, expanded in vitro and then characterized for NSCs-specific markers expression by immunostaining, real-time PCR, flow cytometry, and cell differentiation assessments. Moreover, cell survival as well as self-renewal capacity were evaluated by TUNEL, Live/Dead and colony assays, respectively. In the next step, to validate SVZ-NSCs identity in other species, a similar protocol was applied to isolate NSCs from adult rat’s SVZ as well. Our findings revealed that isolated SVZ-NSCs from both monkey and rat preserve proliferation capacity in at least nine passages as confirmed by Ki67 expression. Additionally, both SVZ-NSCs sources are capable of self-renewal in addition to NESTIN, SOX2, and GFAP expression. The mortality was measured meager with over 95% viability according to TUNEL and Live/Dead assay results. Eventually, the multipotency of SVZ-NSCs appraised authentic after their differentiation into neurons, astrocytes, and oligodendrocytes. In this study, we proposed a reliable method for SVZ-NSCs in vitro maintenance and identification, which, we believe is a promising cell source for therapeutic approach to recover neurological disorders and injuries condition.

  相似文献   

20.

Background  

Hippocampal neural stem cells (HNSC) play an important role in cerebral plasticity in the adult brain and may contribute to tissue repair in neurological disease. To describe their biological potential with regard to plasticity, proliferation, or differentiation, it is important to know the cellular composition of their proteins, subsumed by the term proteome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号