首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The mechanisms underlying elevation patterns in species and phylogenetic diversity remain a central issue in ecology and are vital for effective biodiversity conservation in the mountains. Gongga Mountain, located in the southeastern Qinghai–Tibetan Plateau, represents one of the longest elevational gradients (ca. 6,500 m, from ca. 1,000 to 7,556 m) in the world for studying species diversity patterns. However, the elevational gradient and conservation of plant species diversity and phylogenetic diversity in this mountain remain poorly studied. Here, we compiled the elevational distributions of 2,667 native seed plant species occurring in Gongga Mountain, and estimated the species diversity, phylogenetic diversity, species density, and phylogenetic relatedness across ten elevation belts and five vegetation zones. The results indicated that species diversity and phylogenetic diversity of all seed plants showed a hump‐shaped pattern, peaking at 1,800–2,200 m. Species diversity was significantly correlated with phylogenetic diversity and species density. The floras in temperate coniferous broad‐leaved mixed forests, subalpine coniferous forests, and alpine shrublands and meadows were significantly phylogenetically clustered, whereas the floras in evergreen broad‐leaved forests had phylogenetically random structure. Both climate and human pressure had strong correlation with species diversity, phylogenetic diversity, and phylogenetic structure of seed plants. Our results suggest that the evergreen broad‐leaved forests and coniferous broad‐leaved mixed forests at low to mid elevations deserve more conservation efforts. This study improves our understanding on the elevational gradients of species and phylogenetic diversity and their determinants and provides support for improvement of seed plant conservation in Gongga Mountain.  相似文献   

2.
The Western Ghats (WG) mountain chain in peninsular India is a global biodiversity hotspot, one in which patterns of phylogenetic diversity and endemism remain to be documented across taxa. We used a well‐characterized community of ancient soil predatory arthropods from the WG to understand diversity gradients, identify hotspots of endemism and conservation importance, and highlight poorly studied areas with unique biodiversity. We compiled an occurrence dataset for 19 species of scolopendrid centipedes, which was used to predict areas of habitat suitability using bioclimatic and geomorphological variables in Maxent. We used predicted distributions and a time‐calibrated species phylogeny to calculate taxonomic and phylogenetic indices of diversity, endemism, and turnover. We observed a decreasing latitudinal gradient in taxonomic and phylogenetic diversity in the WG, which supports expectations from the latitudinal diversity gradient. The southern WG had the highest phylogenetic diversity and endemism, and was represented by lineages with long branch lengths as observed from relative phylogenetic diversity/endemism. These results indicate the persistence of lineages over evolutionary time in the southern WG and are consistent with predictions from the southern WG refuge hypothesis. The northern WG, despite having low phylogenetic diversity, had high values of phylogenetic endemism represented by distinct lineages as inferred from relative phylogenetic endemism. The distinct endemic lineages in this subregion might be adapted to life in lateritic plateaus characterized by poor soil conditions and high seasonality. Sites across an important biogeographic break, the Palghat Gap, broadly grouped separately in comparisons of species turnover along the WG. The southern WG and Nilgiris, adjoining the Palghat Gap, harbor unique centipede communities, where the causal role of climate or dispersal barriers in shaping diversity remains to be investigated. Our results highlight the need to use phylogeny and distribution data while assessing diversity and endemism patterns in the WG.  相似文献   

3.

Aim

The conversion of old‐growth tropical forests into human‐modified landscapes threatens biodiversity worldwide, but its impact on the phylogenetic dimension of remaining communities is still poorly known. Negative and neutral responses of tree phylogenetic diversity to land use change have been reported at local and landscape scales. Here, we hypothesized that such variable responses to disturbance depend on the regional context, being stronger in more degraded rain forest regions with a longer history of land use.

Location

Six regions in Mexico and Brazil.

Methods

We used a large vegetation database (6,923 trees from 686 species) recorded in 98 50‐ha landscapes distributed across two Brazilian and four Mexican regions, which exhibit different degrees of disturbance. In each region, we assessed whether phylogenetic alpha and beta diversities were related to landscape‐scale forest loss, the percentage of shade‐intolerant species (a proxy of local disturbance) and/or the relatedness of decreasing (losers) and increasing (winners) taxa.

Results

Contrary to our expectations, the percentage of forest cover and shade‐intolerant species were weakly related to phylogenetic alpha and beta diversities in all but one region. Loser species were generally as dispersed across the phylogeny as winner species, allowing more degraded, deforested and species‐poorer forests to sustain relatively high levels of evolutionary (phylogenetic) diversity.

Main conclusion

Our findings support previous evidence indicating that traits related to high susceptibility to forest disturbances are convergent or have low phylogenetic signal. More importantly, they reveal that the evolutionary value of disturbed forests is (at least in a phylogenetic sense) much greater than previously thought.
  相似文献   

4.
Tropical evergreen forests of Indian subcontinent, especially of the Western Ghats, are known hot spots of amphibian diversity, where many new anuran species await to be identified. Here we describe from the Sharavathi River basin of central Western Ghats a new shrub-frog taxon related to the anuran family Rhacophoridae. The new frog possesses the characteristic features of rhacophorids (dilated digit tips with differentiated pads circumscribed by a complete groove, intercalary cartilages on digits, T-shaped terminal phalanges and granular belly, the adaptive characters for arboreal life forms), but also a suite of unique features that distinguish it from all known congeners in the region. Morphogenetic analysis based on morphological characteristics and diversity in the mitochondrial 12S and 16S rRNA genes revealed it to be a new Philautus species that we named Philautus neelanethrus sp. nov. The phylogenetic analysis suggests the new frog to represent a relatively early Philautus species lineage recorded from the region. The distribution pattern of the species suggests its importance as a bioindicator of habitat health. In general, this relatively widespread species was found distributed only in non-overlapping small stretches, which indirectly indicates the fragmentation of the evergreen to moist deciduous forests that characterize the Western Ghats. Thus the discovery of the new rhacophorid species described here not only further reinforces the significance of the Western Ghats as a major hotspot of amphibian biodiversity, but also brings into focus the deterioration of forest habitats in the region and the need for prioritization of their conservation.  相似文献   

5.
Background: Variation in the distribution and abundance of woody plants as consequence of disturbances such as fire may be explained by lineage age.

Aims: We tested whether lowland tropical tree lineages that colonise secondary forests are more late-diverging than clades from old-growth forests, and whether tree phylogenetic beta diversity from old-growth to secondary forests is higher in burned than non-burned secondary forests.

Methods: We sampled tree communities in old-growth forests and in secondary forests with distinct disturbance histories (burned and unburned). We calculated mean family age in each plot, and tested for differences among forest types using ANOVA. A phylogenetic fuzzy-weighting procedure was employed to generate a matrix describing the abundance of tree clades per plot, which was then analysed using a principal coordinate analysis.

Results: Most clades found in old-growth forests were underrepresented in secondary forests, which have been heavily colonised by a single species from a young lineage that is not found in old-growth forests. Phylogenetic beta diversity was higher between unburned secondary forests and old-growth forests than between burned secondary forests and old-growth forests.

Conclusions: The capacity of Neotropical trees to colonise secondary forests and persist after fire disturbance may be related to the age of distinct lineages.  相似文献   

6.
Using complementary metrics to evaluate phylogenetic diversity can facilitate the delimitation of floristic units and conservation priority areas. In this study, we describe the spatial patterns of phylogenetic alpha and beta diversity, phylogenetic endemism, and evolutionary distinctiveness of the hyperdiverse Ecuador Amazon forests and define priority areas for conservation. We established a network of 62 one‐hectare plots in terra firme forests of Ecuadorian Amazon. In these plots, we tagged, collected, and identified every single adult tree with dbh ≥10 cm. These data were combined with a regional community phylogenetic tree to calculate different phylogenetic diversity (PD) metrics in order to create spatial models. We used Loess regression to estimate the spatial variation of taxonomic and phylogenetic beta diversity as well as phylogenetic endemism and evolutionary distinctiveness. We found evidence for the definition of three floristic districts in the Ecuadorian Amazon, supported by both taxonomic and phylogenetic diversity data. Areas with high levels of phylogenetic endemism and evolutionary distinctiveness in Ecuadorian Amazon forests are unprotected. Furthermore, these areas are severely threatened by proposed plans of oil and mining extraction at large scales and should be prioritized in conservation planning for this region.  相似文献   

7.
Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging.  相似文献   

8.
The evolution of a particular trait or combination of traits within lineages may affect subsequent evolutionary outcomes, leading closely related species to exhibit higher phenotypic similarity than expected under a simple Brownian‐motion evolutionary model. Niche theory postulates that phenotypes determine species distribution across environmental gradients, leading to a phylogenetic signature in the community assembly. Thus, the incorporation of species phylogeny in the analysis of community ecology structure allows one to link broader environmental, spatial and temporal factors to local, small‐scale ecological processes, thus enabling understanding of community assembly patterns in a broader context. We used the net relatedness index to assess phylogenetic structure within avian communities across a harshness gradient in coastal habitats in southern Brazil. We also evaluated phylogenetic beta diversity, to test whether closely related species exploit habitats with similar environmental conditions. In order to do so, we scaled up phylogenetic information from the species to site level using phylogenetic fuzzy weighting. We found a pattern of phylogenetic clustering in less‐vegetated habitats, namely sandy beach and dunes, which are subject to harsher conditions because of proximity to the ocean. Basal lineages were associated with the more structurally homogeneous sandy beach, while late‐divergence clades occurred in more complex habitats, which were positively related to vegetation cover and height. The observed pattern of phylogenetic clustering suggested the importance of harsh conditions in constraining the distribution of avian lineages. Furthermore, contrasting environmental features between habitats influenced phylogenetic variation, demonstrating the prevalence of phylogenetic habitat filtering. From an applied point of view, such as planning and management of biological reserves, we showed that the full array of habitat patches embedded within coastal ecological gradients must be included in order to preserve distinct evolutionary lineages.  相似文献   

9.
10.
The ratio of species extinctions to introductions has been comparable for many insular assemblages, suggesting that introductions could have ‘compensated’ for extinctions. However, the capacity for introduced species to replace ecological roles and evolutionary history lost following extinction is unclear. We investigated changes in bird functional and phylogenetic diversity in the wake of extinctions and introductions across a sample of 32 islands worldwide. We found that extinct and introduced species have comparable functional and phylogenetic alpha diversity. However, this was distributed at different positions in functional space and in the phylogeny, indicating a ‘false compensation’. Introduced and extinct species did not have equivalent functional roles nor belong to similar lineages. This makes it unlikely that novel island biotas composed of introduced taxa will be able to maintain ecological roles and represent the evolutionary histories of pre‐disturbance assemblages and highlights the importance of evaluating changes in alpha and beta diversity concurrently.  相似文献   

11.
Aims The evolutionary history and functional traits of species can illuminate ecological processes supporting coexistence in diverse forest communities. However, little has been done in decoupling the relative importance of these mechanisms on the turnover of phylogenetic and functional characteristics across life stages and spatial scales. Therefore, this study aims to estimate the contribution of environment and dispersal on the turnover of phylogenetic and functional diversity across life stages and spatial scales, in order to build a coherent picture of the processes responsible for species coexistence.  相似文献   

12.
了解不同森林群落类型的物种和谱系水平的α和β多样性, 有助于指导森林经营和生物多样性保护。本研究比较了浙江省内不同地点主要森林类型(包括常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林和针阔叶混交林)的物种α多样性和谱系α多样性, 以及物种β多样性和谱系β多样性。研究表明, 该地区主要森林类型的物种和谱系α多样性均存在较大差异, 但控制了空间和地形因子的作用后, 差异几乎全部消失; 森林类型内部及相互间的物种和谱系β多样性均存在显著差异, 同种森林类型内部的物种和谱系β多样性分别小于不同森林类型之间的物种和谱系β多样性, 且在控制了空间和地形因子的作用后, 以上差异仍然显著。本研究表明影响亚热带主要森林群落类型物种和谱系水平的α和β多样性的因素存在差异: α多样性可能主要受到空间和地形因子等的影响, 而β多样性则可能受到森林类型的重要影响。  相似文献   

13.
Ten-day advanced very high resolution radiometer images from 1990 to 2000 were used to examine spatial patterns in the normalized difference vegetation index (NDVI) and their relationships with climatic variables for four contrasting forest types in India. The NDVI signal has been extracted from homogeneous vegetation patches and has been found to be distinct for deciduous and evergreen forest types, although the mixed-deciduous signal was close to the deciduous ones. To examine the decadal response of the satellite-measured vegetation phenology to climate variability, seven different NDVI metrics were calculated using the 11-year NDVI data. Results suggested strong spatial variability in forest NDVI metrics. Among the forest types studied, wet evergreen forests of north-east India had highest mean NDVI (0.692) followed by evergreen forests of the Western Ghats (0.529), mixed deciduous forests (0.519) and finally dry deciduous forests (0.421). The sum of NDVI (SNDVI) and the time-integrated NDVI followed a similar pattern, although the values for mixed deciduous forests were closer to those for evergreen forests of the Western Ghats. Dry deciduous forests had higher values of inter-annual range (RNDVI) and low mean NDVI, also coinciding with a high SD and thus a high coefficient of variation (CV) in NDVI (CVNDVI). SNDVI has been found to be high for wet evergreen forests of north-east India, followed by evergreen forests of the Western Ghats, mixed deciduous forests and dry deciduous forests. Further, the maximum NDVI values of wet evergreen forests of north-east India (0.624) coincided with relatively high annual total precipitation (2,238.9 mm). The time lags had a strong influence in the correlation coefficients between annual total rainfall and NDVI. The correlation coefficients were found to be comparatively high (R2=0.635) for dry deciduous forests than for evergreen forests and mixed deciduous forests, when the precipitation data with a lag of 30 days was correlated against NDVI. Using multiple regression approach models were developed for individual forest types using 16 different climatic indices. A high proportion of the temporal variance (>90%) has been accounted for by three of the precipitation parameters (maximum precipitation, precipitation of the wettest quarter and driest quarter) and two of the temperature parameters (annual mean temperature and temperature of the coldest quarter) for mixed deciduous forests. Similarly, in the case of deciduous forests, four precipitation parameters and three temperature parameters explained nearly 83.6% of the variance. These results suggest differences in the relationship between NDVI and climatic variables based upon the time of growing season, time interval and climatic indices over which they were summed. These results have implications for forest cover mapping and monitoring in tropical regions of India.  相似文献   

14.

Aim

We used an eco-phylogenetic approach to investigate the diversity and assembly patterns of tropical dry forests (TDFs) in Central India. We aimed at informing conservation and restoration practices in these anthropogenically disturbed forests by identifying potential habitats of conservation significance and elements of regional biodiversity most vulnerable to human impact and climate change.

Location

Tropical dry forests of Madhya Pradesh, Central India.

Methods

We analysed the species richness, stem density, basal area and phylogenetic structure (standardized effect size of MNTD, MPD, PD and community evolutionary distinctiveness cED) of 117 tree species assemblages distributed across a ~230 to ~940 m elevational gradient. We examined how these community measures and taxonomic (Sørensen) and phylogenetic (UniFrac) beta diversity varied with elevation, precipitation, temperature and climatic stress.

Results

Species richness, phylogenetic diversity, stem density and basal area were positively correlated with elevation, with high-elevation plots exhibiting cooler temperatures, higher precipitation and lower stress. High-elevation assemblages also trended towards greater phylogenetic dispersion, which diminished at lower elevations and in drier, more stressful plots. Phylogenetic turnover was observed across the elevation gradient, and species evolutionary distinctiveness increased at lower elevations and under harsher abiotic conditions.

Main Conclusions

Harsher abiotic conditions at low elevations may act as a selective filter on plant lineages, leading to phylogenetically clustered low-diversity assemblages. These assemblages contained more evolutionarily distinct species that may contribute disproportionately to biodiversity. Conversely, milder abiotic conditions at high elevations may serve as refuges for drought-sensitive species, resulting in more diverse assemblages. Conservation practices that prioritize both high- and low-elevation habitats could promote the persistence of evolutionarily distinct species and areas of high biodiversity within the Central Indian landscape. Establishing connectivity between these habitats may provide a range of climatic conditions for species to retreat to or persist within as climates change.  相似文献   

15.
南京灵谷寺森林50年来的动态变化研究   总被引:12,自引:0,他引:12       下载免费PDF全文
 为进一步揭示北亚热带森林次生演替规律,于2002年5月在定点样带上沿用前人的方法,对南京灵谷寺森林进行了群落调查。通过比较1951、1981、2002年的定点样带资料,对灵谷寺森林的物种组成、多度、频度、重要值、种群结构以及物种多样性的动态变化进行了研究。50多年来,群落中立木株数相对基本稳定,但空间分布异质性逐渐增加,而林下苗木和灌木个体数波动幅度极大,由1951年的4 712株大幅上升至1981年的44 130株,到2002年又回落至7 372株。群落中物种数和建群种构成等都存在明显变化,物种数由1951年的75种下降到1981年的50种,2002年又上升为73种。物种多样性指数也存在波动,但目前尚未发现物种多样性指数有明显的上升或下降趋势。历经50多年的次生演替,早期人工针叶林中的马尾松(Pinus massoniana)逐渐衰退,首先被阳性落叶阔叶树,如黄连木(Pistacia chinensis)、枫香(Liquidambar formosana)等取代,之后又被相对耐荫的栓皮栎(Quercus variabilis)等树种所替代,一些常绿树种成功入侵,人工针叶林经针阔混交林、落叶阔叶林,逐渐向地带性植被落叶 常绿阔叶混交林方向演替,其中立地条件较好地段的群落演替速度也较快。  相似文献   

16.
Aim  We assessed the rates of turnover of tree species with distance (beta diversity) in wet forests of the Western Ghats (WG) complex of India to see whether climate, topographic variation or species traits influence beta diversity.
Location  The Western Ghats is a chain of mountains about 1600 km in length, running parallel to the western coast of the Indian Peninsula from above 8° N to almost 21° N latitude.
Methods  We used data from 60 small plot inventories concentrated in three regions: the southernmost part of the Western Ghats (SWG) (8°24' to 9°37' N), the Nilgiri Hills (11°12' to 11°14' N), and the central Western Ghats (CWG) (12°32' to 14°51' N). We used Sorensen's index (SI) to estimate the similarity in species composition between two plots and regressed SI against the logarithm of the distance between plots to assess beta diversity. A bootstrapping procedure provided confidence intervals for regression coefficients. To test for the effects of climate, we regressed seasonality differences between plots against SI for low-elevation (< 800 m) plots along the north–south axis, and all plots in the SWG. We assessed the impact of the rainfall gradient in the Kogar region.
Results  Among all three regions, beta diversity was highest along the latitudinal axis, and along the rainfall gradient in the Kogar region. Differences in seasonality between sites were strongly related to beta diversity along the north–south seasonality gradient and within the SWG. Within the three regions, beta diversity was highest in the region with the strongest rainfall gradient and lowest for the topographically heterogeneous SWG. Beta diversity did not differ between forest strata and dispersal modes.
Main conclusions  We conclude that climate, particularly seasonality, is probably the primary driver of beta diversity among rain forest trees of the Western Ghats complex.  相似文献   

17.
To better identify biodiversity hotspots for conservation on Hainan Island, a tropical island in southern China, we assessed spatial variation in phylogenetic diversity and species richness using 18,976 georeferenced specimen records and a newly reconstructed molecular phylogeny of 957 native woody plants. Within this framework, we delineated bioregions based on vegetation composition and mapped areas of neoendemism and paleoendemism to identify areas of priority for conservation. Our results reveal that the southwest of Hainan is the most important hot spot for endemism and plant diversity followed by the southeast area. The distribution of endemic species showed a scattered, rather than clustered, pattern on the island. Based on phylogenetic range‐weighted turnover metrics, we delineated three major vegetational zones in Hainan. These largely correspond to natural secondary growth and managed forests (e.g., rubber and timber forests) in central Hainan, old‐growth forests and natural secondary growth forest at the margins of Hainan, and nature reserves on the island (e.g., Jianfeng and Diaoluo National Nature Reserves). Our study helps to elucidate potential botanical conservation priorities for Hainan within an evolutionary, phylogenetic framework.  相似文献   

18.
A rapidly increasing effort to merge functional community ecology and phylogenetic biology has increased our understanding of community assembly. However, studies using both phylogenetic‐ and trait‐based methods have been mainly conducted in old‐growth forests, with fewer studies in human‐disturbed communities, which play an increasingly important role in providing ecosystem services as primary forests are degraded. We used data from 18 1‐ha plots in tropical old‐growth forests and secondary forests with different disturbance histories (logging and shifting cultivation) and vegetation types (tropical lowland and montane forests) on Hainan Island, southern China. The distributions of 11 functional traits were compared among these six forest types. We used a null model approach to assess the effects of disturbance regimes on variation in response and effect traits and community phylogenetic structure across different stem sizes (saplings, treelets, and adult trees) and spatial scales (10–50 m). We found significant differences in the distribution of functional traits in highly disturbed lowland sites versus other forest types. Many individuals in highly disturbed lowland sites were deciduous, spiny, with non‐fleshy fruits and seeds dispersed passively or by wind, and low SLA. The response traits of coexisting species were clustered in all sites except for highly disturbed lowland sites where evenness was evident. There were different distributions of effect traits for saplings and treelets among different forest types but adult trees showed stronger clustering of trait values with increasing spatial scale among all forest types. Phylogenetic clustering predominated across all size classes and spatial scales in the highly disturbed lowland sites, and evenness in other forest types. High disturbance can lead to abiotic filtering, generating a community dominated by closely related species with disturbance‐adapted traits, where biotic interactions play a relatively minor role. In lightly disturbed and old growth forests, multiple processes simultaneously drive the community assembly, but biotic processes dominate at the fine scale.  相似文献   

19.
We present a framework for biodiversity metrics that organizes the growing panoply of metrics. Our framework distinguishes metrics based on the type of information–abundance, phylogeny, function–and two common properties–magnitude and variability. Our new metrics of phylogenetic diversity are based on a partition of the total branch lengths of a cladogram into the proportional share of each species, including: a measure of divergence which standardizes the amount of evolutionary divergence by species richness and time depth of the cladogram; a measure of regularity which is maximal when the tree is perfectly symmetrical so that all species have the same proportional branch lengths; a measure that combines information on the magnitude and variability of abundance with phylogenetic variability, and a measure of phylogenetically weighted effective mean abundance; and indicate how those metrics can be decomposed into α and β components. We illustrate the utility of these new metrics using empirical data on the bat fauna of Manu, Peru. Divergence was greatest in lowland rainforest and at the transition between cloud and elfin forests, and least in upper elfin forests and in cloud forests. In contrast, regularity was greatest in lowland rainforest, dipping to its smallest values in mid‐elevation cloud forests, and then increasing in high elevation elfin forests. These patterns indicate that the first species to drop out with increasing elevation are ones that are closely related to other species in the metacommunity. Measures of the effective number of phylogenetically independent or distinct species decreased very rapidly with elevation, and β‐diversity was larger. In contrast, a comparison of feeding guilds shows a different effect of phylogenetic patterning. Along the elevational gradient, each guild generally loses some species from each clade–rather than entire clades–explaining the maintenance of functional diversity as phylogenetic diversity decreases.  相似文献   

20.
Aims Understanding what drives the variation in species composition and diversity among local communities can provide insights into the mechanisms of community assembly. Because ecological traits are often thought to be phylogenetically conserved, there should be patterns in phylogenetic structure and phylogenetic diversity in local communities along ecological gradients. We investigate potential patterns in angiosperm assemblages along an elevational gradient with a steep ecological gradient in Changbaishan, China.Methods We used 13 angiosperm assemblages in forest plots (32×32 m) distributed along an elevational gradient from 720 to 1900 m above sea level. We used Faith's phylogenetic diversity metric to quantify the phylogenetic alpha diversity of each forest plot, used the net relatedness index to quantify the degree of phylogenetic relatedness among angiosperm species within each forest plot and used a phylogenetic dissimilarity index to quantify phylogenetic beta diversity among forest plots. We related the measures of phylogenetic structure and phylogenetic diversity to environmental (climatic and edaphic) factors.Important findings Our study showed that angiosperm assemblages tended to be more phylogenetically clustered at higher elevations in Changbaishan. This finding is consistent with the prediction of the phylogenetic niche conservatism hypothesis, which highlights the role of niche constraints in governing the phylogenetic structure of assemblages. Our study also showed that woody assemblages differ from herbaceous assemblages in several major aspects. First, phylogenetic clustering dominated in woody assemblages, whereas phylogenetic overdispersion dominated in herbaceous assemblages; second, patterns in phylogenetic relatedness along the elevational and temperature gradients of Changbaishan were stronger for woody assemblages than for herbaceous assemblages; third, environmental variables explained much more variations in phylogenetic relatedness, phylogenetic alpha diversity and phylogenetic beta diversity for woody assemblages than for herbaceous assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号