首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free radicals produced by the reactions of hydrated electrons with pyrimidine nucleosides halogenated at the sugar moiety (2'-chloro-2'-deoxyuridine and 2'-chlorothymidine) were studied by e.s.r. and spin-trapping. 2-Methyl-2-nitrosopropane was used as the spin-trap. The usual spin-trapping technique was extended to frozen and deoxygenated systems to avoid contamination of the trapped radicals with side-products by spin-trapping 2-methyl-2-nitrosopropane itself. When this method was applied to 2'-chloro-2'-deoxyuridine, a free radical at the C-2' position of the sugar moiety was spin-trapped together with a free radical at the C-5 position of the base moiety. This indicates that hydrated electrons both add to the base moiety and eliminate halogen anions from the halogenated sugar moiety. In the case of 2'-chlorothymidine, however, only a free radical attributed to H-addition at the C-6 position of the thymine base was observed. No radicals produced by the reaction of hydrated electrons with the halogenated sugar could be spin-trapped.  相似文献   

2.
Radical formation and hole transfer were investigated in crystals of cytosine.HCl (C.HCl) doped with 0-1.1 mol-% 5-methylcytosine x HCl (5MC x HCl). The doping level was determined by NMR spectroscopy. Crystals and polycrystalline samples were X-irradiated at 295 K, 77 K and 12 K and studied with EPR, ENDOR and FSE spectroscopy at these temperatures. At 295 K the dominant radicals were the so-called 3alphaH radical, formed in 5MC by a net H-abstraction from the methyl group, and the cytosine C6 H-addition (5-yl) radical. At 12 K five radicals were identified. These were the 3alphaH radical, cytosine reduction and oxidation products, and the cytosine C6 and C5 H-addition (5-yl and 6-yl, respectively) radicals. The spectroscopic parameters for the 3alphaH radical are very similar to those of a radical observed previously in the crystalline cytosine derivatives cytidine (CR), 2'deoxycytidine hydrochloride (CdR x HCl), 5'dCMP and 3'CMP as well as in the uracil derivative 2-thiouracil (2-TU). It was shown that amounts of the order of tenths of a percent 5MC x HCl doped into crystals of C.HCl give rise to a considerable yield of 3alphaH radicals after exposure to ionizing radiation both at room temperature and at lower temperatures. This supports a previous suggestion that naturally occurring 5-methylated cytosine impurities may be responsible for the formation of 3alphaH radicals in the crystalline cytosine derivatives CR, CdR.HCl, 5'dCMP and 3'CMP and suggests that the 3alphaH radical in these systems is a 5-methylated base-centered radical. The total radical yield in doped C x HCl crystals increased considerably with the doping level, both at low temperatures and at room temperature, implying that the 3alphaH radical is more stable than the primary cytosine radicals. The relative amounts of the 3alphaH radical were obtained by using simulated benchmark spectra to reconstruct experimental EPR spectra of doped polycrystalline samples. Evidence is presented suggesting that the enhanced yield of the 3alphaH radical in doped samples is due to holes originally formed at cytosine bases and transferred to 5-methylcytosine bases in addition to the 3alphaH radical being less exposed to recombination than other cytosine radicals.  相似文献   

3.
Reactions of the SO4- radical, generated by U.V. photolysis of Na2S2O8, were studied in aqueous solutions of amino acids, dipeptides, nucleic acid bases, nucleosides and nucleotides. The transient free radicals so formed were spin-trapped by t-nitrosobutane and identified by e.s.r. spectroscopy. The amino acids primarily undergo oxidative decarboxylation. The pKs of the ammonium groups of the spin-trapped decarboxylated radicals of glycine and alanine in D2O were determined to be 8.3 +/- 0.2. An oxidation product, which is the precursor of the decarboxylated radical, is tentatively identified for alanine, valine and isoleucine. Radicals formed by hydrogen abstraction by SO-4 are identified for leucine, serine, phenylalanine and 4-hydroxyproline. In dipeptides, SO-4 produces decarboxylation of the amino acid located at the carboxylate terminal residue. For gly-ala and ala-ala, radicals generated by hydrogen abstraction from the carboxylate terminal residue alanine were also characterized. Radicals centered on the C(5) carbon were observed for uracil, cytosine and thymine. For nucleosides and nucleotides, radicals situated on the base and/or the sugar moiety were assigned.  相似文献   

4.
The reactions of mobile electrons (em-) and oxygen radical anions (O--) with halogenated bases and nucleosides have been studies in gamma-irradiated alkaline glasses by e.s.r. and specific halogen-ion electrode techniques. It is shown that electrons react with halogenated uracil bases (XUr where X = Cl, Br. I but not F) by dissociative electron attachment to form uracil-5-yl radicals (U-) and halogen anions. The relative rates of reaction of em- with XUr decrease in the sequence BrUr greater than ClUr greater than FUr greater than IUr. Thermal annealing studies carried out on U- in H2O and D2O matrices support the hypothesis that U- in H2O hydrates across the 5-6 double bond in the temperature region 135 degrees-155 degrees K, and deuterates to a much smaller extent in D2O at temperatures above 155 degrees K. Studies on bromouridine and bromodeoxyurinde suggest that em- reacts with the base moieties to form U- type radicals which abstract H- from the sugar moieties of adjacent nucleosides.  相似文献   

5.
In order to obtain information concerning the mechanism of radio- and photosensitization due to 5-halogen substituted nucleic acid constituents, the free radicals produced in iodo-, bromo-, chloro- and fluoro-derivatives of uracil, uridine and deoxyuridine by reaction with hydrated electrons and with hydroxyl radicals and by direct U.V. photolysis have been studied by e.s.r. and spin-trapping. t-Nitrosobutane was used as the spin-trap. From 5-halogenated bases (except 5-fluorouracil) U.V. photolysis and reactions with hydrated electrons produced the uracilyl radical which was subsequently spin-trapped. When hydroxyl radical reactions were studied, the free radical at the N(1) position of the base was identified. From 5-fluorouracil U.V. photolysis generated the alpha-halo radical at the C(5) position of the base. For 5-halogenated ribonucleosides and deoxyribonucleosides, free radicals located on the sugar moiety were observed for reactions with hydrated electrons, hydroxyl radicals and for U.V. photolysis. The implications of these results for understanding the mechanism of radio- and photosensitization by 5-halogenated nucleic acids are discussed.  相似文献   

6.
2-Methyl-2-nitrosopropane (tNB)-radical adducts from incubation mixtures of fatty acids and soybean lipoxygenase in borate buffer (pH 9.0) were measured by electron paramagnetic resonance (EPR). In addition to the previously reported six-line signal of secondary carbon-centered radicals (RCHR'), a weak signal submerged in the baseline was detected after the peroxidation phase was finished. We propose that this radical is a decomposition product formed via beta-scission of fatty acid alkoxyl radicals. EPR spectra of tNB-radical adducts formed in mixtures of either linoleic acid, arachidonic acid, or 15-hydroperoxyeicosatetraenoic acid with lipoxygenase exhibited hyperfine structure characteristic of tNB/.CH2CH2-R with hyperfine coupling constants: aN = 17.1 G; aH beta = 11.2 G (2H); and aH gamma = 0.6 G (2H). In the case of linolenic acid, this radical tNB/.CH=CH-R' with hyperfine coupling constants: aN = 17.1 G; aH beta = 10.9 G (2H); aH gamma = 1.1 G; and aH delta = 0.5 G. In accord with the decomposition scheme of hydroperoxides derived from unsaturated fatty acids, the radical adducts tNB/.CH2CH2-R and tNB/.CH2-CH=CH-R' were assigned as the pentyl and 2-pentenyl radicals, respectively.  相似文献   

7.
Single crystals of 2'-deoxyguanosine 5'-monophosphate were X-irradiated at 10 K and at 65 K, receiving doses between 4.5 and 200 kGy, and studied using K-band EPR, ENDOR, and field-swept ENDOR (FSE) spectroscopy. Evidence for five base-centered and more than nine sugar-centered radicals was found at 10 K following high radiation doses. The base-centered radicals were the charged anion, the N10-deprotonated cation, the C8 H-addition radical, a C5 H-addition radical, and finally a stable radical so far unidentified but with parameters similar to those expected for the charged cation. The sugar-centered radicals were the H-abstraction radicals centered at C1', C2', C3', and C5', an alkoxy radical centered at O3', a C5'-centered radical in which the C5'-O5' phosphoester bond appears to be ruptured, a radical tentatively assigned to a C4'-centered radical involving a sugar-ring opening, as well as several additional unidentified sugar radicals. Most radicals were formed regardless of radiation doses. All radicals formed following low doses (4.5-9 kGy) were also observed subsequent to high doses (100-200 kGy). The relative amount of some of the radicals was dose dependent, with base radicals dominating at low doses, and a larger relative yield of sugar radicals at high doses. Above 200 K a transformation from a sugar radical into a base radical occurred. Few other radical transformations were observed. In the discussion of primary radicals fromed in DNA, the presence of sugar-centered radicals has been dismissed since they are not apparent in the EPR spectra. The present data illustrate how radicals barely traceable in the EPR spectra may be identified due to strong ENDOR resonances. Also, the observation of a stable radical with parameters similar to those expected for the charge guanine cation is interesting with regard to the nature of the primary radicals stabilized in X-irradiated DNA.  相似文献   

8.
gamma-Radiolysis in the polycrystalline state and U.V. photolysis in aqueous solution at 220 nm of several dihydropyrimidines and their derivatives have been investigated by spin-trapping and electron spin resonance. 2-Methyl-2-nitrosopropane was used as the spin-trap. The spin-adducts of the 6-yl radicals obtained fall into two categories. Those from dihydro-1-methyluracil, dihydro-6-methyluracil, dihydro-1-ethyluracil and dihydro-1-methylcytosine exhibit a beta-nitrogen hyperfine coupling constant (alpha beta N) equal to or less than 2.0 G while the ones fom dihydro-orotic acid, dihydrouracil and dihydrothymine showed much larger alpha beta N values (greater than 3.3 G). Dihydrouridine gives radicals characteristic of both the dihydropyrimidine ring and the sugar moiety. The same radicals were obtained by gamma-radiolysis or U.V. photolysis. For all the 5-yl radicals obtained by U.V. photolysis, a direct photoexcitation mechanism is proposed.  相似文献   

9.
Direct evidence for the detection of intermediate radicals of nucleic acid constituents induced by ultrasound in argon-saturated aqueous solution is presented. The method of spin trapping with 3,5-dibromo-4-nitrosobenzene sulphonate, which is a water-soluble, non-volatile, aromatic nitroso spin trap, combined with ESR, was used for the detection of sonochemically induced radicals. Spin adducts were also generated by OH radicals produced by UV photolysis of aqueous solution containing H2O2. ESR spectra observed from these photolysis experiments were identical to those after sonolysis. The ESR spectra of the spin adducts suggest that the major spin-trapped radical of thymine and thymidine was the 5-yl radical, and that of cytosine, cytidine, uracil, and uridine was the 6-yl radical. To compare the radicals induced by sonolysis and photolysis, the decay of the ESR spectra of the thymine and thymidine spin adducts was investigated. The decay curves of thymine and thymidine after sonolysis indicated biphasic decay. However, after photolysis the spin adducts from both compounds showed very little decay. These results suggest that the observed spin adducts in the sonolysis of pyrimidine bases and nucleosides were formed by OH radical and H atom addition to the 5,6 double-bond.  相似文献   

10.
Single crystals of guanine hydrobromide monohydrate, in which the guanine base is protonated at N7, were X-irradiated at 8 and 65 K. Using K-band ESR, ENDOR, and field-swept-ENDOR (FSE) techniques, the crystals were studied between 8 K and room temperature. There was evidence for five different radicals, RI-RV, immediately following irradiation at 8 or 65 K. RI was identified as the O6-protonated anion. It decayed near room temperature with no detectable successor. RII was identified as the N7-deprotonated cation, and decayed near 130 K. RIII is thought to be a ring-opened product formed by C8-N9 bond rupture; upon warming, it decayed at 150 K. RIV is the well-known C8 H-addition radical. These four radicals have been observed previously in the hydrochloride salt of guanine monohydrate. RV is novel, however, with magnetic characteristics consistent with those of the product formed by net OH addition to C5 of the unsaturated C4-C5 bond. It is characterized by four alpha-proton couplings indicating pi-electron spin as follows: 13% at C8; 11% at N7; and 12% at N10. RV decayed between 240 and 255 K with no detectable successor. Upon further warming, very weak resonance lines due to additional, unidentified radicals were observed. A comparison of these results with those obtained from other systems containing N7-protonated guanine bases demonstrates the effect of the environment on the primary radical formation.  相似文献   

11.
Radical formation in single crystals of hypoxanthine.HCl.H2O, inosine and Na2-5'-IMP.(7.5 H2O) by X-irradiation has been studied using electron-spin-resonance spectroscopy at 9.5 and 35 GHz. In all crystals both H-addition radicals at position C2 and C8 of the purine ring are found. The coupling constants of these two radicals are different and depend strongly on the protonation state of the base. INDO-calculations indicate that the C8-radical is protonated at O6. In Na2-5'-IMP OH-addition radicals at position C2 of the purine ring are formed. Electron adduct radicals are found in the neutral and the N7-protonated base after X-irradiation at 77 K. In Na2-5'-IMP no electron adduct is formed but a radical which probably is the cation. In hypoxanthine.HCl.H2O a radical could be observed after X-irradiation at 77 K, which results from addition of a Cl- to the nitrogen N1.  相似文献   

12.
Radicals produced by X-irradiation at 77 K and at 300 K of cytosine. HCl crystals have been analysed by electron spin resonance spectroscopy. Four radicals have been identified: the anion radical of the cytosine molecule, the radical resulting from H-addition at position C6, the radical resulting from H-addition at position O2, and finally a radical resulting from addition of a Cl- to nitrogen N3. Hückel molecular orbital calculations are presented, which support the hypothesis according to which in unsaturated pyrimidines the site of hydrogenation or protonation depends on the state of the molecule.  相似文献   

13.
Free radicals produced by X-irradiation of N2O-saturated aqueous solutions of purine nucleosides (2'-deoxyadenosine, adenosine, 2'-deoxyguanosine, 3'-deoxyadenosine, guanosine and inosine) and the corresponding homopolymers (poly A and poly I) have been investigated by the technique of spin-trapping and e.s.r. spectroscopy. 2-Methyl-2-nitrosopropane was used as a spin-trap. For 2'-deoxyadenosine and 2'-deoxyguanosine, the resulting spin-adducts were separated by Bio-Gel P-2 column chromatography and analysed by e.s.r. spectroscopy. For homopolymers, e.s.r. spectra were recorded at 50 degrees C after enzymatic digestion to obtain signals with narrower line width. The e.s.r. signal consisting of only a primary triplet without further splittings, which is consistent with assignment to the trapping of an H-abstraction radical at the C4' position of the sugar moiety, was observed in all cases. For 2'-deoxyguanosine an e.s.r. signal consisting of a secondary triplet was observed. Examinations using other spin-trapping reagents such as PBN, 4-PyOBN and DMPO provided no positive evidence supporting the proposal that this was due to an alpha-nitrogen. The e.s.r. signal consisting of a secondary doublet which further splits into a doublet was observed for 2'-deoxyadenosine, adenosine, 3'-deoxyguanosine, 2'-deoxyguanosine, and inosine, and tentatively associated with a radical centered in the sugar moiety.  相似文献   

14.
This work presents evidence that photo-excitation of guanine radical cations results in high yields of deoxyribose sugar radicals in DNA, guanine deoxyribonucleosides and deoxyribonucleotides. In dsDNA at low temperatures, formation of C1′• is observed from photo-excitation of G•+ in the 310–480 nm range with no C1′• formation observed ≥520 nm. Illumination of guanine radical cations in 2′dG, 3′-dGMP and 5′-dGMP in aqueous LiCl glasses at 143 K is found to result in remarkably high yields (~85–95%) of sugar radicals, namely C1′•, C3′• and C5′•. The amount of each of the sugar radicals formed varies dramatically with compound structure and temperature of illumination. Radical assignments were confirmed using selective deuteration at C5′ or C3′ in 2′-dG and at C8 in all the guanine nucleosides/tides. Studies of the effect of temperature, pH, and wavelength of excitation provide important information about the mechanism of formation of these sugar radicals. Time-dependent density functional theory calculations verify that specific excited states in G•+ show considerable hole delocalization into the sugar structure, in accord with our proposed mechanism of action, namely deprotonation from the sugar moiety of the excited molecular radical cation.  相似文献   

15.
Abstract

The nucleoside constituents of nucleic acids prefer the anti conformation (1). When the sugar pucker is taken into account the nucleosides prefer the C2′endo-anti conformation. Of the nearly 300 nucleosides known, about 250 are in the anti conformation and 50 are in the syn-conformation, i.e., anti to syn conformation is 5:1. The nucleotide building blocks of nucleic acids show the same trend as nucleosides. Both the deoxy-guanosine and ribo- guanosine residues in nucleosides and nucleotides prefer the syn-C2′endo conformation with an intra-molecular hydrogen bond (for nucleosides) between the O5′- H and the N3 of the base and, a few syn-C3′endo conformations are also observed. Evidence is presented for the occurrence of the C3′endo-syn conformation for guanines in mis-paired double helical right-handed structures with the distorted sugar phosphate C4′-C5′ and P-O5′ bonds respectively, from g+ (gg) and g- to trans. Evidence is also provided for guanosine nucleotides in left-handed double-helical (Z-DNA) oligo and polynucleotides which has the same syn-C3′endo conformation and the distorted backbone sugar-phosphate bonds (C4′-C5′ and P- O5′) as in the earlier right-handed case.  相似文献   

16.
E.s.r. spectroscopy has been used in conjunction with an aqueous flow system to investigate both the metal-catalysed decomposition of hydrogen peroxide to OH. and the subsequent reactions of this radical with a variety of biomolecules. Particular emphasis is placed on the effects of pH and ligand on the FeII-H2O2 reaction and on the sites of attack by OH. in its reaction with pyranose and furanose sugars, sugar phosphates, nucleosides and nucleotides. Attention is focused on subsequent reactions (for example, of radicals formed by attack in the ribofuranose moiety of adenosine) which may be involved in radiation damage.  相似文献   

17.
Radiation-induced radicals in single crystals of 2'-deoxyguanosine 5'-monophosphate (5'-dGMP) at 15 K have been studied by electron spin resonance (ESR) spectroscopy. At low temperatures three radicals were analyzed in detail. The negatively charged pi anion of the guanine base completely dominated the spectra. Weaker resonances were due to an alkoxy radical with the spin density in the C3'-O3' region of the sugar moiety as well as another sugar-centered radical. The anion rapidly decayed upon exposure to uv light at 15 K or by annealing above 25 K. In both cases no successor radical was observed. The second sugar-centered radical decays at 200 K with a concomitant appearance of the resonance from the C8 H-addition radical. By annealing at 295 K the latter resonance was the only one observed. After irradiation at 295 K, however, an additional resonance from a sugar-centered radical, which has been analyzed previously by B. Rakvin and J. N. Herak (Radiat. Res. 88, 240-250 (1981)) was observed. A reinvestigation of this resonance was performed.  相似文献   

18.
Using conductivity detection, pulse radiolysis experiments showed that solvent protonation of the electron adducts of cytosine, 5-methyl cytosine and 2'-deoxycytidine occurs with rate constants k greater than or equal to 2 x 10(4) M-1S-1. The protonated electron adducts transfer an electron to p-nitroactetophenone (PNAP) with rate constants ranging from 3.5 x 10(9) to 5.3 x 10(9) M-1S-1. The transfer is quantitative (G = 2.7), as shown by conductometric and spectroscopic measurements. In the presence of O2 no electron transfer to O2 takes place, implying that O2 adds to the protonated electron adduct radicals. No electron transfer from the H- and OH-adducts of the cytosine derivatives, either to PNAP or to O2, takes place near neutral pH. It is suggested that the differences in the reaction behaviour of the H-adduct radicals and the protonated electron adduct radicals towards PNAP can be accounted for if different radicals are formed by H-addition and protonation of the electron adduct. The H atoms most probably add to the C-5-C-6 double bonds, whereas the electron adducts are protonated at N-3 and/or 0-2.  相似文献   

19.
The radicals produced in several polycrystalline amino acids, N-acetyl amino acids and dipeptides by gamma-radiolysis at room temperature were investigated by spin-trapping. After irradiation in the solid state, the samples were dissolved in aqueous solutions f t-nitrosobutane and the trapped radicals identified by e.s.r. For alpha-amino acids, deamination radicals were found, and in some cases H-abstraction radicals were also observed. No decarboxylation radicals could be detected. For N-acetyl amino acids, except for N-acetylglycine, the major radical was the decarboxylation radical. For N-acetyglycine the H-abstraction radical from the glycine residue was observed. For dipeptides of the x-glycine, the radical formed by removal of H from the alpha-carbon of the carboxyl-terminal residue was always spin-trapped. Some primary deamination radicals and minor amounts of decarboxylation radicals could also be observed. For dipeptides of the type x-alanine, glycine-x and alanine-x, the decarboxylation radical was always the major spin-trapped radical. Some primary and secondary deamination radicals were also detected.  相似文献   

20.
PCILO (Perturbative Configuration Interaction using Localised Orbitals) computations have been carried out for three 6-azapyrimidine nucleosides, 6-azauridine, 6-azacytidine and 6-azathymidine, for both C(2')-endo and C(3')-endo pucker of the sugar ring. The results indicate a syn (chiCN=180 degrees) conformation followed by chiCN=90 degrees and gg conformation for C(3')-endo 6-aza analogs as compareed to the anti (chiCN=0 degrees) and gg conformation preferred by the corresponding pyrimidine nucleosides. For C(2')-endo sugar geometry, 6-azauridine and 6-azacytidine prefer, respectively, chiCN=0 degrees (anti) and phi C(4')-C(5')=60 degrees C (gg) and chiCN-240 degrees (syn) and phi C(4')-C(5')=120 degrees. The corresponding nucleosides, uridine and cytidine, show a preference for syn (chiCN=240 degrees) and gg and anti(chiCN=0 degrees) and gg , respectively. The X-ray crystallographic conformations of 6-azauridine and 6-azacytidine have been attributed to intermolecular hydrogen bonding and crystal packing forces. The results of PMR, CD and ORD studies on 6-azauridine and 6-azacytidine in aqueous solutions are in agreement with the PCILO predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号