首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Patellar tendinopathy (PT) is one of the most common knee disorders among athletes. Changes in morphology and elasticity of the painful tendon and how these relate to the self-perceived pain and dysfunction remain unclear.

Objectives

To compare the morphology and elastic properties of patellar tendons between athlete with and without unilateral PT and to examine its association with self-perceived pain and dysfunction.

Methods

In this cross-sectional study, 33 male athletes (20 healthy and 13 with unilateral PT) were enrolled. The morphology and elastic properties of the patellar tendon were assessed by the grey and elastography mode of supersonic shear imaging (SSI) technique while the intensity of pressure pain, self-perceived pain and dysfunction were quantified with a 10-lb force to the most painful site and the Victorian Institute of Sport Assessment-patella (VISA-P) questionnaire, respectively.

Results

In athletes with unilateral PT, the painful tendons had higher shear elastic modulus (SEM) and larger tendon than the non-painful side (p<0.05) or the dominant side of the healthy athletes (p<0.05). Significant correlations were found between tendon SEM ratio (SEM of painful over non-painful tendon) and the intensity of pressure pain (rho  = 0.62; p = 0.024), VISA-P scores (rho  = −0.61; p = 0.026), and the sub-scores of the VISA-P scores on going down stairs, lunge, single leg hopping and squatting (rho ranged from −0.63 to −0.67; p<0.05).

Conclusions

Athletes with unilateral PT had stiffer and larger tendon on the painful side than the non-painful side and the dominant side of healthy athletes. No significant differences on the patellar tendon morphology and elastic properties were detected between the dominant and non-dominant knees of the healthy control. The ratio of the SEM of painful to non-painful sides was associated with pain and dysfunction among athletes with unilateral PT.  相似文献   

2.
Lack of the necessary magnitude of energy dissipation by lower extremity joint muscles may be implicated in elevated impact stresses present during landing from greater heights. These increased stresses are experienced by supporting tissues like cartilage, ligaments and bones, thus aggravating injury risk. This study sought to investigate frontal plane kinematics, kinetics and energetics of lower extremity joints during landing from different heights. Eighteen male recreational athletes were instructed to perform drop-landing tasks from 0.3- to 0.6-m heights. Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. Joint moment was calculated using inverse dynamics. Joint power was computed as a product of joint moment and angular velocity. Work was defined as joint power integrated over time. Hip and knee joints delivered significantly greater joint power and eccentric work (p<0.05) than the ankle joint at both landing heights. Substantial increase (p<0.05) in eccentric work was noted at the hip joint in response to increasing landing height. Knee and hip joints acted as key contributors to total energy dissipation in the frontal plane with increase in peak ground reaction force (GRF). The hip joint was the top contributor to energy absorption, which indicated a hip-dominant strategy in the frontal plane in response to peak GRF during landing. Future studies should investigate joint motions that can maximize energy dissipation or reduce the need for energy dissipation in the frontal plane at the various joints, and to evaluate their effects on the attenuation of lower extremity injury risk during landing.  相似文献   

3.
Controlling dynamic interactions between the lower limb and ground is important for skilled locomotion and may influence injury risk in athletes. It is well known that female athletes sustain anterior cruciate ligament (ACL) tears at higher rates than male athletes, and exhibit lower extremity biomechanics thought to increase injury risk during sport maneuvers. The purpose of this study was to examine whether lower extremity dexterity (LED) – the ability to dynamically control endpoint force magnitude and direction as quantified by compressing an unstable spring with the lower limb at submaximal forces – is a potential contributing factor to the “at-risk” movement behavior exhibited by female athletes. We tested this hypothesis by comparing LED-test performance and single-limb drop jump biomechanics between 14 female and 14 male high school soccer players. We found that female athletes exhibited reduced LED-test performance (p=0.001) and higher limb stiffness during landing (p=0.008) calculated on average within 51 ms of foot contact. Females also exhibited higher coactivation at the ankle (p=0.001) and knee (p=0.02) before landing. No sex differences in sagittal plane joint angles and center of mass velocity at foot contact were observed. Collectively, our results raise the possibility that the higher leg stiffness observed in females during landing is an anticipatory behavior due in part to reduced lower extremity dexterity. The reduced lower extremity dexterity and compensatory stiffening strategy may contribute to the heightened risk of ACL injury in this population.  相似文献   

4.
The purpose of this study was to examine the moment-arm and cross-sectional area (CSA) of the patellar tendon (PT) and the hamstrings after anterior cruciate ligament (ACL) reconstruction. The right knee of five males who underwent ACL reconstruction with a PT graft and five age-matched controls was scanned using magnetic resonance image scans. Based on three-dimensional (3D) solids of the PT, CSAs and moment-arms of semitendinous (ST), biceps femoris (BF) long head and semimembranosus (SM) were estimated. Analysis of variance indicated no significant group differences in muscle moment-arms (p>0.05). 3D moment-arms of PT, ST and BF were significantly lower than the corresponding 2D values (p < 0.05). The ACL group displayed a significantly higher maximum BF CSA, a lower ST CSA (p < 0.05) but similar PT and SM CSAs compared with controls. It is concluded that any alterations in PT properties 1 year after harvesting do not affect knee muscle moment-arms compared with age-matched controls. Moment-arm estimation differed between 3D and 2D data, although it did not affect comparisons between ACL reconstruction group and controls. Design of rehabilitation programmes should take into consideration a potential alteration in hamstring morphology following surgery with a PT graft.  相似文献   

5.
《Gender Medicine》2008,5(4):405-414
Background: Although both gender- and sports-specific injuries exist among athletes, gender differences in the types of injuries caused by sports activities, except for anterior cruciate ligament (ACL) injury and anterior knee pain, are not well established.Objective: An observational study with a retrospective case-series design was conducted to investigate gender-specific differences in the types of injuries sustained while engaging in sports activities common to both males and females.Methods: We analyzed injuries sustained during sports activities including basketball, volleyball, tennis, skiing, track and field, and swimming, using data on age, sex, sports activities, activity levels, and sports injuries that had been computerized at our sports medicine (orthopedics) clinic. Inclusion criteria were sports activities that had a record of >100 injuries in total and athletes aged <50 years who were engaging in only 1 sports activity. We determined the absolute number of patients in each category and their percentage (proportion) of our cohort. The proportions of common injuries caused by sports activities were investigated, and gender-specific differences in the types of common injuries caused by sports activities were clarified. The Fisher exact test was used to determine the significance (P < 0.01) of the gender-specific differences in the types of sports injuries.Results: According to our database, during the 14-year period between October 1992 and December 2006, a total of 2989 athletes (1624 males and 1365 females) aged <50 years who engaged in 1 of the 6 sports activities described consulted our sports medicine clinic. The most common sports injuries were ACL injury (14.3%) and knee pain (13.7%), followed by ankle sprain (9.4%), lumbar disc disease (7.0%), meniscus injury (5.1%), stress fracture (2.9%), low back pain (2.5%), patellar tendinitis (2.1%), injury of the medial collateral ligament of the knee (2.0%), lumbar spondylolysis (1.7%), and muscle strain (1.5%). Among these 11 types of sports injuries, a significantly higher proportion of females who engaged in basketball (24.4% vs 10.5%), volleyball (20.5% vs 4.5%), or skiing (41.4% vs 26.5%) presented with an ACL injury, compared with their male counterparts (all, P < 0.001). There was also a significantly higher proportion of females than of males among the track and field athletes who presented with stress fractures (18.7% vs 3.9%; P < 0.001).Conclusion: The findings of this retrospective study suggest that there are gender-specific differences in the types of injuries sustained during sports activities.  相似文献   

6.
The correct expression of circadian rhythmicity is crucial for the body homeostasis. The rest-activity circadian rhythms (RARs) are involved in the control of the sleep-wake cycle and altered RARs could lead to a compromised health status. Many studies focused on examining sleep behavior and circadian rhythms in physically active subjects or athletes but, unexpectedly, no data on RARs are available. Therefore, we studied the existence of the RAR in athletes and the possible difference in RAR’s characteristics among sport disciplines. The study had a prospective observational design and RARs were recorded for five consecutive training days through actigraphy (Actiwatch 2 actigraph; Philips Respironics, OR, USA) in 43 athletes (mean age: 25.6 ± 3.2 years). Athletes competed in three different disciplines and had different training schedules and competition levels: professional triathletes (N = 10; 6 females and 4 males) had 2 morning (08:30–12:00) and 1 afternoon (15:00–17:00) training sessions, professional volleyball players (N = 19; 12 females and 7 males) used to train once in the morning (09:00–11:30) and once in the afternoon (15:00–18:00), and non-professional soccer players (N = 14; all males) trained always late in the evening (20:30–22:30). To determine the existence of RARs, the activity counts (A.C.) data were analyzed using the single and the population mean cosinor method; a one-way analysis of variance (ANOVA) followed by the Tukey–Kramer post-hoc test was used for the comparison of RAR characteristics among soccer, volleyball and triathlon athletes. Partial eta squared (?p2) was used to determine the magnitude of the effect for significant outcomes (α = 0.05) in ANOVA. The presence of a significant RAR both for each of the 43 athletes (p < 0.001) and for the three categories of athletes (p < 0.001) was observed. RARs differed among sport disciplines: the Midline Estimating Statistic of Rhythm (MESOR) was significantly higher in triathletes (mean: 347 A.C. with 95% Confidence Interval [CI]: 314–379) compared to both volleyball (mean: 188 A.C. with 95% CI: 173–203; p < 0.001) and soccer players (mean: 289 A.C. with 95% CI: 267–312; p < 0.01) with ?p2 = 0.72. Amplitude (A) values showed the same significant trend of MESOR data (ANOVA: p < 0.001; ?p2 = 0.65) while the acrophase (Φ) occurred at 18:28 for soccer players, significantly later than triathlon (15:20 h; p < 0.001) and volleyball players (16:24 h; p < 0.001) (ANOVA: p < 0.001; ?p2 = 0.84). The higher training duration and intensity reached by triathlon athletes in the morning sessions caused a phase advance of their RAR’s acrophase Φ and higher MESOR and A amplitude compared to volleyball players and triathletes. Therefore, different sport disciplines require different training schedules, training loads and intensities that translate into different RARs. Strength coaches and medical staff of professional teams should strongly consider actigraphy as a practical and powerful tool to monitor RARs, sleep behavior, and the activity levels of their athletes; highlighting potential circadian disruptions through actigraphy could be helpful to prevent musculoskeletal injuries.  相似文献   

7.
The knee ligaments and patellar tendon function in concert with each other and other joint tissues, and are adapted to their specific physiological function via geometry and material properties. However, it is not well known how the viscoelastic and quasi-static material properties compare between the ligaments. The purpose of this study was to characterize and compare these material properties between the knee ligaments and patellar tendon.Dumbbell-shaped tensile test samples were cut from bovine knee ligaments (ACL, LCL, MCL, PCL) and patellar tendon (PT) and subjected to tensile testing (n = 10 per ligament type). A sinusoidal loading test was performed at 8% strain with 0.5% strain amplitude using 0.1, 0.5 and 1 Hz frequencies. Subsequently, an ultimate tensile test was performed to investigate the stress-strain characteristics.At 0.1 Hz, the phase difference between stress and strain was higher in LCL compared with ACL, PCL and PT (p < 0.05), and at 0.5 Hz that was higher in LCL compared with all other ligaments and PT (p < 0.05). PT had the longest toe-region strain (p < 0.05 compared with PCL and MCL) and MCL had the highest linear and strain-dependent modulus, and toughness (p < 0.05 compared with ACL, LCL and PT).The results indicate that LCL is more viscous than other ligaments at low-frequency loads. MCL was the stiffest and toughest, and its modulus increased most steeply at the toe-region, possibly implying a greater amount of collagen. This study improves the knowledge about elastic, viscoelastic and failure properties of the knee ligaments and PT.  相似文献   

8.
Introduction: Footwork is one of the training contents that table tennis players and coaches focus on. This study aimed to gain a thorough understanding of the muscle activity of the table tennis footwork and creating a musculoskeletal model to investigate the muscle forces, joint kinematic, and joint kinetic characteristics of the footwork during topspin forehand stroke. Methods: Six male table tennis athletes (height: 171.98 ± 4.97 cm; weight: 68.77 ± 7.86 kg; experience: 10.67 ± 1.86 years; age: 22.50 ± 1.64 years) performed chasse step and one-step footwork to return the ball from the coach by topspin forehand stroke. The kinematics, kinetics, and muscle activity of the lower limb were recorded by the motion capture, force platform, and Electromyography (EMG) system. Statistical parametric mapping (SPM) analysis was used to investigate any difference between the chasse step and one-step footwork during the stroke. Results and Conclusion: The muscle force of the biceps femoris long head (p < 0.001), lateral gastrocnemius (p < 0.001), vastus lateralis (p < 0.001), vastus medial (p < 0.001), rectus femoris (p < 0.001), and tibia anterior (p < 0.001) of the chasse step were significantly greater than the one-step footwork during the early stroke phase (stance). At the end of the stroke phase (push-off), the muscle force of the biceps femoris long head (p < 0.001), medial gastrocnemius (p < 0.001), lateral gastrocnemius (p < 0.001), rectus femoris (p < 0.001), and tibias anterior (p < 0.001) in the chasse step footwork was significantly greater than the one-step footwork. The muscle force of the ankle plantar flexor and valgus muscle groups in the one-step was significantly greater than in the chasse step. Besides, the moment and angle of hip flexion (p = 0.001) and axial rotation (p = 0.009) were significantly greater for the chasse step than the one-step footwork, as well as the ankle plantarflexion angle (p < 0.001) and moment (p < 0.001) of the one-step footwork were significantly higher than the chasse step footwork. The results of this study can be applied to movement control and injury prevention in table tennis footwork.  相似文献   

9.
Athletes with rotator cuff (RC) tendinopathy demonstrate an aberrant pattern of scapular motion which might relate to deficits in the scapular muscles. This study aimed to determine whether alteration in scapular kinematics is associated with deficits in the activity onset of scapular muscles. Forty-three male volleyball players (17 asymptomatic and 26 with RC tendinopathy) joined the study. Three-dimensional scapular kinematics was quantified using an acromial marker cluster method. The activity onset of the upper (UT), middle (MT), and lower trapezius (LT), and serratus anterior (SA) during arm abduction was assessed with electromyography. Athletes with RC tendinopathy demonstrated less scapular upward rotation (6.6 ± 2.3 vs. 8.2 ± 1.1°, p = 0.021) in the early phase of shoulder abduction from 0° to 30° when compared to asymptomatic athletes. The tendinopathy group had delayed activity onset of LT (14.1 ± 31.4 ms vs. 74.4 ± 45.1 ms, p < 0.001) and SA (−44.9 ± 26.0 ms vs. 23.0 ± 25.2 ms, p < 0.001) relative to UT when compared to the asymptomatic group. In asymptomatic athletes, earlier activity onset of MT and LT relative to UT was associated with more scapular upward rotation during 0–30° of abduction (r = 0.665, p = 0.021) and 30–60° of abduction (r = 0.680, p = 0.015), respectively. Our findings showed the control of the scapular upward rotation is related to the activity onset of the scapular muscles in athletes.  相似文献   

10.
Patellar cartilage deformation in vivo after static versus dynamic loading   总被引:6,自引:0,他引:6  
The objective of this study was to test the hypothesis that static loading (squatting at a 90 degrees angle) and dynamic loading (30 deep knee bends) cause different extents and patterns of patellar cartilage deformation in vivo. The two activities were selected because they imply different types of joint loading and reflect a realistic and appropriate range of strenuous activity. Twelve healthy volunteers were examined and the volume and thickness of the patellar cartilage determined before and from 90 to 320s after loading, using a water excitation gradient echo MR sequence and a three-dimensional (3D) distance transformation algorithm. Following knee bends, we observed a residual reduction of the patellar cartilage volume (-5.9+/-2.1%; p<0.01) and of the maximal cartilage thickness (-2.8+/-2.6%), the maximal deformation occurring in the superior lateral and the medial patellar facet. Following squatting, the change of patellar cartilage volume was -4.7+/-1.6% (p<0.01) and that of the maximal cartilage thickness -4.9+/-1.4% (p<0.01), the maximal deformation being recorded in the central aspect of the lateral patellar facet. The volume changes were significantly lower after squatting than after knee bends (p<0.05), but the maximal thickness changes higher (p<0.05). The results obtained in this study can serve to validate computer models of joint load transfer, to guide experiments on the mechanical regulation of chondrocyte biosynthesis, and to estimate the magnitude of deformation to be encountered by tissue-engineered cartilage within its target environment.  相似文献   

11.
12.
Patellofemoral pain syndrome (PFPS) is a disorder of the patellofemoral (PF) joint in which abnormal tracking is often cited as a factor in pain development. PF tracking is partially dependent on passive stabilizers (ex: PF geometry). Relations amongst PFPS, PF tracking, and contact mechanics are poorly understood. In-vivo investigation of passive PF joint stabilizers including PF tracking, contact mechanics, cartilage thickness, and patellar shape will allow structural characterization of the PF joint and may highlight differences associated with PFPS. This study examined the role that passive stabilizers play in PFPS (n=10) versus healthy subjects (n=10). PF tracking (contact area centroid migration), cartilage thickness, shape, congruence, and contact patterns were quantified using magnetic resonance imaging during isometric loading at 15°, 30°, and 45° of knee flexion. Distinct relationships were identified between patellar shape and tracking and contact, particularly at low flexion (15–30°). Healthy subjects exhibited distinct PF tracking and contact patterns related to Type I patella shape (80%) with increasing total contact area (p<0.001) and proximal centroid migration (15–30° p=0.012; 30–45° p<0.001) for increasing knee angles. PFPS subjects deviated from these patterns at low flexion, demonstrating higher total contact area than healthy subjects (p=0.046 at 15°), lack of proximal centroid migration (15–30°), and more Type II (30%) and III (20%) patella shapes. This study highlights a new finding that patellar shape combined with low degrees of flexion (15–30°) may be important to consider, as this is where PFPS tracking and contact patterns deviate from healthy.  相似文献   

13.
GUTIN, BERNARD, SCOTT OWENS, TOMOKI OKUYAMA, SHARON RIGGS, MICHAEL FERGUSON, AND MARK LITAKER. Effect of physical training and its cessation on percent fat and bone density of children with obesity. Obes Res. Objective We determined the effect of 4-month periods of physical training (PT) and detraining on percent fat (percent fat) and bone density of children with obesity. Research Methods and Procedures Subjects were 79 7- to 11-year-old children with obesity; 34 were white, 44 were black, and 1 was Asian, 26 were male and 53 were female. They were randomly assigned to two groups: group 1 engaged in PT for the first 4 months, while group 2 engaged in PT during the second 4 months. Body composition was measured with dual energy absorptiometry, and diet was measured with 4 days of recall for each 4-month period. PT was offered 5 dayslweek for 40 minuteslsession, heart rate monitors were worn, and no dietary information was given; mean attendance was 80%, and mean heart rate per session was 157 bpm. Results Group by time interactions across the three time-points (from analysis of variance) were significant for percent fat (p = <0.001) and bone density (p = 0.045). Both groups declined in percent fat during the periods of PT, by an average of 1.6 %fat units; in the 4 months after cessation of PT, group 1 increased by 1.3 %fat. In both groups, bone density increased more during periods of PT (0.025 g/cm2) than during periods of no PT (0.010 g/cm2). No significant PT vs. no-PT differences were found for dietary intake of energy, macronutrients, or calcium. Discussion This study suggests that regular exercise, without dietary intervention, can enhance the body composition of children with obesity.  相似文献   

14.
The purpose of this study was to determine if a sports-specific training program could improve neuromuscular indices in female high school volleyball players. We combined components from a previously published knee ligament injury prevention intervention program for jump and strength training with additional exercises and drills to improve speed, agility, overall strength, and aerobic conditioning. We hypothesized that this sports-specific training program would lead to significant improvements in neuromuscular indices in high school female volleyball players. Thirty-four athletes (age 14.5 years ± 1.0) participated in the supervised 6-week program, 3 d·wk(-1) for approximately 90-120 minutes per session. The program was conducted on the school's volleyball court and weight room facilities. The athletes underwent a video drop-jump test, multistage fitness test, vertical jump test, and sit-up test before and after training. A significant increase was found in the mean VO2max score (p < 0.001), where 73% of the athletes improved this score. A significant improvement was found in the sit-up test (p = 0.03) and in the vertical jump test (p = 0.05), where 68% of the athletes increased their scores. In the drop-jump video test, significant increases were found in both the mean absolute knee separation distance (p = 0.002) and in the mean normalized knee separation distance (p = 0.04), indicating improved lower limb alignment on landing. No athlete sustained an injury or developed an overuse syndrome during training. This program significantly improved lower limb alignment on a drop-jump test, abdominal strength, estimated maximal aerobic power, and vertical jump height and may be implemented in high school female volleyball programs.  相似文献   

15.
The purpose of this study was to examine effects of shoe midsole densities and mechanical demands (landing heights) on impact shock attenuation and lower extremity biomechanics during a landing activity. Nine healthy male college athletes performed 5 trials of step-off landing in each of 9 test conditions, i.e., a combination of landings in shoes of 3 midsole densities (soft, normal, hard) from each of 3 landing potential energy (PE) levels (low, median, high). Ground reaction forces (GRF), accelerations (ACC) of the tibia and forehead, and sagittal kinematic data were sampled simultaneously. A 3 x 3 two-way (surface x height) repeated-measures analysis of variance (ANOVA) was performed on selected kinematic, ACC, and GRF variables; a 3 x 3 x 3 three-way (surface x height x joint) ANOVA was performed on variables related to eccentric muscular work. The GRF results showed that the forefoot peak GRF in the normal and hard midsoles was significantly greater than the soft midsole at the low and median PEs. Rearfoot peak GRF was significantly greater for the hard midsole than for the soft and normal midsoles at the median and high PEs, respectively. The peak head and tibia peak ACC were also attenuated in similar fashion. Kinematic variables did not vary significantly across different midsoles, nor did energy absorbed through lower extremity extensors in response to the increased shoe stiffness. Knee joint extensors were shown to be dominant in attenuating the forefoot impact force across the landing heights. The results showed limited evidence of impact-attenuating benefits of the soft midsole in the basketball shoes.  相似文献   

16.
Adequate plasmatic Vitamin D levels are crucial to maintain calcium homeostasis and bone metabolism both in the general population and in athletes. Correct dietary supply and a regular sun exposure are fundamental for allowing the desired and effective fitness level. Past studies highlighted a scenario of Vitamin D insufficiency among professional soccer players in several countries, especially in North Europe, whilst a real deficiency in athletes is rare. The typical seasonal fluctuations of Vitamin D are wrongly described transversally in athletes belonging to teams that play at different latitudes and a chronobiologic approach studying the Vitamin D circannual rhythm in soccer players has not been described yet. Therefore, we studied plasma vitamin D, cortisol, testosterone, and creatin kinase (CK) concentrations in three different Italian professional teams training at the same latitude during a period of two consecutive competitive seasons (2013 and 2014). In this retrospective observational study, 167 professional soccer players were recruited (mean age at sampling 25.1 ± 4.7 years) and a total of 667 blood drawings were carried out to determine plasma 25(OH)D, serum cortisol, serum testosterone and CK levels. Testosterone to cortisol ratio (TC) was calculated based as a surrogate marker of overtraining and psychophysical stress and each athlete was drawn until a maximum of 5 times per season. Data extracted by a subgroup of players that underwent at least 4 sample drawings along a year (N = 45) were processed with the single and population mean cosinor tests to evaluate the presence of circannual rhythms: the amplitude (A), acrophase (Φ) and the MESOR (M) are described. In total, 55 players (32.9%) had an insufficient level of 25(OH)D during the seasons and other 15 athletes (9.0%) showed, at least once, a deficiency status of Vitamin D. The rhythmometric analyses applied to the data of Vitamin D revealed the presence of a significant circannual rhythm (p < 0.001) with the acrophase that occurred in August; the rhythms of Vitamin D levels were not different neither among the three soccer teams nor between competitive seasons. Cortisol, testosterone and TC showed significant circannual rhythms (p < 0.001): cortisol registered an acrophase during winter (February) while testosterone and TC registered their peaks in the summer months (July). On the contrary, CK did not display any seasonal fluctuations. In addition, we observed weak but significant correlations between 25(OH)D versus testosterone (r = 0.29 and p < 0.001), cortisol (r = ?0.27 and p < 0.001) and TC (r = 0.37 and p < 0.001). No correlation was detected between Vitamin D and CK. In conclusion, the correct chronobiologic approach in the study of annual variations of Vitamin D, cortisol and testosterone could be decisive in the development of more specific supplementation and injury prevention strategies by athletic trainers and physicians.  相似文献   

17.
Beach volleyball is a sport with a high demand of shoulder structures that may lead to adaptations in range of motion (ROM) and strength like in other overhead sports. Despite of these possible alterations, no study evaluated the shoulder adaptations in young beach volleyball athletes. The aim of this study was to compare the bilateral ROM and rotation strength in the shoulders of young beach volleyball players. Goniometric passive shoulder ROM of motion and isometric rotational strength were evaluated in 19 male and 14 female asymptomatic athletes. External and internal ROM, total rotation motion, glenohumeral internal rotation deficit (GIRD), external rotation and internal rotation strength, bilateral deficits and external rotation to internal rotation ratio were measured. The statistical analysis included paired Student’s t-test and analysis of variance with repeated measures. Significantly lower dominant GIRD was found in both groups (p < 0.05), but only 6 athletes presented pathological GIRD. For strength variables, no significant differences for external or internal rotation were evident. Young beach volleyball athletes present symmetric rotational strength and shoulder ROM rotational adaptations that can be considered as anatomical. These results indicate that young practitioners of beach volleyball are subject to moderate adaptations compared to those reported for other overhead sports.  相似文献   

18.
This study was conducted to investigate the uptake, accumulation and the enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) spiked in soil (with a concentration of 117.4 ± 5.2 mg kg?1) by eleven plants including eight maize ( Zea mays) cultivars and three forage species (alfalfa, ryegrass and teosinte). The results showed that, after 40 days of treatment, the removal rates of DEHP ranged from 66.8% (for the control) to 87.5% (for the maize cultivar of Huanong-1). Higher removal rate was observed during the first 10 days than the following days. Plants enhanced significantly the dissipation of DEHP in soil. Enhanced dissipation amount in planted soil was 13.3–122 mg pot?1 for DEHP, and a net removal of 2.2%–20.7% of the initial DEHP was obtained compared with non-plant soil. The contribution of plant uptake to the total enhanced dissipation was <0.3%, and the enhanced dissipation of soil DEHP might be derived from plant-promoted biodegradation and sorption stronger to the soil. Nevertheless, the capability in accumulation and enhanced dissipation of DEHP from spiked soils varied within different species and cultivars.  相似文献   

19.
20.
ABSTRACT

This study examined the difference between athletes’ self-reported and objective sleep durations during two nap opportunities. Twelve well-trained male soccer players’ sleep durations were assessed using polysomnography and a self-report question during a 60- and 120-min nap opportunity. Participants underestimated sleep compared to objective sleep assessments for both the 60-min nap opportunity (p = 0.004) and 120-min nap opportunity (p = 0.001). Soccer players underestimated their sleep duration by approximately 10 min per hour of nap opportunity. It is yet to be determined if athletes are likely to underestimate sleep duration during their main nighttime sleep period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号