首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sources of error in a typical algorithm for the analysis of single flow-microfluorometric histograms are identified. A new statistical model for such data is presented, by means of which the error sources are quantitatively investigated. These theoretical investigations lead to three practical observations: A more detailed characterization of the fluorescence dispersion process is needed for a more refined algorithm. Levels of dispersion typically experienced are such that from a single histogram the distribution of cells within S-phase cannot be finely resolved; but the crude distribution of cells among the three phases G1, S, and G2-M may be accurately estimated. If currently typical levels of dispersion can be halved, then the S-phase distribution can be finely resolved.  相似文献   

2.
Asynchronous 9L cells were separated into relatively homogeneously-sized populations using centrifugal elutriation with both a conventional collection method and a long collection method. A substantial increase in the homogeneity of the volume distributions and in the degree of synchrony of the separated fractions was obtained using the long collection method. Autoradiographic data indicated that fractions containing ≥97% G1 cells, ≥80% S cells, and 70–75% G2 cells could be routinely recovered with this procedure. Recovery in these fractions varied from 5 to 8% of the total number of cells elutriated. The colony forming efficiency (CFE) of cells from fractions representing each phase of the cell cycle was a constant 60–70%, which was comparable to the 60–80% usually found for asynchronous 9L cells. The percentage of cells in the G1, S, and G2 phases in the elutriated fractions was more accurately determined from the volume distribution than from computer fits of the DNA histogram obtained from flow cytometry. In general, the degree of synchrony was related to the coefficient of variation (CV) of the volume distributions of the elutriated fractions. The CV was about 14% for all elutriated fractions. When the ≥97% G1 population was allowed to progress to S and G2, the CVs were about 17 and 20.2%, respectively. Thus, the best nonperturbing method for obtaining synchronous 9L cells in the S or G2 phases was direct elutriation with the long collection method.  相似文献   

3.
Summary The varying sensitivity to radiation in the different phases of the cell cycle was investigated using L-929 cells of the mouse. The cells were synchronized by mechanical selection of mitotic cells. The synchronous populations were X-irradiated with a single dose of 10 Gy in the middle of the G1-phase, at the G1/S-transition or in the middle of the S-phase, respectively. The radiation effect was determined in 2 h intervals a) by14C-TdR incorporation (IT) into the DNA, b) by autoradiography (AR), c) by flow cytometry (FCM). The incorporation rate decreased in all three cases, but the reasons appeared to be different, as can be derived from FCM and AR data: After irradiation in G1, a fraction of cells was prevented from entering S-phase, after irradiation at G1/S a proportion of cells was blocked in the S-phase, and after irradiation in S, DNA synthesis rate was reduced. As a consequence of these effects, the mean transition time through S-phase increased. The G2 blocks, obtained after irradiation at the three stages of the cycle were also different: Cells irradiated in G1 are partly released from the block after 10 h. Irradiation at G1/S caused a persisting accumulation of 50% of the cells in G2, and for irradiation in S more than 80% of the cells were arrested in G2.  相似文献   

4.
An analytical formula for calculating peak channel ratios in fluorescent cytophotometric determinations of DNA content per cell was derived to assess the effects of inaccuracies in the model-dependent derivation of S-phase cell populations and of systematic instrumental errors. The DNA distribution histograms usually have two peaks, corresponding to the 2C DNA content of G1 cells and to the 4C DNA content of G2 and M cells. In the presence of S-phase cells, the ratio of peak channels G2/G1 becomes less than 2. The calculation uses the model-dependent number of S-phase cells per channel and instrumental resolution to obtain G2/G1. The peak channel ratio calculated in this way decreases with increasing coefficient of variation and increasing proportion of S-phase cells. The calculated G2/G1 peak channel ratios were compared with 17 experimental values ranging from 1.68 to 2.08. Significant differences were found for two experiments, and the calculated G2/G1 ratios were systematically low by ≈4% for the other experiments. When this systematic difference in predicted peak channel ratios is taken into account, the formula predicts the observed ratios with an accuracy of 1% showing the dominant effect of S-phase cells in modifying the observed spectrum. The possible experimental effects leading to the observed systematic discrepancy are discussed A programmable pocket calculator program to perform these calculations is also described in detail.  相似文献   

5.
The effects of magnesium (Mg) restriction on cell growth and the cell cycle were determined in transformed (TRL-8) and non-transformed (TRL-12-15) epithelial-like rat liver cells. Cells were cultured in RPMI 1640 medium in which the Mg concentration was reduced to 0.5, 0.1, and 0 × the concentration in the regular RPMI 1640 media (100mg/l). Cell growth in the transformed cells was not influenced by the Mg restriction as greatly as in the non-transformed cell line. Transit through the cell cycle also exhibited an independence of the Mg in the medium in the transformed cells. When transformed cells were grown for two generations in Mg-limited medium, the growth rate slowed to a rate similar to that demonstrated by the non-transformed cells. Analysis by flow cytometry showed that transit through the cell cycle was minimally slowed in Mg deficient transformed cells; however, transit through the G1 and S phases in the non-transformed cells was slowed. The TRL-8 cells in Mg-limited medium resulted in fewer nuclei in G1 with subsequent increases in the percentages of S-phase nuclei. The TRL 12-15 cells reacted oppositely with the number of G1 nuclei increased and the number of S-phase nuclei decreased. In respect to growth, these results show that epithelial cells respond in a similar manner to Mg-limitation as do fibroblast cells. The transformed cells exhibited a level of independence from Mg in respect to growth, reproduction, and cell-cycle kinetics.  相似文献   

6.
Summary BALB/c 3T3 cells cultured as aggregates were examined by two independent techniques to determine whether or not cells accumulated at a specific point in the cell cycle, and if so to determine the point at which they accumulate. Replating cells onto dishes followed by pulse labeling with [3H]thymidine and autoradiography indicated that aggregate-cultured cells were in the same phase of the cell cycle as cells cultured as confluent monolayers. Flow microfluorometry confirmed that 75% of the aggregate-maintained cells were arrested in G0 or G1, with 25% distributed throughout the rest of the cell cycle. Labeling and mitotic indices of cells in aggregates were also consistent with about 20 to 25% of the cells being in S+G2=M phases of the cell cycle at any time. This work was supported by PHS Grant CA20323 and NSF Grant PCM 74-15092 to H. G., who is also a Harry H. Pinney Cancer Scholar.  相似文献   

7.
8.
Nasopharyngeal carcinoma (NPC) occurs frequently in southern China. The circadian rhythm of DNA synthesis of a poorly differentiated NPC human cell line (CNE2) was investigated as an experimental prerequisite for designing chrono-chemotherapy schedules for patients with this disease. Twenty-two nude mice with BALB/c background were synchronized alternatively in 12 h of light and 12 h of darkness (LD12:12) for at least 3 wk prior to the transplantation of a CNE2 tumor fragment into each flank (area of ~2×2 mm2). Ten days later, a tumor sample (area of ~5 mm2) was obtained at 3, 9, 15, and 21 h after light onset (HALO) alternatively from different sites in each mouse. Single-cell suspensions were prepared and stained with propidium iodide. Cellular DNA content was measured with flow cytometry. Data were analyzed by ANOVA and cosinor methods. The average proportion of tumor cells in G1, S or G2-M phase varied according to circadian time with statistical significance. The maximum occurred at 9 HALO for G1, 2 HALO for S and 21 HALO for G2-M phase cells. The approximate average distribution patterns of G1 and G2-M phases of cosine curve was 24 h. This was not the case for S-phase cells, which displayed a bimodal temporal pattern. Inter-individual variability in peak time was large, possibly due to relatively sparse sampling time. Nevertheless, no more than 6% of the time series displayed a maximum at 3 HALO for G1, 21 HALO for S and 15 HALO for G2-M. The cell cycle distribution of this human NPC cell line displayed circadian regulation following implantation into nude mice. The mechanisms involved in this rhythm and its relevance to the chrono-chemotherapy of patients deserve further investigation.  相似文献   

9.
A cultured line of neuroblastoma cells (NB) was found to contain double minute chromosomes (DMs). DMs have been reported to be acentric and, therefore, to be segregated randomly into daughter cells without separating their sister elements. When NB cells were fused with Chinese hamster metaphase cells, prematurely condensed chromosomes (PCCs) were induced. DMs seen together with G2 PCCs appeared to be closely paired, dot-like structures resembling DMs observable in metaphase cells. In contrast, DMs in G1 cells showed a tendency to become single as the stage progressed so that the majority of DMs in late G1 cells were actually no longer double. DMs in S-phase cells, however, again appeared double. These results clearly indicate why DMs are invariably double and never assume a quadruple configuration in metaphase cells in spite of their non-disjunctional segregation at anaphase. Such a characteristic mode of DM replication was further confirmed by a 5-bromo-2-deoxyuridine (BrdUrd) labeling experiment: when NB cells were exposed to BrdUrd for two successive rounds of DNA replication prior to PCC induction, half of the resulting single G1 minutes as well as G1 PCCs stained dark and the other half stained light after staining for sister chromatid differentiation.  相似文献   

10.
Median S-phase lengths of pinna epidermis and sebaceous glands, and of epithelia from the oesophagus and under surface of the tongue of Albino Swiss S mice were estimated by the percentage labelled mitoses method (PLM). The 18.4 and 18.8 hr for the median length of S-phase for pinna epidermis and sebaceous glands respectively made it possible for these two tissues to be used experimentally for testing tissue specificity in chalone assay experiments. The 10.0 and 11.5 hr for oesophagus and tongue epithelium respectively made experimental design for chalone assay difficult when pinna epidermis was the target tissue. The results of the Labelling Index measured each hour throughout a 24-hr period showed no distinct single peaked diurnal rhythm for pinna epidermis and sebaceous glands. Instead a circadian rhythm with several small peaks occurred which would be expected if an S-phase of approximately 18 hr was imposed on the diurnal rhythm. This indicates that there may be very little change in the rate of DNA synthesis. The results are given for the assay in vivo of purified epidermal G1 and G2 chalones, and the 72–81% ethanol precipitate of pig skin from which they could be isolated. These experiments were performed over a time period which took into account the diurnal rhythm of activity of the mice as well as the S-phase lengths. Extrapolating the results with time of action of the chalone shows that the G1 chalone acts at the point of entry into DNA synthesis and that the S-phase length was approximately 17 hr for both the pinna epidermis and sebaceous glands. This may be a more correct value since the PLM method overestimates the median S-phase length as it is known that in pinna skin the [3H]TdR is available to the tissues for 2 hr and true flash labelling does not take place. The previous reports that epidermal G1 chalone acts some hours prior to entry into S-phase resulted from experiments on back skin where the S-phase is shorter and there is a pronounceddiurnal rhythm which could mask the chalone effect. The epidermal G, chalone had no effect on DNA synthesis even at different times in the circadian rhythm. Thus the circadian rhythms and S-phase lengths of the test tissues need to be considered when experiments are performed with chalones. Ideally, the target tissues selected for cell line specificity tests should have the same cell kinetics for the easier and more accurate assessment and interpretation of results. When the tissues have markedly different cell kinetics, experimental procedures and results need to be evaluated accordingly. The point of action of G, chalone can only be assessed if the effect is measured over the peak of incorporation of 13H]TdR into DNA. The results of the effects of skin extracts are analysed in relation to changes in the availability of i3H]TdR for the incorporation into DNA and to the possibility of there being two distinct populations of proliferating cells.  相似文献   

11.
Phosphorylation of histone fractions in the presence and absence of DNA synthesis was measured using the new “isoleucine-limiting” method for synchronizing Chinese hamster cells in early G1-phase. Using preparative electrophoresis, histone f1 phosphorylation was found to be dependent upon cell-cycle position, being absent in G1-arrested and G1-traversing cells and active in the S-phase. The absence of f1 phosphorylation in G1-arrested cells, which are known to exhibit f1 turnover, indicates that f1 phosphorylation is not an obligatory part of the f1 turnover process. In contrast to histone f1, it was found that histone f2a2 phosphorylation is independent of cell-cycle position, occurring with equal magnitude in the G1-traversing state when DNA synthesis is essentially absent and in the S-phase when DNA synthesis is active. When cells were arrested in the G1-state by isoleucine deprivation, f2a2 phosphorylation continued to be active, occurring at 56% of the rate observed in the G1-traversing state. These results indicate that phosphorylation of histone f2a2 is independent of f2a2 synthesis, independent of DNA synthesis, and independent of histone f1 phosphorylation. Because f2a2 is actively phosphorylated in G1-arrested cells known to be active in the synthesis of various types of RNA (including messenger) as well as in G1-traversing and S-phase cells, we feel that phosphorylation of histone f2a2 should continue to be considered in models concerning activation of DNA template activity.  相似文献   

12.
DNA polymerase α/primase (Polα) is the key replication enzyme in eukaryotic cells. This enzyme synthesizes and elongates short RNA primers at an unwound origin of replication. Polα was used as an affinity ligand to identify cellular replication factors interacting with it. Protein complexes between Polα and cellular factors were analyzed by co-immunoprecipitations with monoclonal antibodies directed against Polα and by protein affinity chromatography of cell extracts derived from pure G1-and S-phase cell populations on Polα affinity columns. Co-immunoprecipitations resulted in the identification of a polypeptide with a molecular weight of 46 kDa. For Polα affinity chromatography, the ligand was purified from insect cells infected with a recombinant baculovirus encoding the catalytic subunit (p180) of Polα (Copeland and Wang, 1991). With 5×108 infected Sf9 cells, a rapid one step purification protocol was used which yielded in five hours 0.6 mg pure enzyme with a specific activity of 140,000 units/mg. The G1-and S-phase cell populations were generated by block, release and counterflow centrifugal elutriation of exponentially growing human MANCA cells. Starting with 2×109 non synchronous cells, 5×108 G1-phase cells were isolated. Chromatography of cell extracts derived from G1-or S-phase cells on Polα affinity columns resulted in identifying several polypeptides in the range of 40–70 kDa. Some of these polypeptides are more abundant in eluates derived from S-phase extracts than from G1-phase extracts.  相似文献   

13.
The problem of recovering DNA distribution from cytofluorometric experimental data was investigated. Theoretical analysis led to a convenient formulation of the problem and to uniqueness results for its solution. A minimization algorithm has been implemented to get the optimal estimate of G1, S, G2, and M phase percentages. This algorithm was tested in some experimental cases.  相似文献   

14.
The K-562 cell line is a culture of human leukemia stem cells originally derived from a patient with chronic myelogenous leukemia in blast crisis. We have subjected such cells, in the log phase of growth, to countercurrent distribution in a charge-sensitive dextran-polyethylene glycol aqueous-phase system, a method that fractionates cells on the basis of subtle differences in their surface properties, and found that: (1) The cell population is heterogeneous since it is composed of cells with different partition ratios. (2) There is a correlation between increasing cell partition ratios and increasing cell electrophoretic mobilities. (3) Cells under different parts of the distribution curve have dissimilar ratios of cells in different parts of the cell cycle, a phenomenon that may, at least partially, be the basis for the subfractionation of these cells. There is a clear tendency for cells in G0+G1+early S to decrease and for those in late S+G2+M to increase with increasing partition ratios. (4) Sialic acid is a major surface charge component of the cells as evidenced by a dramatic drop in their partition ratios after treatment with neuraminidase.  相似文献   

15.
DNA polymerase α/primase (Polα) is the key replication enzyme in eukaryotic cells. This enzyme synthesizes and elongates short RNA primers at an unwound origin of replication. Polα was used as an affinity ligand to identify cellular replication factors interacting with it. Protein complexes between Polα and cellular factors were analyzed by co-immunoprecipitations with monoclonal antibodies directed against Polα and by protein affinity chromatography of cell extracts derived from pure G1-and S-phase cell populations on Polα affinity columns. Co-immunoprecipitations resulted in the identification of a polypeptide with a molecular weight of 46 kDa. For Polα affinity chromatography, the ligand was purified from insect cells infected with a recombinant baculovirus encoding the catalytic subunit (p180) of Polα (Copeland and Wang, 1991). With 5×108 infected Sf9 cells, a rapid one step purification protocol was used which yielded in five hours 0.6 mg pure enzyme with a specific activity of 140,000 units/mg. The G1-and S-phase cell populations were generated by block, release and counterflow centrifugal elutriation of exponentially growing human MANCA cells. Starting with 2×109 non synchronous cells, 5×108 G1-phase cells were isolated. Chromatography of cell extracts derived from G1-or S-phase cells on Polα affinity columns resulted in identifying several polypeptides in the range of 40–70 kDa. Some of these polypeptides are more abundant in eluates derived from S-phase extracts than from G1-phase extracts.  相似文献   

16.
The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H2O2-induced DNA damage. UVC and H2O2 treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G0, G1 and S-phase. Rad18 was important for repressing H2O2-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G1, indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H2O2-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H2O2-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G1. In contrast with G1-synchronized cultures, S-phase cells were H2O2-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G1 (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase.  相似文献   

17.
The specific action of a pig skin fraction enriched in epidermal G1-chalone, a tissuespecific inhibitor of epidermal DNA synthesis, was investigated by means of flow cytofluorometry. The results indicate that G1-chalone inhibits progression of partially synchronized rat tongue epithelial cells (line RTE-2) through the cell cycle at a point 2 h prior to the beginning of the S-phase. Approximately 8 h after chalone addition, the cells can overcome the inhibition and begin to enter the S-phase. The duration of this delay is concentrationindependent, but the fraction of cells affected is proportional to the chalone concentration. The progression of cells which already have entered S-phase is not affected. In contrast to the G1-chalone preparation, aphidicolin, a potent inhibitor of DNA polymerase α, clearly shows S-phase-specific inhibition. These results indicate that the epidermal G1-chalone inhibits epidermal cell proliferation in a fully reversible manner by a highly specific effect on cell cycle traverse.  相似文献   

18.
EFFECT OF METHOTREXATE ON THE CELL CYCLE OF L1210 LEUKEMIA   总被引:1,自引:0,他引:1  
The influence of methotrexate (MTX) on the proliferative activity of cells in different phases of cell cycle has been studied. MTX (5 mg/kg) was injected i.p. 3 days after the inoculation of 5 × 106 leukemia cells into F1 (DBA × C57 BL) mice. It was shown that MTX causes degeneration of cells, being in G1- as well as in S-phase at the time of drug injection. Incorporation of 3H-TdR was suppressed for a period ranging from 2 to 12 hr after MTX administration, which is demonstrated by the decrease in the number of grains per cell. The number of cells labeled after 3H-TdR injection was also sharply decreased during this period. For a period of 3 until 15 hr after MTX administration the mitotic index decreased significantly as a result of inhibition of DNA synthesis. The blocking of the G1-S transition was evident during 4 hr after MTX. Thereafter the G1-S transition proceeds at a rate which is practically equal to that for nontreated controls. MTX did not inhibit transition to mitosis of cells being in G2-phase and in a very late S-phase at the time of drug injection. The sensitivity of G1-cells to the cytocidal effect of MTX shows that for L1210 leukemia cells MTX can be classified as a cycle-specific drug killing both G1 and S-cells rather than S-phase specific agent with self-limitation.  相似文献   

19.
tsAF8, ts13, tsHJ-4, and TK?ts13 cells are G1-specific temperature-sensitive (ts) mutants of BHK cells that do not enter S phase when serumstimulated from quiescence at nonpermissive temperature (39.6°-40.6°). TK?ts13 are, in addition, defective in thymidine kinase. Different G1 functions must be involved in these cells, since the first three cell lines complement each other when forming heterokaryons. We have used these cells to study the role of the nucleus in the cytoplasmic expression of these G1 functions during the transition of cells from the non-proliferating to the proliferating state. We fused cytoplasts from either serumstarved (G0) or serum-stimulated (S) tsAF8 cells with G0-ts13, G0-tsHJ-4, and G0-TK?ts13 recipient cells and determined, after serum stimulation of the fusion products, which type of cytoplasts could complement the defective G1 functions. Cytoplasts from S-tsAF8 cells complemented all three functions, i.e., cybridoids between S phase cytoplasts and ts13 or tsHJ-4 recipient cells entered S at the nonpermissive temperature, and TK?ts13 recipient cells incorporated exogenous thymidine. Cytoplasts isolated from G0-tsAF8 cells (3 days of serum starvation) complemented ts13 cells but not tsHJ-4 and TK?ts13 cells. Cytoplasts from 6-day starved tsAF8 cells lost the complementing capacity for ts13 cells. However, when the 6-day starved tsAF8 cells were fused with G0-ts13 cells, the heterokaryons entered S phase at the nonpermissive temperature. Also, cytoplasts isolated from the 6-day starved cells that were serum stimulated for 40 hr before enucleation regained the capacity to complement ts13 cells. These results demonstrate that three functions required in G1 cannot be detected in the cytoplasm of serum-starved cells, although they are present in the cytoplasm of S-phase cells. These results suggest that a functional nucleus is required for the cytoplasmic appearance of certain G1 functions in serumstimulated cells.  相似文献   

20.
The carbohydrate components of influenza C virions grown in chicken kidney (CK) cells were analyzed by gel filtration following exhaustive digestion with Pronase. The [3H]glucosamine-labeled glycopeptides were larger and more heterogeneous than those of influenza A/WSN virions; three major size classes (G1, G2, and G3) were resolved. Treatment with Vibrio cholerae neuraminidase caused a decrease in size of G1 and G2, along with release of about 16% of the 3H label. The released sugar components were identified as N-acetylneuraminic acid by thin-layer chromatography. Peak G3 was highly labeled with [3H]mannose, whereas G1 and G2 contained lower levels of mannose. The three major viral glycoproteins gp88, gp65, and gp30 were isolated from sodium dodecyl sulfate-polyacrylamide gels, and their glycopeptide components were analyzed after Pronase digestion. The three size classes of glycopeptides were obtained from any of the three glycoproteins; however, the relative amounts of the three components varied among the glycoproteins. Host cell-derived components, which appear to be mucopolysaccharides and glycoproteins, were found associated with influenza C virions grown in CK cells. These components contained glycopeptides that were mainly of sizes similar to peak G2 from influenza C virions. Previous studies have shown that influenza A/WSN virus grown in several cell types contained only two size classes of glycopeptides. Two size classes comparable to peaks G2 and G3 from influenza C virions were also observed in influenza A/WSN grown in CK cells. Thus the large G1 glycopeptides appear to be characteristic of influenza C virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号