首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2013,37(4):678-683
在低温处理仔虾全长cDNA文库的筛选测序中, 获得凡纳滨对虾(Litopenaeus vannmei)金属硫蛋白基因全长cDNA序列, 该序列含有425个碱基, 包含177 bp开放阅读框, 上游98 bp的非编码区及下游150 bp 的非编码区, 编码58个氨基酸, 其中半胱氨酸含量丰富, 富含金属硫蛋白典型的Cys-X(1-3)-Cys 结构。多序列比对表明, 凡纳滨对虾MT蛋白序列与美洲螯龙虾(Homarus americanus)MT蛋白序列具最高同源性72.4%。Real-time PCR结果表明, 凡纳滨对虾MT基因在卵巢组织中呈优势表达, 在不同发育期的卵巢中的表达量都很高, 在低温处理凡纳滨对虾肝胰腺组织中上调表达。实验所得结果为研究凡纳滨对虾金属硫蛋白基因在生殖发育和低温应激中的功能提供了参考。    相似文献   

8.
Methanosarcina strain 227 exhibited exponential growth on sodium acetate in the absence of added H(2). Under these conditions, rates of methanogenesis were limited by concentrations of acetate below 0.05 M. One mole of methane was formed per mole of acetate consumed. Additional evidence from radioactive labeling studies indicated that sufficient energy for growth was obtained by the decarboxylation of acetate. Diauxic growth and sequential methanogenesis from methanol followed by acetate occurred in the presence of mixtures of methanol and acetate. Detailed studies showed that methanol-grown cells did not metabolize acetate in the presence of methanol, although acetate-grown cells did metabolize methanol and acetate simultaneously before shifting to methanol. Acetate catabolism appeared to be regulated in response to the presence of better metabolizable substrates such as methanol or H(2)-CO(2) by a mechanism resembling catabolite repression. Inhibition of methanogenesis from acetate by 2-bromoethanesulfonate, an analog of coenzyme M, was reversed by addition of coenzyme M. Labeling studies also showed that methanol may lie on the acetate pathway. These results suggested that methanogenesis from acetate, methanol, and H(2)-CO(2) may have some steps in common, as originally proposed by Barker. Studies with various inhibitors, together with molar growth yield data, suggest a role for electron transport mechanisms in energy metabolism during methanogenesis from methanol, acetate, and H(2)-CO(2).  相似文献   

9.
A thermophilic strain of Methanosarcina, designated Methanosarcina strain TM-1, was isolated from a laboratory-scale 55 degrees C anaerobic sludge digestor by the Hungate roll-tube technique. Penicillin and d-cycloserine, inhibitors of peptidoglycan synthesis, were used as selective agents to eliminate contaminating non-methanogens. Methanosarcina strain TM-1 had a temperature optimum for methanogenesis near 50 degrees C and grew at 55 degrees C but not at 60 degrees C. Substrates used for methanogenesis and growth by Methanosarcina strain TM-1 were acetate (12-h doubling time), methanol (7- to 10-h doubling time), methanol-acetate mixtures (5-h doubling time), methylamine, and trimethylamine. When radioactively labeled acetate was the sole methanogenic substrate added to the growth medium, it was predominantly split to methane and carbon dioxide. When methanol was also present in the medium, the metabolism of acetate shifted to its oxidation and incorporation into cell material. Electrons derived from acetate oxidation apparently were used to reduce methanol. H(2)-CO(2) was not used for growth and methanogenesis by Methanosarcina strain TM-1. When presented with both H(2)-CO(2) and methanol, Methanosarcina strain TM-1 was capable of limited hydrogen metabolism during growth on methanol, but hydrogen metabolism ceased once the methanol was depleted. Methanosarcina strain TM-1 required a growth factor (or growth factors) present in the supernatant of anaerobic digestor sludge. Growth factor requirements and the inability to use H(2)-CO(2) are characteristics not found in other described Methanosarcina strains. The high numbers of Methanosarcina-like clumps in sludges from thermophilic digestors and the fast generation times reported here for Methanosarcina TM-1 indicate that Methanosarcina may play an important role in thermophilic methanogenesis.  相似文献   

10.
11.
12.
When Methanosarcina sp. strain TM-1 is grown in medium in which both methanol and acetate are present, growth is biphasic, with methanol used as the primary catabolic substrate during the first phase. To better understand this phenomenon, we grew cells on methanol or on acetate or on both and examined the abilities of anaerobically washed cells to catabolize these substrates. Washed acetate-grown cells incubated with 10 mM acetate, 10 mM methanol, or both substrates together produced methane at initial rates of 325, 3, and 315 nmol min-1 mg of protein-1, respectively. Although the initial rate of methanogenesis from both substrates was nearly identical to the rate for acetate alone, after several hours of incubation the rate was greater for cells provided with both substrates. Studies with 14C-labeled methanol indicated that methanol was catabolized to methane at increasing rates by acetate-grown cells in a manner reminiscent of an induction curve, but only when cells were provided with acetate as a cosubstrate. Acetate was presumably providing energy and carbon for induction of methanol-catabolic enzymes. Methanol-grown cells showed a pattern of substrate utilization significantly different from that of acetate-grown cells, producing methane from 10 mM acetate, 10 mM methanol, or both substrates at initial rates of 10, 280, and 450 nmol min-1 mg of protein-1, respectively. There was significant oxidation of the methyl group of acetate during metabolism of both substrates. Cells grown on methanol-acetate and harvested before methanol depletion (methanol phase) showed catabolic patterns nearly identical to those of methanol-grown cells, including a low rate of methanogenesis from acetate. Cells harvested from methanol-acetate cultures in the acetate phase were capable of significant methanogenesis from either methanol or acetate alone, and the rate from both substrates together was nearly equal to the sum of the rates for the single substrates. When both 10 mM methanol and 10 mM acetate were presented to the acetate-phase cells, there was a preference for the methanol. These results are consistent with a model for regulation in Methanosarcina sp. strain TM-1 in which methanol represses acetate catabolism while methanol catabolism is inducible.  相似文献   

13.
14.
15.
16.
17.
Determinants of heat shock-induced chromosome puffing   总被引:62,自引:0,他引:62  
  相似文献   

18.
Biochemical studies have revealed two distinct classes of Coenzyme B‐Coenzyme M heterodisulfide (CoB‐S‐S‐CoM) reductase (Hdr), a key enzyme required for anaerobic respiration in methane‐producing archaea. A cytoplasmic HdrABC enzyme complex is found in most methanogens, whereas a membrane‐bound HdrED complex is found exclusively in members of the order Methanosarcinales. Unexpectedly, genomic data indicate that multiple copies of both Hdr classes are found in all sequenced Methanosarcinales genomes. The Methanosarcina acetivorans hdrED1 operon is constitutively expressed and required for viability under all growth conditions examined, consistent with HdrED being the primary Hdr. HdrABC appears to be specifically involved in methylotrophic methanogenesis, based on reduced growth and methanogenesis rates of an hdrA1C1B1 mutant on methylotrophic substrates and downregulation of the genes during growth on acetate. This conclusion is further supported by phylogenetic analysis showing that the presence of hdrA1 in an organism is specifically correlated with the presence of genes for methylotrophic methanogenesis. Examination of mRNA abundance in methanol‐grown ΔhdrA1C1B1 strains relative to wild‐type revealed upregulation of genes required for synthesis of (di)methylsulfide and for transport and biosynthesis of CoB‐SH and CoM‐SH, suggesting that the mutant has a defect in electron transfer from ferredoxin to CoB‐S‐S‐CoM that causes cofactor limitation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号