首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
施氮量对麻疯树幼苗生长及叶片光合特性的影响   总被引:7,自引:0,他引:7  
采用盆栽土培的方法,研究了不同施氮量(对照N0 0 kg N/hm2、低氮NL 96 kg N/hm2、中氮NM 288 kg N/hm2、高氮NH 480 kg N/hm2)对麻疯树幼苗生长、叶片气体交换及叶绿素荧光参数的影响。结果表明,麻疯树幼苗叶片氮含量、可溶性蛋白含量、株高、地径、叶片数量、叶面积、根长、各组分生物量、叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和水分利用效率(WUE)均随施氮量的增加先升高后降低,NM处理下麻疯树幼苗长势最好,各气体交换参数值最高;施氮对麻疯树地上部分的促进作用远大于地下部分,施氮后根冠比显著降低;此外,麻疯树叶绿素含量、PSⅡ最大光化学量子产量(Fv/Fm)、PSⅡ有效量子产量(F'v/F'm)、PSⅡ实际光化学效率(ΦPS)、电子传递速率(ETR)和光化学淬灭系数(qP)均随施氮量的增加而升高,非光化学淬灭系数(NPQ)随施氮量增加而降低。适量施氮可通过增强叶绿体光化学活性、气孔导度和羧化能力而提高麻疯树幼苗的光合能力,促进生长;过高施氮对麻疯树幼苗光合与生长的促进效应降低。试验条件下,当年生麻疯树幼苗的最适施氮量为288 kg N/hm2。  相似文献   

2.
Many invasive plant species show high rates of nutrient acquisition relative to their competitors. Yet the mechanisms underlying this phenomenon, and its implications for ecosystem functioning, are poorly understood, particularly in nutrient-limited systems. Here, we test the hypothesis that an invasive plant species (Microstegium vimineum) enhances its rate of nitrogen (N) acquisition by outcompeting soil organic matter-degrading microbes for N, which in turn accelerates soil N and carbon (C) cycling. We estimated plant cover as an indicator of plant N acquisition rate and quantified plant tissue N, soil C and N content and transformations, and extracellular enzyme activities in invaded and uninvaded plots. Under low ambient N availability, invaded plots had 77% higher plant cover and lower tissue C:N ratios, suggesting that invasion increased rates of plant N acquisition. Concurrent with this pattern, we observed significantly higher mass-specific enzyme activities in invaded plots as well as 71% higher long-term N availability, 21% lower short-term N availability, and 16% lower particulate organic matter N. A structural equation model showed that these changes were interrelated and associated with 27% lower particulate organic matter C in invaded areas. Our findings suggest that acquisition of N by this plant species enhances microbial N demand, leading to an increased flux of N from organic to inorganic forms and a loss of soil C. We conclude that high N acquisition rates by invasive plants can drive changes in soil N cycling that are linked to effects on soil C.  相似文献   

3.
钾(K)是植物叶片中仅次于氮(N)的第二大营养元素,在调节植物生长发育、稳态维持和胁迫响应等方面具有重要作用。以往关于氮素输入对植物养分状况影响的研究中多关注了氮磷养分,较少关注钾及其与其他元素的计量关系。本研究以内蒙古呼伦贝尔草甸草原为对象,研究氮素添加和刈割对植物功能群水平和群落水平钾含量及计量特征(N∶K)的影响,分析功能群自身养分状况和群落组成改变对群落水平养分状况变化的相对贡献。结果表明: 为期6年的氮素添加提高了所有植物功能群的N含量以及根茎禾草和豆科植物的K含量,刈割降低了根茎禾草和丛生禾草的N含量,而对所有功能群的K含量和N∶K均无显著影响。氮素添加显著提高了群落水平植物N和K含量,刈割仅增加了群落植物的N含量。氮素添加和刈割对功能群和群落水平上的植物N∶K均无显著影响。功能群本身的养分变化情况对群落水平植物养分状况的贡献大于群落组成的贡献。在对群落水平养分特征的影响方面,功能群本身养分变化的贡献与群落组成的贡献具有负的协变关系。呼伦贝尔草甸草原植物具有较高的N∶K内稳性,能够较好地调节自身的氮钾平衡,这对氮沉降背景下维持氮钾元素计量关系具有重要意义。  相似文献   

4.
Temperate forest ecosystems have experienced mounting negative effects due to increasing levels of nitrogen (N) deposition. We examined the effects of experimental N addition on plant diversity in an old‐growth temperate forest to test the following hypothesis: Long‐term excessive N addition decreases plant diversity by affecting the growth of plants, which results from changes in the soil nutrient content and a decrease in the soil pH in temperate forests. Experimental N additions were administered at the following levels since 2008: control (0 kg N ha?1 year?1), low N (30 kg N ha?1 year?1), medium N (60 kg N ha?1 year?1), and high N (120 kg N ha?1 year?1). Additionally, plant diversity was studied from 2014 to 2016. The results showed that the experimental N additions had significant effects on plant diversity and soil properties in an old‐growth temperate forest. The high‐N treatment decreased the density, cover, and diversity of understory plants, and some herbs even appeared to undergo premature aging, whereas the species diversity of herbs and ferns in the low‐N treatment plots showed a slight increasing tendency. This may have been because the old‐growth temperate forest is an N‐limited ecosystem, so the moderate N input did not show a large influence on plant diversity. However, the long‐term high‐N treatment ultimately reduced plant diversity by changing the soil nutrient contents, decreasing the pH values, and damaging plant growth. Our results suggested that the long‐term excessive N addition negatively affected the forest ecosystem in an N‐limited temperature forest.  相似文献   

5.
Herbivores may influence the nitrogen (N) recycling rates and consequently increase or decrease the productivity of grasslands. Plant N concentration emerged as a critical parameter to explain herbivore effects from several conceptual models, which predict that herbivores decrease soil N availability when plant N concentration is low whereas they increase it when plant N concentration is high ( Hobbs 1996 , Ritchie et al. 1998 , Pastor et al. 2006 ). However, a broader cross-site comparison among published studies to test these predictions is hampered by the different methodologies used to measure soil N availability or a proxy thereof, and a lack of measurements of plant N concentration. Therefore it remains unclear whether these model predictions are generally valid across a range of grasslands.
We tested whether there is a relationship between plant N concentration and herbivore impact on soil N availability (measured with resin bags) with a study of replicate 6–8  year old exclosures (with an unfenced control) of vertebrate herbivores (>1  kg) established at each of seven grassland sites in North America and Europe. Contrary to model predictions, we found a negative relationship between the effect of herbivores on resin bag soil N availability and plant N concentration. Our study confirms the importance of plant N concentration as a predictor of herbivore effect on soil N availability across grasslands, but contradicts the models. A possible explanation may be that the results represent a transient situation as the exclosures were relatively young whereas the models may refer to an equilibrium state. Simultaneous measurements of both plant N concentration and herbivore effect on soil N availability from more grassland sites, preferably with contrasting plant N concentrations and including exclosures of different ages, should resolve the contrast between model predictions and our field measurements.  相似文献   

6.
Nitrogen (N) is an essential macronutrient and a signal that has profound impacts on plant growth and development. In order to cope with changing N regimes in the soil, plants have developed complex regulatory mechanisms that involve short-range and long-range signaling pathways. These pathways act at the cellular and whole plant scale to coordinate plant N metabolism, growth and development according to external and internal N status. Although molecular components of local and systemic N signaling have been identified and characterized, an integrated view of how plants coordinate and organize the N response is still lacking. In this review, we discuss recent advances toward understanding the mechanisms of local and systemic N responses and provide an integrated model for how these responses are orchestrated.  相似文献   

7.
Two cultivars of spring wheat (Triticum aestivum L.) were grown to maturity in hydroponic cultures. Nitrogen accumulation was controlled by daily growth-limiting additions of nitrate together with all other nutrients in excess. Six different curves of N accumulation were used, with the same relative changes from day to day, but with different amplitudes. These curves were obtained by using the same mathematic formula of the N accumulation curves but varying the value of initial N content. The total amount of nitrogen added varied from 20 mg plant(-1) to 65 mg plant(-1). Plant bioproductivity showed a linear response to accumulated N. The number of grains per plant increased linearly with increased N availability whereas grain weights were essentially unaffected. Grain N concentrations and N content varied slightly, with highest values generally at the lower N availability levels. The quantitatively most important response to increased N availability was an increased number of earbearing tillers per plant. This varied from 0.1 tiller plant(-1) at maturity when given 20 mg N plant(-1), up to about 2 tillers plant(-1) when given 65 mg N plant(-1). Not all tillers that were initiated developed ears. The reduction of tillers seems to be one important mechanism in adapting plant productivity to N availability. Other individual characters influenced by N availability were straw height and the number of spikelets per spike. The two cultivars behaved in a qualitatively similar manner over the range of N availability even though they quantitatively differed in grain size, N concentrations and yield.  相似文献   

8.
根系氮吸收过程及其主要调节因子   总被引:5,自引:0,他引:5  
氮(N)是植物根系吸收最多的矿质元素之一.全球变化将使土壤中N的有效性发生改变,影响陆地生态系统碳分配格局与过程.研究根系N吸收及其调控对预测生态系统结构和功能具有重要理论意义.由于土壤中存在多种形态的N源,长期的生物进化和环境适应导致植物根系对不同形态N的吸收部位、机理及调控有较大差别.因此,植物长期生长在以某一形态N源为主的土壤上就形成了不同的N吸收机制和策略.本文简述了近年来在植物根系N吸收和调控方面的最新研究进展,重点评述了不同形态N在土壤中的生物有效性,根系N吸收部位,N在木质部中的装载和运输,不同形态N(NO3^-、NH4^+和有机氮)的吸收机制,以及根系N吸收的自身信号调控和环境因子对根系N吸收的影响.在此基础上,提出了目前根系N吸收研究中存在的几个问题.  相似文献   

9.
植物残体是引起土壤、微生物和胞外酶C∶N∶P改变的关键因素,但是其作用机理尚不明确。本研究以青藏高原东缘高寒草甸为对象,通过测定土壤、微生物生物量和胞外酶活性等指标,探究移除地上植物或根系及植物残体添加对土壤、微生物和胞外酶C∶N∶P的影响。结果表明: 与无人为扰动草甸相比,移除地上植物显著降低了土壤C∶N(变幅为-23.7%,下同)、C∶P(-14.7%)、微生物生物生物量C∶P、N∶P,显著提高了微生物生物量C∶N、胞外酶C∶N∶P。与移除地上植物相比,移除地上植物和根系显著降低了土壤C∶N(-11.6%)、C∶P(-24.0%)、N∶P(-23.3%)和微生物生物量C∶N,显著提高了微生物生物量N∶P和胞外酶N∶P;移除地上植物后添加植物残体显著提高了微生物生物量C∶N、C∶P和胞外酶C∶N,显著降低了胞外酶N∶P。与移除地上植物和根系相比,移除地上植物和根系后添加植物残体显著降低了土壤C∶N(-16.4%)、微生物生物量C∶P、N∶P和胞外酶N∶P,显著提高了胞外酶C∶N。综上可知,去除植物显著影响土壤、微生物和胞外酶的C∶N∶P,微生物生物量和胞外酶C∶N∶P对植物残体的响应更为敏感。有无根系是添加植物残体时土壤、微生物和胞外酶的生态化学计量稳定性强弱的关键所在。添加植物残体的措施适用于植物根系尚且完好的草甸,有利于高寒草甸土壤碳固存,对没有根系的草甸土壤可能不适用,会增加土壤CO2排放。  相似文献   

10.
The relationship between soil nitrogen (N) availability and plant community structure was investigated in old-fields in the shortgrass steppe of Colorado. Nitrogen availability was manipulated by N or sucrose additions for 4 years at three old-fields (early-seral, mid-seral, and late-seral) and at an uncultivated control site. The addition of N generally resulted in increased abundance of annual forbs and grasses relative to perennials at all of the previously cultivated sites. Conversely, experimental reduction of N availability generally increased the relative abundance of perennials. Despite a lack of detectable differences in N mineralization between sites and treatments, ion-exchange resin bags confirmed that sucrose additions reduced plant-available N and that N additions increased plant-available N. This was evidenced further by similar observations for plant tissue N content. The degree to which N additions increased N availability at the various sites supported the idea that late-seral plant communities are less effective at N capture relative to earlier-seral communities. The mid-seral old-field had the lowest rates of litter decomposition and a relatively large accumulation of litter on the soil surface. This mid-seral old-field was dominated by an exotic annual grass (Bromus tectorum), which appears to be a major hindrance to redevelopment of the plant-soil system. By experimentally reducing N availability at this stage, we were able, in 4 years, to change the plant community into one that more closely resembled the late-seral community. We also observed that the natural recruitment of weedy annual species on the uncultivated site during an unusually wet year was suppressed by reducing N availability. Our results suggest that available N is an important factor controlling the rate and course of plant and soil community redevelopment on abandoned croplands in the shortgrass steppe, and that manipulation of N availability might be useful in restoration of rangeland vegetation. Received 19 May 1998; accepted 27 August 1999.  相似文献   

11.
Nitrogen (N) and water additions in the shortgrass steppe change the dominance of plant functional types (PFT) that are characterized by different photosynthetic pathways and phenologies. We aimed to examine monthly patterns of plant N and microbial N storage during the growing season, and to assess whether N fertilization last applied 30 years ago alters the timing and magnitude of N storage. We measured plant biomass and N, and microbial biomass N monthly during the growing season. We found differences in temporal patterns of plant and microbial N storage in the control plots, with microbial storage higher than plant storage in July, and the opposite trend in September. Unlike the control plots, the plots fertilized 30 years ago exhibited overlapping peaks of N storage in plants and microbes in August. Seasonal trends indicated that rainfall was an important control over plant and microbial activity at the beginning of the growing season, and that temperature limited these activities at the end of the growing season. PFT affected the amount of microbial N, which was in general higher under C3 grasses than other PFTs, independent of fertilization. Historical resource additions increased plant biomass and N, but had little effect on microbial N. These results highlight the complexity of the microbial response. Changes in climate that influence precipitation timing will affect the temporal pattern for microbial biomass N, while management practices resulting in altered plant community composition will influence the magnitude of microbial biomass N.  相似文献   

12.
A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta-analysis reveals that N addition (ranging from 1.08 to 113.81 g m−2 year−1) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root-shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta-regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta-analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade-offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.  相似文献   

13.
Differences in species'' abilities to capture resources can drive competitive hierarchies, successional dynamics, community diversity, and invasions. To investigate mechanisms of resource competition within a nitrogen (N) limited California grassland community, we established a manipulative experiment using an R* framework. R* theory holds that better competitors within a N limited community should better depress available N in monoculture plots and obtain higher abundance in mixture plots. We asked whether (1) plant uptake or (2) plant species influences on microbial dynamics were the primary drivers of available soil N levels in this system where N structures plant communities. To disentangle the relative roles of plant uptake and microbially-mediated processes in resource competition, we quantified soil N dynamics as well as N pools in plant and microbial biomass in monoculture plots of 11 native or exotic annual grassland plants over one growing season. We found a negative correlation between plant N content and soil dissolved inorganic nitrogen (DIN, our measure of R*), suggesting that plant uptake drives R*. In contrast, we found no relationship between microbial biomass N or potential net N mineralization and DIN. We conclude that while plant-microbial interactions may have altered the overall quantity of N that plants take up, the relationship between species'' abundance and available N in monoculture was largely driven by plant N uptake in this first year of growth.  相似文献   

14.
A real-time polymerase chain reaction (PCR) method was applied to quantify the nifH gene pool in cucumber shoot and root and to evaluate how nitrogen (N) supply and plant age affect the nifH gene pool. In shoots, the relative abundance of the nifH gene was affected neither by different stages of plant growth nor by N supply. In roots, higher numbers of diazotrophic bacteria were found compared with that in the shoot. The nifH gene pool in roots significantly increased with plant age, and unexpectedly, the pool size was positively correlated with N supply. The relative abundance of nifH gene copy numbers in roots was also positively correlated (r = 0.96) with total N uptake of the plant. The data suggest that real-time PCR-based nifH gene quantification in combination with N-content analysis can be used as an efficient way to perform further studies to evaluate the direct contribution of the N2-fixing plant-colonizing plant growth promoting bacteria to plant N nutrition.  相似文献   

15.
Nitrogen (N) availability is a strong determinant of plant biomass partitioning, but the role of different N sources in this process is unknown. Plants inhabiting low productivity ecosystems typically partition a large share of total biomass to belowground structures. In these systems, organic N may often dominate plant available N. With increasing productivity, plant biomass partitioning shifts to aboveground structures, along with a shift in available N to inorganic forms of N. We tested the hypothesis that the form of N taken up by plants is an important determinant of plant biomass partitioning by cultivating Arabidopsis thaliana on different N source mixtures. Plants grown on different N mixtures were similar in size, but those supplied with organic N displayed a significantly greater root fraction. 15N labelling suggested that, in this case, a larger share of absorbed organic N was retained in roots and split-root experiments suggested this may depend on a direct incorporation of absorbed amino acid N into roots. These results suggest the form of N acquired affects plant biomass partitioning and adds new information on the interaction between N and biomass partitioning in plants.  相似文献   

16.
Plant carbon (C) and nitrogen (N) stoichiometry play an important role in the maintenance of ecosystem structure and function. To decipher the influence of changing environment on plant C and N stoichiometry at the subcontinental scale, we studied the shoot and root C and N stoichiometry in two widely distributed and dominant genera along a 2,200‐km climatic gradient in China's grasslands. Relationships between C and N concentrations and soil climatic variables factors were studied. In contrast to previous theory, plant C concentration and C:N ratios in both shoots and roots increased with increasing soil fertility and decreased with increasing aridity. Relative N allocation shifted from soils to plants and from roots to shoots with increasing aridity. Changes in the C:N ratio were associated with changes in N concentration. Dynamics of plant C concentration and C:N ratios were mainly caused by biomass reallocation and a nutrient dilution effect in the plant‐soil system. Our results suggest that the shifted allocation of C and N to different ecosystem compartments under a changing environment may change the overall use of these elements by the plant‐soil system.  相似文献   

17.
A holistic view of nitrogen acquisition in plants   总被引:1,自引:0,他引:1  
Nitrogen (N) is the mineral nutrient required in the greatest amount and its availability is a major factor limiting growth and development of plants. As sessile organisms, plants have evolved different strategies to adapt to changes in the availability and distribution of N in soils. These strategies include mechanisms that act at different levels of biological organization from the molecular to the ecosystem level. At the molecular level, plants can adjust their capacity to acquire different forms of N in a range of concentrations by modulating the expression and function of genes in different N uptake systems. Modulation of plant growth and development, most notably changes in the root system architecture, can also greatly impact plant N acquisition in the soil. At the organism and ecosystem levels, plants establish associations with diverse microorganisms to ensure adequate nutrition and N supply. These different adaptive mechanisms have been traditionally discussed separately in the literature. To understand plant N nutrition in the environment, an integrated view of all pathways contributing to plant N acquisition is required. Towards this goal, in this review the different mechanisms that plants utilize to maintain an adequate N supply are summarized and integrated.  相似文献   

18.
Nitrogen enrichment is pervasive in forest ecosystems, but its influence on understory plant communities and their stoichiometric characteristics is poorly understood. We hypothesize that when forest is enriched with nitrogen (N), the stoichiometric characteristics of plant species explain changes in understory plant diversity. A 13‐year field experiment was conducted to explore the effects of N addition on foliar carbon (C): N: phosphorus (P) stoichiometry, understory plant species richness, and intrinsic water use efficiency (iWUE) in a subtropical Chinese fir forest. Four levels of N addition were applied: 0, 6, 12, and 24 g m−2 year−1. Individual plant species were categorized into resistant plants, intermediate resistant plants, and sensitive plants based on their response to nitrogen addition. Results showed that N addition significantly decreased the number of species, genera, and families of herbaceous plants. Foliar N:P ratios were greater in sensitive plants than resistant or intermediate resistant plants, while iWUE showed an opposite trend. However, no relationship was detected between soil available N and foliar N, and soil N:P and foliar N:P ratios. Our results indicated that long‐term N addition decreased the diversity of understory plants in a subtropical forest. Through regulating water use efficiency with N addition, sensitive plants change their N:P stoichiometry and have a higher risk of mortality, while resistant plants maintain a stable N:P stoichiometry, which contributes to their survival. These findings suggest that plant N:P stoichiometry plays an important role in understory plant performance in response to environmental change of N.  相似文献   

19.
Aims Decades of empirical work have demonstrated how dominant plant species and nitrogen fertilization can influence the structure and function of plant communities. More recent studies have examined the interplay between these factors, but few such studies use an explicit trait-based framework. In this study, we use an explicit trait-based approach to identify potential mechanisms for community-level responses and to test ecological niche theory.Methods We experimentally manipulated plant communities (control, ?dominant species, ?random biomass) and nitrogen (N) inputs (control, +organic N, +inorganic N) in a fully factorial design. We predicted that traits related to plants' ability to take up different forms of soil N would differ between dominant and subordinate species, resulting in interactive effects of dominant species loss and N fertilization on plant community structure and function. The study took place in a montane meadow in the Rocky Mountains, Colorado, USA.Important findings After four years, the plant community in removal plots converged toward a species composition whose leaf and root functional traits resembled those of the previously removed dominant species. Ecosystem productivity generally increased with N addition: soil carbon efflux was ~50% greater when either form of N was added, while inorganic N addition increased aboveground biomass production by ~60% relative to controls. The increase in production was mediated by increased average height, leaf mass:area ratio and leaf dry matter content in plant communities to which we added inorganic N. Contrary to our predictions, there were no interactive effects of N fertilization and dominant species loss on plant community structure or ecosystem function. The plant community composition in this study exhibited resistance to soil N addition and, given the functional convergence we observed, was resilient to species loss. Together, our results indicate that the ability of species to compensate functionally for species loss confers resilience and maintains diversity in montane meadow communities.  相似文献   

20.
Vertical gradients of leaf nitrogen (N) per unit leaf area (NLA) are viewed as plastic responses that optimize N utilization with respect to carbon assimilation. However, it has been shown that plant species, sowing density and N availability affect the steepness of the NLA gradient relative to the photon flux density (PFD) gradient. This paper tests the hypothesis that such variation is related to the N status of the plant. The N status was analysed using the concept of the critical N concentration (Ncrit) in which shoot N per unit dry mass (NSM) decreases with shoot mass, and a negative deviation of actual NSM from Ncrit indicates N shortage in the plant. The hypothesis was tested with contrasting grassland species Medicago sativa, Dactylis glomerata and Taraxacum officinale by varying PFD and N availability, plant density and hierarchical positions of individuals within stands. Combinations of all treatments showed a general negative correlation between the N allocation coefficient (i.e. the slope of the NLA-PFD relationship) and NSM for all three species. Thus, NLA, relative to PFD, gradients became steeper with increasing shoot mass and increasing N shortage in the plant. These data are consistent with the view that internal N availability is an important factor in modifying the NLA gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号