首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invertase (INV), a key enzyme in sucrose metabolism, irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose, thus playing important roles in plant growth, development, and biotic and abiotic stress responses. In this study, we identified 27 members of the BnaINV family in Brassica napus. We constructed a phylogenetic tree of the family and predicted the gene structures, conserved motifs, cis-acting elements in promoters, physicochemical properties of encoded proteins, and chromosomal distribution of the BnaINVs. We also analyzed the expression of the BnaINVs in different tissues and developmental stages in the B. napus cultivar Zhongshuang 11 using qRT-PCR. In addition, we analyzed RNA-sequencing data to explore the expression patterns of the BnaINVs in four cultivars with different harvest indices and in plants inoculated with the pathogenic fungus Sclerotinia sclerotiorum. We used WGCNA (weighted coexpression network analysis) to uncover BnaINVregulatory networks. Finally, we explored the expression patterns of several BnaINV genes in cultivars with long (Zhongshuang 4) and short (Ningyou 12) siliques. Our results suggest that BnaINVs play important roles in the growth and development of rapeseed siliques and the defense response against pathogens. Our findings could facilitate the breeding of high-yielding B. napus cultivars with strong disease resistance.  相似文献   

2.
Nitrogen (N) is one of the basic nutrients and signals for plant development and deficiency of it would always limit the productions of crops in the field. Quantitative research on expression of N-stress responsive proteins on a proteome level remains elusive. In order to gain a deep insight into the proteins responding to nitrogen stress in rapeseed (Brassica napus L.), comparative proteomic analysis was performed to investigate changes of protein expression profiles from the root, stem and leaf under different N concentrations, respectively. More than 200 differential abundance proteins (DAPs) were detected and categorized into groups according to annotations, including “binding and catalytic activity”, “involved in primary metabolism and cellular processes”, “stress-response” and so on. Variation in chlorophyll (Chl) content and antioxidant activities further revealed that oxidative stress raised with the increase of N concentration. Bioinformatics analysis based on the expression level of total proteins suggested these DAPs might play important roles in adaptation to N-stress conditions. Generally, these results provides a new aspect into N-stress responding proteins in Brassica plants.  相似文献   

3.
Gibberellin 2-oxidases (GA2ox) are important enzymes that maintain the balance of bioactive GAs in plants. GA2ox genes have been identified and characterized in many plants, but these genes were not investigated in Brassica napus. Here, we identified 31 GA2ox genes in B. napus and 15 of these BnaGA2ox genes were distributed in the A and C subgenomes. Subcellular localization predictions suggested that all BnaGA2ox proteins were localized in the cytoplasm, and gene structure analysis showed that the BnaGA2ox genes contained 2–4 exons. Phylogenetic analysis indicated that BnGA2ox family proteins in monocotyledons and dicotyledons can be divided into four groups, including two C19-GA2ox and two C20-GA2ox clades. Group 4 is a C20-GA2ox Class discovered recently. Most BnaGA2ox genes had a syntenic relationship with AtGA2ox genes. BnaGA2ox genes in the C subgenome had experienced stronger selection pressure than genes in the A subgenome. BnaGA2ox genes were highly expressed in specific tissues such as those involved in growth and development, and most of them were mainly involved in abiotic responses, regulation of phytohormones and growth and development. Our study provided a valuable evolutionary analysis of GA2ox genes in monocotyledons and dicotyledons, as well as an insight into the biological functions of GA2ox family genes in B. napus.  相似文献   

4.
Brassica rapa var. rapa (turnip) is an important crop in Qinghai-Tibet Plateau (QTP) with anti-hypoxic effect. Turnip is rich in glucosinolates, isothiocyanates and phenolic compounds with diverse biological activities, involving anti-oxidant, anti-tumor, anti-diabetic, anti-inflammatory, anti-microbial, hypolipidemic, cardioprotective, hepatoprotective, nephroprotective and analgesic properties. In this study, the ethyl acetate (EtOAc) and butanol parts of Brassica rapa were first revealed with inhibitory effects on α-glucosidase, whereas the water part was inactive. Subsequent bioassay-guided isolation on the EtOAc and butanol parts yielded 12 compounds, involving three indole derivatives, indole-3- acetonitrile (1) 4-methoxyindole-3-acetonitrile (2) and indole-3-aldehyde (3) two flavonoids, liquiritin (4) and licochalcone A (5) two phenylpropanoids, sinapic acid (6) and caffeic acid (7) two phenylethanol glycosides, 2-phenylethyl β- glucopyranoside (8) and salidroside (9) and three other compounds, syringic acid (10) adenosine (11) and (3β, 20E)-ergosta-5, 20 (22)-dien-3-ol (12) Licochalcone A (5) and caffeic acid (7) showed α-glucosidase inhibitory activity with IC50 values of 62.4 ± 8.0 μM and 162.6 ± 3.2 μM, comparable to the positive control, acarbose (IC50 = 142 ± 0.02 μM). Docking study suggested that licochalcone A (5) could well align in the active site of α-glucosidase (docking score = -52.88) by forming hydrogen bonds (Gln1372, Asp1420, Gln1372, Arg1510), hydrophobic effects (Tyr1251, Tyr1251, Trp1355, Phe1560, Ile1587, Trp1355, Phe1559, Phe1559) and π-π stacking interaction (Trp1355). This study provides valuable information for turnip as a new resource in searching anti-diabetic candidates.  相似文献   

5.
6.
The lignocellulosic crop Miscanthus spp. has been identified as a good candidate for biomass production. The responses of Miscanthus sinensis Anderss. to salinity were studied to satisfy the needs for high yields in marginal areas and to avoid competition with food production. The results indicated that the relative advantages of the tolerant accession over the sensitive one under saline conditions were associated with restricted Na+ accumulation in shoots. Seedlings of two accessions (salt-tolerant ‘JM0119’ and salt-sensitive ‘JM0099’) were subjected to 0 (control), 100, 200, and 300 mM NaCl stress to better understand the salt-induced biochemical responses of genes involved in Na+ accumulation in M. sinensis. The adaptation responses of genes encoding for Na+ /H+ antiporters, NHX1 and SOS1 to NaCl stress were examined in JM0119 and JM0099.The cDNA sequences of genes examined were highly conserved among the relatives of M. sinensis based on the sequencing on approximate 600 bp-long cDNA fragments obtained from degenerate PCR. These salt-induced variations of gene expression investigated by quantitative real-time PCR provided evidences for insights of the molecular mechanisms of salt tolerance in M. sinensis. The expression of NHX1 was up-regulated by salt stress in JM0119 shoot and root tissues. However, it was hardly affected in JM0099 shoot tissue except for a significant increase at the 100 mM salt treatment, and it was salt-suppressed in the JM0099 root tissue. In the root tissue, the expression of SOS1 was induced by the high salt treatment in JM0119 but repressed by all salt treatments in JM0099. Thus, the remarkably higher expression of NHX1 and SOS1 were associated with the resistance to Na+ toxicity by regulation of the Na+ influx, efflux, and sequestration under different salt conditions.  相似文献   

7.
8.
9.
Arbuscular mycorrhizal (AM) fungi distribute widely in natural habits and play a variety of ecological functions. In order to test the physiological response to salt stress mediated by different AM fungi, Viola prionantha was selected as the host, the dominant AM fungus in the rhizosphere of V. philippica growing in Songnen saline-alkali grassland, Rhizophagus irregularis, and their mixtures were used as inoculants, and NaCl stress was applied after the roots were colonized. The results showed that V. philippica could be colonized by AM fungi in the field and the colonization rate ranged from 73.33% to 96.67%, and Claroideoglomus etunicatum was identified as the dominant AM fungi species in the rhizosphere of V. philippica by morphology combined with sequencing for AM fungal AML1/AML2 target. Inoculation with both the species resulted in the formation of mycorrhizal symbiosis (the colonization rate was more than 70%) and AM fungi significantly enhanced plants’ tolerance to salt stress of varying magnitude. Higher activity of antioxidant enzymes and augmented levels of proline and other osmoregulators were observed in AM plants. The content of MDA in CK was higher than that in the inoculations with the stress of 100, 200, and 250 mM. All indices except soluble protein content and MDA content were significantly correlated with AM fungal colonization indices. The analysis for different AM fungal effects showed that the mixtures and R. irregularis worked even better than C. etunicatum. These results will provide theoretical support for the exploration and screening of salt-tolerant AM fungi species and also for the application of AM-ornamental plants in saline-alkali urban greening.  相似文献   

10.
11.
Emine Aslan  Dogan Arslan 《Phyton》2020,89(4):1091-1099
The present study was conducted to determine the total hypericin contents of Hypericum triquetrifolium Turra. and Hypericum scabrum L. species which are naturally distributed in the flora of Siirt province, Turkey. Hypericin contents of Hypericum species grown in different geographical aspects (North, South, East, and West), and it was measured at different harvest times (full blooming and post blooming period). In the current study, it has been determined that total hypericin content varies considerably according to aspects, plant developmental stages (ontogenetic variance), and species. According to species x aspect interaction, the highest total hypericin content was recorded from the west aspect (3.13 mg/g) in Hypericum triquetrifolium, while, the lowest hypericin content was also obtained from the west aspect (1.22 mg/g) in Hypericum scabrum. When the highest total hypericin content was analyzed according to aspect x species x harvest time interaction, the highest total hypericin content was produced from Hypericum triquetrifolium at the harvest of west aspect with 5.28 mg/g, while the minimum amount of hypericin was obtained from the same aspect in Hypericum scabrum with 0.50 mg/g. In species x harvest time interaction, the highest total hypericin content was obtained from the full bloom (3.10 mg/g) harvest in Hypericum triquetrifolium, while the lowest hypericin was obtained from the full bloom (1.26 mg/g) harvest in Hypericum scabrum. The data suggest that the average total hypericin content was 2.26 mg/g in Hypericum triquetrifolium and 1.28 mg/g in Hypericum scabrum.  相似文献   

12.
Zongmin Mou  Fei Ye  Fangchen Shen  Dake Zhao 《Phyton》2022,91(10):2331-2348
Aconitum vilmorinianum, a well-known traditional Chinese herb, is recently being threatened by overexploitation and environment disturbance. This study was conducted to provide propagation methods through in vitro germination and explant cultivation. Germination was stimulated up to 66.00% on Murashige and Skoog (MS) medium containing 2.0 mg L−1 6-benzylaminopurine (BAP), 0.1 mg L−1 1-napthaleneacetic acid (NAA), and 30 g L−1 sucrose. Three bacteria (Pantoea agglomerans, Erwinia persicina, and Pseudomonas tolaasii) would be responsible for consistent contamination during germination. The latter two were effectively eradicated after disinfected. The influence of explant types and hormone combinations on direct and indirect organogenesis was evaluated in the present work. The frequency of shoot induction from axillary bud explants was 100% on the MS fortified with 2.0 mg L−1 BAP and 0.3 mg L−1 NAA. Shoots multiplication was optimized on MS medium supplemented with 0.1 mg L−1 thidiazuron (TDZ) and 0.1 mg L−1 NAA. High callus induction percentage (96.67%) was obtained from stem segments on MS medium with 2.0 mg L−1 2,4-D, then successfully regenerated into shoots on MS medium in the presence of 0.1 mg L−1 TDZ and 0.2 mg L−1 NAA. The present work could be useful for the utilization and conservation of this valuable species.  相似文献   

13.
Cyclophilin (CYP) plays an important role in plant response to stress, and OsCYP2, one gene of cyclophlilin family, is involved in auxin signal transduction and stress signaling in rice. However, the mechanism that OsCYP2 is involved in rice response to low temperature is still unclear. We identified a new OsCYP2 allelic mutant, lrl3, with fewer lateral roots, and the differences in shoot height, primary root length and adventitious root length increased with the growth process compared to the wild-type plant. Auxin signaling pathway was also affected and became insensitive to gravity. The transgenic rice plants with over-expression of OsCYP2 were more tolerant to low temperature than the wild-type plants, suggesting that OsCYP2 was involved in the low temperature response in rice. In addition, OsCYP2 negatively regulated the expression of OsTPS38, a terpene synthase gene, and was dependent on the OsCDPK7-mediated pathway in response to low temperature stress. OsTPS38- overexpressed transgenic line ox-2 was more sensitive to low temperature. Therefore, OsCYP2 may negatively regulate OsTPS38 through an OsCDPK7-dependent pathway to mediate the response to low temperature in rice. These results provide a new basis for auxin signaling genes to regulate rice response to low temperature stress.  相似文献   

14.
Soybean (Glycine max (Linn.) Merr.) annual leguminous crop is cultivated all over the world. The occurrence of diseases has a great impact on the yield and quality of soybean. In this study, based on the RNA-seq of soybean variety M18, a complete CDS (Coding sequence) GmPR1L of the pathogenesis-related protein 1 family was obtained, which has the ability to resist fungal diseases. The overexpression vector and interference expression vector were transferred into tobacco NC89, and the resistance of transgenic tobacco (Nicotiana tabacum L.) to Botrytis cinerea infection was identified. The results show that: Compared with the control, the activities of related defense enzymes SOD (Superoxide dismutase), POD (Peroxidase), PAL (L-phenylalanine ammonia-lyase) and PPO (Polyphenol oxidase) in the over-expressed transgenic tobacco OEA1 and OEA2 increased to different degrees, and increased significantly at different infection time points. The activities of defense enzymes in the interfering strains IEA1 and IEA2 were significantly lower than those in the control strains. The results of resistance level identification showed that the disease spot rate of OEA1 was significantly lower than that of the control line, and the disease spot rate of OEA2 was significantly lower than that of the control line. The plaque rate of the interfering expression line IEA1-IEA2 was significantly higher than that of the control line. It is preliminarily believed that the process related protein GmPR1L can improve the resistance of tobacco to B. cinerea.  相似文献   

15.
Yulu Chen  Fen Zhang  Ju Cai  Yichen Zhao  Jiaxue Cui  Yan Li 《Phyton》2022,91(5):999-1013
Gibberellic acid controlled the key developmental processes of the life cycle of landing plants, and regulated the growth and development of plants. In this study, a novel gibberellin receptor gene EuGID1 was obtained from Eucommia ulmoides Oliver. The cDNA of EuGID1 was 1556 bp, and the open reading frame was 1029 bp, which encoded 343 amino acids. EuGID1 had the homology sequence with the hormone-sensitive lipase family. Amino acid sequence alignment confirmed EuGID1 protein had the highest homology with the GID1 protein of Manihot esculenta. EuGID1 was located in the nucleus and cell membrane and had expression in four plant organs. Overexpression of EuGID1 in transgenic Arabidopsis plants promoted plant elongation and increased siliques yield.  相似文献   

16.
17.
18.
19.
The numerous studies indicate leaves of plants are a rich source of bioactive compounds that can be a valuable source of compounds used in the pharmaceutical and cosmetic industries. Aim of this study was to investigate the chemical composition and the antioxidant property of Crocus speciosus leaves. Primary phytochemical screening of C. speciosus leaves revealed the presence of some following compound categories such as phenolic compounds, aminoacids, saponins, proteins, tannins, triterpenoids, glycosides, polysaccharides. The total flavonoids and phenolic compounds content were determined spectrophotometrically and by HPLC-DAD and HPLC-MS. Antiradical activity was determined by ABTS radical-cation scavenging method, spectrophotometrically. The total amount of flavonoids in C. speciosus leaves was 1.07 ± 0.02 mg RE/g (p < 0.05), the total amount of phenolic compounds was 0.41 ± 0.01 mg GAE/g (p < 0.05). By HPLC-DAD-MS analysis the presence of the mangiferin, chlorogenic acid, isoorientin, kaempferol, hyperoside, and isoquercitin was established for the first time in Crocus leaves. The antiradical activity of C. speciosus leaves extracts was 150.08 ± 4.5 μmol/g (p < 0.05) and its was mainly attributed to phenolic compounds content. The high amounts of flavonoids and antiradical activity in C. speciosus leaves suggests promising phytochemical and pharmacological study of this Crocus species.  相似文献   

20.
Drought stress negatively impacts growth and physiological processes in plants. The foliar application of glycine betaine (GB) is an effective and low-cost approach to improve the drought tolerance of trees. This study examined the effect of exogenously applied GB on the cell membrane permeability, osmotic adjustment, and antioxidant enzyme activities of Phoebe hunanensis Hand.-Mazz under drought stress. Two levels (0 and 800 mL) of water irrigation were tested under different applied GB concentrations (0, 50, 100, and 200 mM). Drought stress decreased the relative water content by 58.5% while increased the electric conductivity, malondialdehyde, proline, soluble proteins, soluble sugars, and antioxidant enzyme activities (superoxide dismutase, catalase, peroxidase) by up to 62.9%, 42.4%, 87.0%, 19.1%, 60.5%, 68.3%, 71.7%, and 83.8%, respectively, on the 25th day. The foliar application of GB, especially at 100 mM, increased the relative water content of P. hunanensis leaves under drought stress. The concentration of GB from 50 to 100 mM effectively alleviated the improvement of cell membrane permeability and inhibited the accumulation of membrane lipid peroxidation products. Under drought stress, the concentrations of proline, soluble proteins, and soluble sugars in the leaves of P. hunanensis increased as the applied GB concentration was increased and the water stress time was prolonged. Exogenously applied GB decreased oxidative stress and improved antioxidant enzyme activities as compared with treatments without GB application. Furthermore, the physiological and biochemical indexes of P. hunanensis showed a certain dose effect on exogenous GB concentration. These results suggest that GB helps maintain the drought tolerance of P. hunanensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号