首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent to which ATP-sensitive K(+) channels contribute to reactive hyperemia in humans is unresolved. We examined the role of ATP-sensitive K(+) channels in regulating reactive hyperemia induced by 5 min of forearm ischemia. Thirty-one healthy subjects had forearm blood flow measured with venous occlusion plethysmography. Reactive hyperemia could be reproducibly induced (n = 9). The contribution of vascular ATP-sensitive K(+) channels to reactive hyperemia was determined by measuring forearm blood flow before and during brachial artery infusion of glibenclamide, an ATP-sensitive K(+) channel inhibitor (n = 12). To document ATP-sensitive K(+) channel inhibition with glibenclamide, coinfusion with diazoxide, an ATP-sensitive K(+) channel opener, was undertaken (n = 10). Glibenclamide did not significantly alter resting forearm blood flow or the initial and sustained phases of reactive hyperemia. However, glibenclamide attenuated the hyperemic response induced by diazoxide. These data suggest that ATP-sensitive K(+) channels do not play an important role in controlling forearm reactive hyperemia and that other mechanisms are active in this adaptive response.  相似文献   

2.
Properties of the whole-cell K+ currents and voltage-dependent activation and inactivation properties of single K+ channels in clonal pheochromocytoma (PC-12) cells were studied using the patch-clamp recording technique. Depolarizing pulses elicited slowly inactivating whole-cell K+ currents, which were blocked by external application of tetraethylammonium+, 4-aminopyridine, and quinidine. The amplitudes and time courses of these K+ currents were largely independent of the prepulse voltage. Although pharmacological agents and manipulation of the voltage-clamp pulse protocol failed to reveal any additional separable whole-cell currents in a majority of the cells examined, single-channel recordings showed that, in addition to the large Ca++-dependent K+ channels described previously in many other preparations, PC-12 cells had at least four distinct types of K+ channels activated by depolarization. These four types of K+ channels differed in the open-channel current-voltage relation, time course of activation and inactivation, and voltage dependence of activation and inactivation. These K+ channels were designated the Kw, Kz, Ky, and Kx channels. The typical chord conductances of these channels were 18, 12, 7, and 7 pS in the excised configuration using Na+-free saline solutions. These four types of K+ channels opened in the presence of low concentrations of internal Ca++ (1 nM). Their voltage-dependent gating properties can account for the properties of the whole-cell K+ currents in PC-12 cells.  相似文献   

3.
4.
K Liu  S Luan 《The Plant cell》1998,10(11):1957-1970
Guard cell turgor responds to the osmogradient across the plasma membrane and controls the stomatal aperture. Here, we report that guard cells utilize voltage-dependent K+ channels as targets of the osmosensing pathway, providing a positive feedback mechanism for stomatal regulation. When exposed to a hypotonic condition, the inward K+ current (IKin) was highly activated, whereas the outward K+ current (IKout) was inactivated. In contrast, hypertonic conditions inactivated the IKin while activating IKout. Single-channel recording analyses indicated that an alteration in channel opening frequency was responsible for regulating IKin and IKout under different osmotic conditions. Further studies correlate osmoregulation of IKin with the pattern of organization of actin filaments, which may be a critical component in the osmosensing pathway in plant cells.  相似文献   

5.
Summary The patch-clamp technique in whole-cell configuration was used to study the electrical properties of the tonoplast in isolated vacuoles fromAcer pseudoplatanus cultured cells. In symmetrical KCl or K2 malate solutions, voltage- and time-dependent inward currents were elicited by hyperpolarizing the tonoplast (inside negative), while in the positive range of potential the conductance was very small. The specific conductance of the tonoplast at –100 mV, in 100mm symmetrical KCl was about 160 S/cm2. The reversal potentials (E rev) of the current, measured in symmetrical or asymmetrical ion concentrations (cation, anion or both) were very close to the values of the K+ equilibrium potential. Experiments performed in symmetrical or asymmetrical NaCl indicate that Na+ too can flow through the channels. NeitherE rev nor amplitude and kinetics of the current changed by replacing NaCl with KCl in the external solution. These results indicate the presence of hyperpolarization-activated channels in tonoplasts, which are permeable to K+ as well as to Na+. Anions such as Cl or malate seem to contribute little to the channel current.  相似文献   

6.
7.
8.
9.
10.
Summary The outward rectification of the K+ current in mesophyll cell protoplasts from trap-lobes ofDionaea muscipula was studied with the patch-clamp technique. The rectification had instantaneous and time-dependent components. Changes in [K+] i strongly affected the conductance voltage relation of the plasma membrane while changes in [K+] o had little effect on the relation. Thus, the outward rectification depends on the membrane voltage and the concentration of intracellular K+. Corresponding single-channel activities were observed both in the intact membrane (cell-attached recording) and in excised patches. The single-channel conductance was about 3.3 pS with symmetrical solutions containing 30mm K+.  相似文献   

11.
We measured the activities of epithelial Na channels (ENaC) and ROMK channels in the distal nephron of the mouse kidney and assessed their role in the process of K+ secretion under different physiological conditions. Under basal dietary conditions (0.5% K), ENaC activity, measured as amiloride-sensitive currents, was high in cells at the distal end of the distal convoluted tubule (DCT) and proximal end of the connecting tubule (CNT), a region we call the early CNT (CNTe). In more distal parts of the CNT (aldosterone-sensitive portion [CNTas]), these currents were minimal. This functional difference correlated with alterations in the intracellular location of ENaC, which was at or near the apical membrane in CNTe and more cytoplasmic in the CNTas. ROMK activity, measured as TPNQ-sensitive currents, was substantial in both segments. A mathematical model of the rat nephron suggested that K+ secretion by the CNTe predicted from these currents provides much of the urinary K+ required for K balance on this diet. In animals fed a K-deficient diet (0.1% K), both ENaC and ROMK currents in the CNTe decreased by ∼50%, predicting a 50% decline in K+ secretion. Enhanced reabsorption by a separate mechanism is required to avoid excessive urinary K+ losses. In animals fed a diet supplemented with 3% K, ENaC currents increased modestly in the CNTe but strongly in the CNTas, while ROMK currents tripled in both segments. The enhanced secretion of K+ by the CNTe and the recruitment of secretion by the CNTas account for the additional transport required for K balance. Therefore, adaptation to increased K+ intake involves the extension of robust K+ secretion to more distal parts of the nephron.  相似文献   

12.
Ischemic preconditioning increases the velocity of vasodilatation and reduces the total hyperemic flow (THF) of a subsequent coronary reactive hyperemia (CRH). The increase in the velocity of vasodilatation has been shown to depend on an up-regulation of the endothelial release of nitric oxide, while the reduction of THF is attributed to an adenosine A(1) receptor-mediated mechanism. We investigated whether the changes in CRH induced by preconditioning ischemia (PI) can still be obtained after blockade of mitochondrial ATP-sensitive K(+) channels by sodium 5-hydroxydecanoate (5-HD), and whether the blockade per se affects the pattern of CRH.In anesthetized goats, flow was recorded from the left circumflex coronary artery (LCCA). CRH was obtained with the occlusion of LCCA for 15 s. PI was obtained by 2 cycles of 2.5 min of LCCA occlusion with a 5 min interval of reperfusion between the two occlusions. CRH was studied before and after i.v. administration of 5-HD (20 mg/kg), as well as in the presence of 5-HD after PI. Following 5-HD, the pattern of CRH remained unchanged. After 5-HD and PI, velocity of vasodilatation and total hyperemic flow of CRH showed the same changes as in previous studies after PI alone. It was concluded that the blockade of mitochondrial ATP-sensitive K(+) channels, which is reported to prevent myocardial protection, does not affect CRH and does not prevent PI from increasing the velocity of vasodilatation and reducing THF. These results demonstrate that the changes induced in CRH by preconditioning are independent of the opening of the mitochondrial ATP-sensitive K(+) channels.  相似文献   

13.
Because adenosine is commonly used for inducing maximal coronary hyperemia in the clinic, it is imperative that adenosine-induced hyperemia (AH) resembles coronary hyperemia that can be attained by endogenous stimuli. In the present study we hypothesized that coronary reactive hyperemia (RH) is limited compared with AH due to the presence of the glycocalyx and that the AH response is therefore unable to detect glycocalyx modifications. In anesthetized open-chest dogs, blood flow and pressure were measured in the left circumflex artery. RH after 15-s occlusion was compared with an intracoronary infusion of adenosine (650 microg; AH) during control conditions and after intracoronary treatment of the glycocalyx with hyaluronidase (20.000 U, 2 x 20 min; n = 6) or heat-inactivated hyaluronidase (n = 5). During control, coronary conductance during RH was 1.49 +/- 0.15 ml.mmHg(-1).min(-1) and 76 +/- 7% of coronary conductance during AH (P < 0.05). After hyaluronidase, RH conductance increased (P < 0.01) by 43 +/- 13% and became 93 +/- 4% of AH conductance (P = NS). Heat-inactivated hyaluronidase had no effect on RH and AH conductance. Our results demonstrate that adenosine-induced coronary hyperemia profoundly exceeds RH and that the difference is virtually abolished on selective removal of the glycocalyx. It is concluded that, compared with RH, adenosine-induced coronary hyperemia is not affected by modification of the glycocalyx. This glycocalyx insensitivity should be taken into account when using adenosine-induced coronary hyperemia as a marker for vasodilating capacity to an ischemic stimulus.  相似文献   

14.
Sildenafil, a selective inhibitor of phosphodiesterase type 5, produces relaxation of isolated epicardial coronary artery segments by causing accumulation of cGMP. Because shear-induced nitric oxide-dependent vasodilation is mediated by cGMP, this study was performed to determine whether sildenafil would augment the coronary resistance vessel dilation that occurs during the high-flow states of exercise or reactive hyperemia. In chronically instrumented dogs, sildenafil (2 mg/kg per os) augmented the vasodilator response to acetylcholine, with a leftward shift of the dose-response curve relating coronary flow to acetylcholine dose. Sildenafil caused a 6. 7 +/- 2.1 mmHg decrease of mean aortic pressure, which was similar at rest and during treadmill exercise (P < 0.05), with no change of heart rate, left ventricular (LV) systolic pressure, or LV maximal first time derivative of LV pressure. Sildenafil tended to increase myocardial blood flow at rest and during exercise (mean increase = 14 +/- 3%; P < 0.05 by ANOVA), but this was associated with a significant decrease in hemoglobin, so that the relationship between myocardial oxygen consumption and oxygen delivery to the myocardium (myocardial blood flow x arterial O(2) content) was unchanged. Furthermore, sildenafil did not alter coronary venous PO(2), indicating that the coupling between myocardial blood flow and myocardial oxygen demands was not altered. In addition, sildenafil did not alter the peak coronary flow rate, debt repayment, or duration of reactive hyperemia that followed a 10-s coronary occlusion. The findings suggest that cGMP-mediated resistance vessel dilation contributes little to the increase in myocardial flow that occurs during exercise or reactive hyperemia.  相似文献   

15.
A linear relationship was found between coronary flow and adenosine release during the course of reactive hyperemia. Isolated guinea pig heart was perfused with a modified Krebs Ringer bicarbonate buffer containing 2.0 mM pyruvate. Hyperemia was induced with 30, 60 and 90-second coronary occlusions. The hyperemic response was divided into three consecutive 13-second intervals (I, II and III), and perfusate efflux from coronary circulation was collected during the last 10 seconds of each interval for adenosine assay using the HPLC. The data show a control flow of 3.13 +/- 0.4 ml/min/g and adenosine release of 66 +/- 4 pmoles/min/g. Flow increased by 99, 38 and 23% at I, II and III, respectively following 30-second occlusion, whereas adenosine release increased by 241, 132 and 91% for I, II and III. A 60-second occlusion increased the flow by 125, 64 and 34% with a simultaneous increase in the release of adenosine by 464, 155 and 133%, respectively, for I, II and III. Marked elevations in flow (165, 92 and 59%) and in adenosine release (659, 194 and 176%) for I, II and III were observed following 90-second occlusion. The linear relationship between coronary flow and adenosine release had r values of 0.84, 0.74 and 0.88 for 30, 60 and 90-second occlusions, respectively. This study quantifies the relationship between coronary flow and adenosine release during the course of reactive hyperemia. It also suggests that on a percent basis, adenosine contributes equally to the hyperemia at I, II and III.  相似文献   

16.
Voltage-dependent inward-rectifying (K(in)) and outward-rectifying (K(out)) K(+) channels are capable of mediating K(+) fluxes across the plasma membrane. Previous studies on guard cells or heterologously expressed K(+) channels provided evidence for the requirement of ATP to maintain K(+) channel activity. Here, the nucleotide and Mg(2+) dependencies of time-dependent K(in) and K(out) channels from maize subsidiary cells were examined, showing that MgATP as well as MgADP function as channel activators. In addition to K(out) channels, these studies revealed the presence of another outward-rectifying channel type (MgC) in the plasma membrane that however gates in a nucleotide-independent manner. MgC represents a new channel type distinguished from K(out) channels by fast activation kinetics, inhibition by elevated intracellular Mg(2+) concentration, permeability for K(+) as well as for Na(+) and insensitivity towards TEA(+). Similar observations made for guard cells from Zea mays and Vicia faba suggest a conserved regulation of channel-mediated K(+) and Na(+) transport in both cell types and species.  相似文献   

17.
Na+ channels from rat muscle plasma membrane vesicles were inserted into neutral planar phospholipid bilayers and were activated by batrachotoxin. Single channel blocking events induced by the addition of various guanidinium toxins were analyzed to derive the rates of channel-toxin association and dissociation. Blocking by tetrodotoxin, saxitoxin, and six natural saxitoxin derivatives containing sulfate or hydroxyl groups were studied. Although the binding affinities vary over 2,000-fold, all of the toxins exhibit identical voltage dependence of the blocking reactions, regardless of the toxin's net charge. The results suggest that the voltage dependence of toxin binding is due to a voltage-dependent conformational equilibrium of the toxin receptor, rather than to direct entry of the charged toxin molecule into the applied transmembrane electric field.  相似文献   

18.
19.
20.
Relatively brief changes in perfusion pressure and flow through arterioles occur in a number of conditions, such as in the flying environment and during such common everyday activities such as bending forward at the waist. Also, brief periods of negative vertical acceleration (G(z)) stress, which reduces perfusion in the lower body, has been shown to impair the regulation of arterial pressure during subsequent positive G(z) stress. To examine the contribution that reactive hyperemia makes in these settings, studies on the hindlimb circulation of anesthetized rats (n = 8) were carried out by imposing graded duration vascular occlusion (1, 2, 4, 10, and 30 s) to test the hypothesis that there is a threshold duration of reduction in perfusion that must be exceeded for reactive hyperemia to be triggered. Vascular conductance responses to 1 s of terminal aortic occlusion were no different before and after myogenic responses were blocked with nifedipine, indicating that 1 s of occlusion failed to elicit reactive hyperemia. Two seconds of occlusion elicited a small but significant elevation in hindlimb vascular conductance. The magnitude of the reactive hyperemia was graded in direct relation to the duration of occlusion for the 2-, 4-, and 10-s periods of occlusion and appeared to be approaching a plateau for the 30-s occlusion. Thus there is a threshold duration of terminal aortic occlusion (approximately 2 s) required to elicit reactive hyperemia in the hindlimbs of anesthetized rats, and the reactive hyperemia that results possesses a threat to the regulation of arterial pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号