首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The salinity stress is one of the most relevant abiotic stresses that affects the agricultural production. The present study was performed to study the improvement of the salt tolerance of tomato plants which is known for their susceptibility to salt stress. The present study aimed to assess to what extent strain Azospirillum brasilense (N040) and Saccharomyces cerevisiae improve the salt tolerance to tomato plants treated with different salt concentration. The inoculant strain A. brasilense (N040) was previously adapted to survive up to 7% NaCl in the basal media. A greenhouse experiment was conducted to evaluate the effect of this inoculation on growth parameter such as: plant height, root length, fresh and dry weight, fruits fresh weight, chlorophyll content, proline and total soluble sugar in tomato plants under salt stress condition. The results revealed that co-inoculation of Azospirillum brasilense (N040) and Saccharomyces cerevisiae significantly increased the level of proline (8.63 mg/g FW) and total soluble sugar (120 mg/g FW) of leaves under salinity condition comparing to non-inoculated plants (2.3 mg/g FW and 70 mg/g FW, respectively). Plants co-inoculated with adapted strain of A. brasilense and S. cerevisiae showed the highest significant (p < 0.01) increase in fruit yield (1166.6 g/plant), plant high (115 cm) and roots length (52.6) compared whit un-inoculated control plants (42 g/pant, 43.3 cm and 29.6 cm, respectively). In contrast, Na+ ion content was significantly decreased in the leaves of salt stressed plants treated with the A. brasilense (N040) and S. cerevisiae. Finally, the results showed that dual benefits provided by both A. brasilense (N040) and S. cerevisiae can provide a major way to improve tomato yields in saline soils.  相似文献   

2.
Fourteen native strains of Trichoderma spp. from wildand agricultural pathosystems in the state of Yucatan, Mexico, with growth-promoting ability of Capsicum chinense Jacq. seedlings were evaluated and antagonistic effect of their filtrate against second-stage juveniles (J2) of Meloidogyne incognita. The strains Th05-02 and Th27-08 showed the best significant effects on plant hight variable increments 55.57 and 47.62%, theTh07-04 with 29.48% more root length, theTh02-01 and Th07-04 isolates increased from 48.71 to 84.61% in volume radical and 53.40% of total dry biomass. Statistical analysis (p≤0.001) of Th43 and Th43-13-14 filtrates caused 100% mortality at 24 and 48h. In the test of reversibility to 24 h after replacing the filtrates Th43-13, Th43-14, TH09-06 and TH20-07 by sterile distilled water, the J2 did not recover their viability, so they were considered as the best potential strains of Trichoderma spp. with antagonistic capacity in J2 of M.incognita.  相似文献   

3.
Moringa oleifera is a miracle plant rich in nutrients, antioxidants, and antibiotic properties. Present study was designed to evaluate various biochemical attributes of leaves and flowers of M. oleifera. Plant parts (leaves, flowers) of M. oleifera, collected from different roadsides of Multan district, Punjab, Pakistan, were used as experimental material. Result indicates that alkaloids, saponin, carbohydrates, fats, and protein had a high value in the aqueous extract of both leaves and flowers of M. oleifera. Whereas phenol content was high in methanolic leaves extract and the phenol contents were high in aqueous extract of flowers. The extract yield of M. oleifera leaves and flowers both showed a higher percentage in aqueous extract (57.5%), followed by methanol extract and lowest in ethyl acetate extract. Flavonoids contents were higher in ethyl acetate extract of leaves (33.67%) and aqueous extract of flowers (53.71%). While crude fiber was high in methanolic extract of leaves (12.40%) and in flowers crude fiber was high in ethyl acetate extract (15.86%). The moisture contents were higher in leaves (8.87%) than flowers (7.3%) and similarly, ash percentage in flowers (52.60%) than leaves (41.84%). Ethyl acetate extracts of M. oleifera leaves show antibacterial activity against Pseudomonas aeruginosa while methanolic extract of M. oleifera flowers shows antibacterial activity against Xanthomonas sp. Maximum growth inhibits show in all extracts of leaves against Aspergillus flavus, F. oxysporum, and P. glabrum except for the concentrated aqueous extract of leaves. While in flowers maximum growth inhibits all extracts against P. glabrum, A. niger, and A. flavus except the diluted ethyl acetate extract. Phytochemicals present in different parts of moringa have significant edible and commercial potential. Moringa extracts exhibited significant antimicrobial activity, therefore have applications in pharmaceuticals.  相似文献   

4.
Ananas comosus var. bracteatus is an important ornamental plant because of its green/white chimeric leaves. The accumulation of anthocyanin makes the leaf turn to red especially in the marginal part. However, the red fades away in summer and winter. Light intensity is one of the most important factors affecting leaf color along the seasons. In order to understand the effects of light intensity on the growth and coloration of the chimeric leaves, Ananas comosus var. bracteatus was grown under full sunlight, 50% shade and 75% shade for 75 days to evaluate the concentration of pigments, the color parameters (values L*, a*, b*) and the morpho-anatomical variations of chimeric leaves. The results showed that a high irradiance was beneficial to keep the chimeric leaves red. However, prolonged exposure to high irradiance caused a damage, some of the leaves wrinkled and even burned. Shading instead decreased the concentration of anthocyanin and increased the concentration of chlorophyll, especially in the white marginal part of the leaves. Numerous chloroplasts were observed in the mesophyll cells of the white marginal part of the chimeric leaves under shading for 75 days. The increase in chlorophyll concentration resulted in a better growth of plants. In order to balance the growth and coloration of the leaves, approximately 50% shade is suggested to be the optimum light irradiance condition for Ananas comosus var. bracteatus in summer.  相似文献   

5.

There are few evidences on the effect of biochar on vegetable yield, nitrogen (N) and phosphorus (P) leaching losses under intensive vegetable production soil. The current field plot scale study evaluated responses of Chinese cabbage (Brassica oleracea L.) yield, N and P leaching losses using five N treatments of common N application rate according to local farmers’ practice (N100%), reducing 20% or 40% N fertilizer (N80% and N60%), and reducing 40% N fertilizer but incorporating 10 or 20 t/ha biochar (N60% + BC10 and N60% + BC20). Results showed that N80% and N60% decreased both the cabbage economic and leaf yields by 6.8%–36.3% and 27.4%–37.7%, respectively. Incorporation of biochar with reduced N fertilizer rates improved the cabbage yield, in particular the N60% + BC20 matched the yield that observed in N100% treatment. Enhanced N and P uptake capacities of cabbage shoot probably contributed the higher vegetable production under both biochar amendment schemes. Biochar application mitigated the NH4+-N and total P leaching losses by 20%–30% and 29%–32%, respectively, compared with their counterpart treatment N60%. Nevertheless, biochar exerted no influence on the NO3-N leaching. In addition, soil organic matter content was recorded with 7.4%–28.7% higher following 10–20 t/ha biochar application. In conclusion, biochar application can increase economic yield of cabbage via increasing N and P use efficiency, decrease N and P leaching losses, and improve soil quality in an intensive vegetable production system.

  相似文献   

6.
In Mexico, there is a need to produce large quantities of plantlets for the establishment and replanting of blue (cv. azul) agave production areas. Most of these plots are within the origin denomination area (DOT, Spanish acronym) of the distilled product of this plant, known as tequila. The objective of this study was to develop an in vitro-propagation protocol for Agave tequilana Weber cv. azul using segmented stems in both: solid and liquid media. A disinfection and in vitro technique were developed to obtain shoots, through plantlets collected in commercial plots, which attained 100% surface-disinfection and budding rate. At the multiplication stage, the effects of 6-Benzylaminopurine (BA) (0.0, 4.4 and 13.2 μM) and kinetin (0.0, 9.4, 18.8 and 37.6 μM) were evaluated on lateral-shoot production of segmented sagittal stems. These were cultivated on Murashige & Skoog (MS) medium, with the addition of 3.0% sucrose and 8 g L−1 agar. It was observed that BA and kinetin increased the number of shoots per explant, obtaining up to 18 and 26, respectively. Furthermore, it was found that just the sagittal segmentation of explants increased axillary budding. On the other hand, segmented-stem bases were grown in MS liquid medium with 3.0% sucrose, inside a RITA® system, programmed by a 5 min immersion step with a frequency of every 4 h. The effect of Indole−3-Acetic acid (IAA) (0.57, 2.9, 5.7 μM) was evaluated, while maintaining a concentration of BA (13.2 μM). It was observed that the greatest concentration of IAA led to the formation of more than 20 buds per explant. These results offer a new methodology to increase the efficiency of A. tequilana Weber cv. azul-in vitro multiplication by sagittal segmentation of stems and the addition of BA and/or IAA.  相似文献   

7.
Callus cultures of Annona muricata and Annona purpurea were induced in Murashige and Skoog (MS) medium supplemented with different concentrations of 1-naphthylacetic acid (NAA), 6-benzyladenine (BA) and 2,4-dichlorophenoxyacetic acid (2,4-D) utilized hypocotyls with explant. The highest percentage of callus formation was the treatment supplemented with 3 mg L-1 NAA for A. muricata (100%) while for A. purpurea in lower percentage (75%). BA stimulated the formation of shoots in all the evaluated concentrations, being the concentration of 2 mg L-1 the one that induced the greater formation of shoots for A. muricata (23 shoots/explant) and A. purpurea (28 shoots/explant). The content of total phenols, flavonoids and antioxidant activity was measured in the callus obtained from both species. The results showed that a higher content of total phenols was quantified in callus of A. purpurea (27.8 mg g-1 dw) compared to A. muricata (23.2 mg g-1 dw). The highest content of total flavonoids was observed in the callus of A. purpurea (8.0 μg g-1 dw). Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydracil radical assay. The concentration required for 50% inhibition (IC50) of the 2,2-diphenyl-1-picrylhydracil radicals were 4.22 μg mL-1 in methanolic extracts of callus of A. muricata, while in extracts of callus of A. purpurea was 2.86 μg mL-1, in both cases was greater than that found for leaves. Callus culture of the species studied in this work represents an alternative for the production of natural antioxidants.  相似文献   

8.

The hyperaccumulator Sedum alfredii Hance (S. alfredii) may be employed for zinc (Zn) and cadmium (Cd)-polluted soil remediation. However, the low phytoremediation efficiency, related to the low biomass production, limits its use with that purpose. In this experiment, nitrogen (N), phosphorus (P), and potassium (K) fertilizers, and organic manure were applied to investigate the phytoremediation ability of S. alfredii. Hydroponic and pot experiments were conducted using Zn-Cd polluted soil. The hydroponic experiment indicated that appropriate fertilizer application could increase (p < 0.05) the amount of accumulated Zn and Cd in S. alfredii. When N supply ranged from 0.5 to 2.5 mmol L−1, it could improve growth and accumulation of Zn and Cd in whole plants of S. alfredii. The 1 mmol L-1 N was an optimal N dosage for shoot biomass production and Cd accumulation in shoots, while the 2.5 mmol L-1 was an optimal N dosage for Zn accumulation in shoots. Both low (<0.05 mmol L-1) and high (>0.8 mmol L-1) P supply decreased growth, and Zn/Cd accumulation in whole plants of the studied species. The 0.1 mmol L-1 P was an optimal dosage for S. alfredii biomass production and Zn/Cd accumulation in shoots. The supply levels within the range from 0.3 to 1 mmol L-1 K could significantly improve the biomass production of S. alfredii and its capability to accumulate Zn and Cd in the biomass. The 0.5 mmol L-1 K was an optimal dosage for the whole biomass production and Zn accumulation in shoots, while the 1 mmol L-1 was an optimal K dosage for Zn accumulation in shoots, which was 17.2% higher than the control. Moreover, the soil pot experiment showed that the combination of organic (fermented manure) and inorganic fertilizers made significant effects on the Zn and Cd-polluted soil remediation by S. alfredii. These effects varied, however, with the application of different proportions of N, P, K and organic matter. The Zn accumulation by S. alfredii reached the highest efficiency ability under the highest fertilizer mixing rate (N: 50 mg kg-1, P: 40 mg kg-1, K: 100 mg kg-1, organic matter: 1%). Even more, S. alfredii showed the strongest ability to accumulate Cd with a lower fertilizer mixing rate (N: 25mg kg-1, P: 20mg kg-1, K: 50 mg kg-1, organic matter: 0.5%).

  相似文献   

9.
Chili pepper is one of the main crops of economic importance in Mexico, and Fusarium wilting is a disease that limits its production. In addition, the inappropriate use of agrochemicals in farming activities generate environmental and health problems. Therefore, in this study the effectiveness of Streptomyces sp PRIO41 was evaluated as a (1) biocontrol agent of Fusarium spp and (2) plant growth promoter bacteria. Assays of pathogenicity and virulence of Fusarium spp. in jalapeño pepper seeds, and interactions of these pathogens with Streptomyces PRIO41 were evaluated under two nutritional conditions. In the greenhouse, the effectiveness of Streptomyces sp. PRIO41 was determined as a (1) biocontrol of Fusarium, and (2) plant growth promoter of wilt of pepper plants. The results showed that all fungal isolates caused symptoms in pepper seeds and seedlings with different degrees of virulence. Interactions in vitro showed that Streptomyces showed the most effective range of virulence against Fusarium isolates in the poor medium (37.6%-100%), with fungicidal effects in some cases. In the greenhouse, Streptomyces PRIO41 reduced Fusarium wilting up to a 40%, and positively affected all vegetative growth parameters, particularly plant height, leaf area, root length, and leaf and root dry biomasses. This study showed the potential of Streptomyces PRIO41 as a biocontrol agent of Fusarium spp., and as a biofertilizer of pepper plants.  相似文献   

10.
Zongmin Mou  Fei Ye  Fangchen Shen  Dake Zhao 《Phyton》2022,91(10):2331-2348
Aconitum vilmorinianum, a well-known traditional Chinese herb, is recently being threatened by overexploitation and environment disturbance. This study was conducted to provide propagation methods through in vitro germination and explant cultivation. Germination was stimulated up to 66.00% on Murashige and Skoog (MS) medium containing 2.0 mg L−1 6-benzylaminopurine (BAP), 0.1 mg L−1 1-napthaleneacetic acid (NAA), and 30 g L−1 sucrose. Three bacteria (Pantoea agglomerans, Erwinia persicina, and Pseudomonas tolaasii) would be responsible for consistent contamination during germination. The latter two were effectively eradicated after disinfected. The influence of explant types and hormone combinations on direct and indirect organogenesis was evaluated in the present work. The frequency of shoot induction from axillary bud explants was 100% on the MS fortified with 2.0 mg L−1 BAP and 0.3 mg L−1 NAA. Shoots multiplication was optimized on MS medium supplemented with 0.1 mg L−1 thidiazuron (TDZ) and 0.1 mg L−1 NAA. High callus induction percentage (96.67%) was obtained from stem segments on MS medium with 2.0 mg L−1 2,4-D, then successfully regenerated into shoots on MS medium in the presence of 0.1 mg L−1 TDZ and 0.2 mg L−1 NAA. The present work could be useful for the utilization and conservation of this valuable species.  相似文献   

11.
Miscanthus, is a promising bioenergy crop, considered superior to other bioenergy crops because of its higher water and nutrient use efficiency, cold tolerance, and higher production of biomass. Broadleaf weeds and grass weeds, cause major problems in the Miscanthus field. A field experiment was conducted in 2018 and 2019, to assess the effects of pre-emergence (alachlor and napropamide) and post-emergence herbicides (nicosulfuron, dicamba, bentazon, and glufosinate ammonium) on broadleaf and grass weeds in M. sinensis and M. sacchariflorus fields. The weed control efficiency and phytotoxicity of pre- and post-emergence herbicides were evaluated at 30 days after treatment (DAT) and compared to those of the control plots. The results showed wide variations in the susceptibility of the weed species to the treated herbicides. Treatment with nicosulfuron 40 g.a.i.ha−1 provided the most effective overall weed control (with 10% visual injury), without affecting the height and biomass of neither Miscanthus species in the field. Post-emergence herbicides such as glufosinate ammonium 400 g.a.i.ha−1 and dicamba 482 g.a.i.ha−1 were effective and inhibited the growth and density of the majority of weeds to a 100%; however, they showed significant phytotoxicity (toxicity scale of 1–10) to both species of Miscanthus. The application of glufosinate ammonium caused severe injuries to the foliar region (90% visual injury) of both Miscanthus sps. Comparatively, M. sinensis showed a slightly higher tolerance to the herbicides nicosulfuron, bentazon and napropamide with 10% visual injury at the recommended dose than M. sacchariflorus. The present study clearly showed that infestation of broadleaf and grass weeds in Miscanthus fields can cause significant damage to the growth and biomass of Miscanthus and applying pre-emergence and post-emergence herbicides effectively controls the high infestation of these weeds.  相似文献   

12.
Pharmaceuticals are often not fully removed in wastewater treatment plants (WWTPs) and are thus being detected at trace levels in water bodies all over the world posing a risk to numerous organisms. These organic micropollutants (OMPs) reach WWTPs at concentrations sometimes too low to serve as growth substrate for microorganisms; thus, co-metabolism is thought to be the main conversion mechanism. In this study, the microbial removal of six pharmaceuticals was investigated in a membrane bioreactor at increasing concentrations (4–800 nM) of the compounds and using three different hydraulic retention times (HRT; 1, 3.5 and 5 days). The bioreactor was inoculated with activated sludge from a municipal WWTP and fed with ammonium, acetate and methanol as main growth substrates to mimic co-metabolism. Each pharmaceutical had a different average removal efficiency: acetaminophen (100%) > fluoxetine (50%) > metoprolol (25%) > diclofenac (20%) > metformin (15%) > carbamazepine (10%). Higher pharmaceutical influent concentrations proportionally increased the removal rate of each compound, but surprisingly not the removal percentage. Furthermore, only metformin removal improved to 80–100% when HRT or biomass concentration was increased. Microbial community changes were followed with 16S rRNA gene amplicon sequencing in response to the increment of pharmaceutical concentration: Nitrospirae and Planctomycetes 16S rRNA relative gene abundance decreased, whereas Acidobacteria and Bacteroidetes increased. Remarkably, the Dokdonella genus, previously implicated in acetaminophen metabolism, showed a 30-fold increase in abundance at the highest concentration of pharmaceuticals applied. Taken together, these results suggest that the incomplete removal of most pharmaceutical compounds in WWTPs is dependent on neither concentration nor reaction time. Accordingly, we propose a chemical equilibrium or a growth substrate limitation as the responsible mechanisms of the incomplete removal. Finally, Dokdonella could be the main acetaminophen degrader under activated sludge conditions, and non-antibiotic pharmaceuticals might still be toxic to relevant WWTP bacteria.  相似文献   

13.
Four series of new bipyrazoles comprising the N-phenylpyrazole scaffold linked to polysubstituted pyrazoles or to antipyrine moiety through different amide linkages were synthesized. The synthesized compounds were evaluated for their anti-inflammatory and analgesic activities. In vitro COX-1/COX-2 inhibition study revealed that compound 16b possessed the lowest IC50 value against both COX-1 and COX-2. Moreover, the effect of the most promising compounds on inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) protein expression in lipopolysaccharide (LPS)-activated rat monocytes was also investigated. The results revealed that some of the synthesized compounds showed anti-inflammatory and/or analgesic activity with less ulcerogenic potential than the reference drug diclofenac sodium and are well tolerated by experimental animals. Moreover, they significantly inhibited iNOS and COX-2 protein expression induced by LPS stimulation. Compounds 16b and 18 were proved to display anti-inflammatory activity superior to diclofenac sodium and analgesic activity equivalent to it with minimal ulcerogenic potential.  相似文献   

14.
Microcosm constructed wetlands systems established with a matrix of light expanded clay aggregates (LECA) and planted with Typha spp. were used to evaluate their ability to remove pharmaceuticals ibuprofen, carbamazepine and clofibric acid from wastewaters. Seasonal variability of these systems’ performances was also evaluated. Overall, removal efficiencies of 96%, 97% and 75% for ibuprofen, carbamazepine and clofibric acid, respectively, were achieved under summer conditions after a retention time of 7 days. In winter, a maximum loss of 26% in removal efficiency was observed for clofibric acid. Removal kinetics was characterized by a fast initial step (>50% removal within 6 h) mainly due to adsorption on LECA but, on a larger timescale, plants also contributed significantly to the system’s performance. Despite the fact that further tests using larger-scale systems are required, this study points to the possible application of these low-cost wastewater treatment systems for dealing with pharmaceuticals contaminated wastewater.  相似文献   

15.
The influence of salinity on the growth, gross chemical composition and fatty acid composition of three species of marine microalgae,Isochrysis sp.,Nannochloropsis oculata andNitzschia (frustulum), was investigated. There was no significant change in growth rate ofIsochrysis sp. andN. (frustulum) over the experimental range of salinity (10–35 ppt), whileN. oculata had a significantly slower growth rate only at 35 ppt. The ash content of all three species increased with increasing salinity. Two species,Isochrysis sp. andN. oculata, showed significant linear increases in total lipid content with increasing salinity over the range 10 to 35 ppt.N. (frustulum) showed significant linear decrease in total lipids, with the highest percentage at low salinity within the range 10–15 ppt. Variation in salinity had only a slight effect on the total protein, the soluble carbohydrate and chlorophylla content of all species. All species responded to change in salinity by modifying their cellular fatty acid compositions. Significant positive correlations were observed between increase in salinity and increase in the percentage ofcis-9-hexadecenoic acid [16:1 (n-7)] over the entire experimental range inN. (frustulum) and between 25–35 ppt inN. oculata. There were curved relationships between salinity and percentage of hexadecanoic acid [16:0] inN. oculata andN. (frustulum), with maxima within the range 25–30 ppt for both species. A curved relationship was found between salinity and percentage of eicosapentaenoic acid [20–5(n-3)], forN. (frustulum), with lowest percentages of the fatty acid within the range 25–30 ppt. There was no consistent pattern in the percentages of other major fatty acids as functions of salinity. The Northern Territory isolateN. (frustulum) was unusual in having a substantial increase in total fatty acids with decreasing salinity (85 mg g–1 dry wt at 10 ppt compared with 33 mg g–1 at 35 ppt). The optimum salinities for the production of maximum amount of lipids and the essential fatty acids 20:5(n-3) and/or 22:6(n-3) were as follows:25 ppt forIsochrysis sp. [22:6(n-3)]; 20–30 ppt forN. oculata [20:5(n-3)]; 10–15 ppt forN. (frustulum) [20:5(n-3) and 22:6(n-3)].Author for correspondence  相似文献   

16.
Tetraselmis sp. and Nannochloropsis oculata, cultivated in industrial‐scale bioreactors, produced 2.33 and 2.44% w/w lipid (calculated as the sum of fatty acid methyl esters) in dry biomass, respectively. These lipids contained higher amounts of neutral lipids and glycolipids plus sphingolipids, than phospholipids. Lipids of Tetraselmis sp. were characterized by the presence of eicosapentaenoic acid (that was located mainly in phospholipids), and octadecatetraenoic acid (that was equally distributed among lipid fractions), while these fatty acids were completely absent in N. oculata lipids. Additionally, lipids produced by 16 newly isolated strains from Greek aquatic environments (cultivated in flask reactors) were studied. The highest percentage of lipids was found in Prorocentrum triestinum (3.69% w/w) while the lowest in Prymnesium parvum (0.47% w/w). Several strains produced lipids rich in eicosapentaenoic and docosahexaenoic acids. For instance, docosahexaenoic acid was found in high percentages in lipids of Amphidinium sp. S1, P. parvum, Prorocentrum minimum and P. triestinum, while lipids produced by Asterionella sp. (?) S2 contained eicosapentaenoic acid in high concentration. These lipids, containing ω‐3‐long‐chain polyunsaturated fatty acids, have important applications in the food and pharmaceutical industries and in aquaculture.  相似文献   

17.
Abstract

The degradation of diclofenac (DCF), trimethoprim (TMP), carbamazepine (CBZ), and sulfamethoxazole (SMX) by laccase from Trametes versicolor was investigated. Experiments were conducted using the pharmaceuticals individually, or as a mixture at different initial concentrations (1.25 and 5?mg/L each). The initial enzymatic activity of all the treated samples was around 430–460?U(DMP)/L. The removal of the four selected pharmaceuticals tested individually was more effective than when tested in mixtures under the same conditions. For example, 5?mg DCF/L was completely removed to below its detection limit (1?µg/L) within 8?h in the individual experiment vs. after 24?h when dosed as a mixture with the other pharmaceuticals. A similar trend was visible with other three pharmaceuticals, with 95 vs. 39%, 82 vs. 34% and 56 vs. 49% removal after 48?h with 5?mg/L of TMP, CBZ, and SMX tested individually or as mixtures, respectively. In addition, at the lower initial concentration (1.25?mg/L each), the removal efficiency of TMP, CBZ, and SMX in mixtures was lower than that obtained at the higher initial concentrations (5?mg/L each) during both the individual and combined treatments. Four enzymatic transformation products (TPs) were identified during the individual treatments of DCF and CBZ by T. versicolor. For TMP and SMX, no major TPs were observed under the experimental conditions used. The toxicity of the solution before and after enzymatic treatment of each pharmaceutical was also assessed and all treated effluent samples were verified to be non-toxic.  相似文献   

18.
The total protein, carbohydrate, lipid and ash compositions, and fatty acid contents of two species of marine microalgae, the eustigmatophyte Nannochloropsis oculata (formerly ‘Chlorella sp., Japan’) and the chrysophyte Isochrysis sp. (Tahitian) used in tropical Australian mariculture, were studied. The microalgae were grown under a range of culture conditions (41 and 601 laboratory culture, 3001 bag culture, and 80001 outdoor culture) and four light regimes (100 to 107 μ E m−2 s−1, 240 to 390 μ E m−2 s−1, 340 to 620 μ E m−2 s−1, and 1100 to 1200 μE m−2 s−1 respectively) to determine the effect of light intensity on the chemical composition of large scale outdoor cultures. Laboratory and bag cultures were axenic and cultured in Walne medium while outdoor cultures were grown in a commercial medium designed for optimum nutrition in tropical outdoor aquaculture operations. Change in growth medium and photon flux density produced only small changes in the proximate biochemical composition of both algae. N. oculata and Isochrysis sp. both showed a trend towards slightly lower carbohydrate and higher chlorophyll a in shaded outdoor culture. Isochrysis sp. showed significant concentrations of the essential polyunsaturated fatty acid 22:6(n−3) (docosahexaenoic acid) from 5.3 to 10.3% of total fatty acid, and 20:5(n−3) (eicosapentaenoic acid) ranged from 0.6 to 4.1%. In contrast, N. oculata had high concentrations of 20:5(n−3) (17.8 to 39.9%) and only traces of 22:6(n−3). The fatty acid composition of Isochrysis sp. grown at high photon flux density (1100–1200 μE m−2 s−1) under outdoor culture showed a decrease in the percentage of several highly unsaturated fatty acids, including 20:5(n−3), and an increase in 22:6(n−3). N. oculata showed a similar decrease in the percentage of 20:5(n−3). High light intensity caused a decrease in the ratio of total C16 unsaturated fatty acids to saturated 16:0 in N. oculata, and a decrease in the ratio of total C18 unsaturated fatty acids to saturated 18:0 together with a decrease in the ratio of total unsaturated fatty acids to total saturated fatty acids in both microalgae.  相似文献   

19.
Cactus stems, the cladodes of Opuntia spp. cacti, are consumed in Mexico and other countries due to their fresh and herbaceous flavor, and because of their widely known nutraceutical benefits. In order to extend the postharvest life of this vegetable, the effect of a modified atmosphere packaging (MAP) was studied in cactus stems of the cultivar Atlixco stored at 4 ± 1 °C for 20 days under three types of atmospheres: (1) air (passive atmosphere), (2) 5 kPa O2 + 4 kPa CO2, and (3) N2. During storage, the titratable acidity decreased and the color of cladodes became darker and less green; however, the 5 kPa O2 + 4 kPa CO2 atmosphere was able to preserve both quality characteristics. All modified atmospheres reduced weight loss (from 8 to <2%) and the symptoms of chilling injury, and this physiological disorder appeared earlier in controls than in MAP-stored cladodes. The levels of fermentation metabolites were low in all three evaluated atmospheres. Because of this, only cladodes stored under the N2 atmosphere were selected for furthersensory analysis of the MAP effect on odor perception as evaluated by a trained panel. Results indicated that there was no detrimental effect (atypical odors) of MAP on this sensory characteristic. We conclude that cultivar Atlixco is suitable for preservation using MAP technology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号