首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cinnamomum japonicum Sieb. is an excellent roadside tree and medicinal tree species with considerable ornamental and economic value. In this study, we successfully developed a large-scale micropropagation protocol for C. japonicum for the first time. Sterilized shoots were excised and used as explants for shoot induction on several basal media, supplemented with different concentrations of plant growth regulators (PGRs), such as Thidiazuron (TDZ), N6 -Benzyladenine (6-benzylaminopurine) (BA), α-naphthaleneacetic acid (NAA) and Gibberellic acid (GA3). After comparison, the most efficient medium for shoot regeneration was 1/2 Murashige and Skoog (MS) medium containing 0.5 mg L–1 BA, 0.05 mg L–1 NAA and 0.2 mg L–1 GA3, which resulted in an average number of induced shoots per explant and shoot length of 5.2 and 1.62 cm at 28 d, respectively. Then, elongated adventitious shoots were transferred to induce roots. 86.7% of shoots was able to root on 1/2 MS medium supplemented with 0.5 mg L–1 NAA and 0.1 mg L–1 BA. The earliest rooting time observed was after 21 d and the average root length was up to 3.3 cm after 28 d. Our study shows that C. japonicum can be successfully regenerated through de novo organogenesis, which lays a foundation for future transformation research on this tree.  相似文献   

3.
To develop cold-tolerant maize germplasms and identify the activation of INDUCER OF CRT/DRE-BINDING FACTOR EXPRESSION (ICE1) expression in response to cold stress, RT-PCR was used to amplify the complete open reading frame sequence of the ICE1 gene and construct the plant expression vector pCAMBIA3301-ICE1-Bar. Immature maize embryos and calli were transformed with the recombinant vector using Agrobacterium tumefaciens-mediated transformations. From the regenerated plantlets, three T1 lines were screened and identified by PCR. A Southern blot analysis showed that a single copy of the ICE1 gene was integrated into the maize (Zea mays L.) genomes of the three T1 generations. Under low temperature-stress conditions (4°C), the relative conductivity levels decreased by 27.51%–31.44%, the proline concentrations increased by 12.50%–17.50%, the malondialdehyde concentrations decreased by 16.78%–18.37%, and the peroxidase activities increased by 19.60%–22.89% in the T1 lines compared with those of the control. A real-time quantitative PCR analysis showed that the ICE1 gene was ectopically expressed in the roots, stems, and leaves of the T1 lines. ICE1 positively regulates the expression of the CBF genes in response to cold stress. Thus, this study showed the successful transformation of maize with the ICE1 gene, resulting in the generation of a new maize germplasm that had increased tolerance to cold stress.  相似文献   

4.
Grain filling is a crucial process that affects yield in rice (Oryza sativa L.). Auxin biosynthesis and signaling are closely related to rice yield; therefore, it is important to understand the effects of auxin biosynthesis on rice grain filling to improve crop yield. In this study, we used physiological and molecular strategies to identify the roles of auxin in rice grain filling. Exogenous application of auxin (IAA) or auxin analogues (2, 4-D) to young spikelets and flag leaves improved the seed-setting rate and yield per spike. Furthermore, real-time quantitative PCR assays confirmed that nine members of the OsYUCCA family of auxin biosynthetic genes were upregulated during grain filling, implication that auxin biosynthesis plays a major role in grain development. The specific expression of either Arabidopsis AtYUCCA1 or OsYUCCA2 in the endosperm or leaves resulted in increased expression of OsIAA genes and auxin content of seeds, as well as increased grain filling and seed-setting rate. This result establishes that the auxin content in grains and leaves is important for grain development. Our findings further highlight the potential applications for improving rice yield by elevating targeted gene expression in specific tissues.  相似文献   

5.
Plant architecture is a vital agronomic trait to control yield in rice (Oryza sativa L.). A dwarf and small seed 1 (dss1) mutant were obtained from the ethyl methanesulfonate (EMS) mutagenized progeny of a Guizhou glutinous landrace cultivar, Lipingzabianhe. The dss1 mutant displayed phenotypes similar to those of brassinosteroid (BR) deficient mutants, such as dwarfing, dark green and rugose erect leaves, small seeds, and loner neck internode panicles with primary branching. In our previous study, the underlying DSS1 gene was isolated, a novel allele of OsDWARF (OsBR6ox) that encodes a cytochrome P450 protein involved in the BR biosynthetic pathway by MutMap technology. In this work, we confirmed that a Thr335Ile amino acid substitution residing in DSS1/OsDWARF was responsible for the dwarf, panicle architecture, and small seed phenotypes in the dss1 mutants by genetic transformation experiments. The overexpression of OsDWARF in the dss1 mutant background could not only recover dss1 to the normal plant height and panicle architecture but also rescued normal leaf angles, seed size, and leaf color. Thus, the specific mutation in DSS1/OsDWARF influenced plant architecture, seed size, and chlorophyll biosynthesis.  相似文献   

6.
Brassica rapa var. rapa (turnip) is an important crop in Qinghai-Tibet Plateau (QTP) with anti-hypoxic effect. Turnip is rich in glucosinolates, isothiocyanates and phenolic compounds with diverse biological activities, involving anti-oxidant, anti-tumor, anti-diabetic, anti-inflammatory, anti-microbial, hypolipidemic, cardioprotective, hepatoprotective, nephroprotective and analgesic properties. In this study, the ethyl acetate (EtOAc) and butanol parts of Brassica rapa were first revealed with inhibitory effects on α-glucosidase, whereas the water part was inactive. Subsequent bioassay-guided isolation on the EtOAc and butanol parts yielded 12 compounds, involving three indole derivatives, indole-3- acetonitrile (1) 4-methoxyindole-3-acetonitrile (2) and indole-3-aldehyde (3) two flavonoids, liquiritin (4) and licochalcone A (5) two phenylpropanoids, sinapic acid (6) and caffeic acid (7) two phenylethanol glycosides, 2-phenylethyl β- glucopyranoside (8) and salidroside (9) and three other compounds, syringic acid (10) adenosine (11) and (3β, 20E)-ergosta-5, 20 (22)-dien-3-ol (12) Licochalcone A (5) and caffeic acid (7) showed α-glucosidase inhibitory activity with IC50 values of 62.4 ± 8.0 μM and 162.6 ± 3.2 μM, comparable to the positive control, acarbose (IC50 = 142 ± 0.02 μM). Docking study suggested that licochalcone A (5) could well align in the active site of α-glucosidase (docking score = -52.88) by forming hydrogen bonds (Gln1372, Asp1420, Gln1372, Arg1510), hydrophobic effects (Tyr1251, Tyr1251, Trp1355, Phe1560, Ile1587, Trp1355, Phe1559, Phe1559) and π-π stacking interaction (Trp1355). This study provides valuable information for turnip as a new resource in searching anti-diabetic candidates.  相似文献   

7.
Rice stem borer (Chilo agamemnon Bles.) is a primary insect pest of rice and is a major limiting factor to rice production. Breeding for insect-resistant crop varieties has been an economic way of integrated pest management (IPM) as it offers a viable and ecologically acceptable approach. This study was aimed to evaluate rice genotypes for their resistance against rice stem borer. Seven parental genotypes with twenty one F1 crosses were evaluated for genotypic variation in field experiments. Analysis of variance revealed significant differences for the studied traits in almost all crosses and parents. In addition, the mean squares of parents versus their crosses were signifi- cant for stem borer resistance and other associated traits. Moreover, both general combining ability (GCA) and specific combining ability (SCA) variances were highly significant for all characters studied in the F1 generation. Based on GCA, 4 genotypes (Sakha101, Gz6903-3-4-2-1, Gz9577-4-1-1 and Hassawi) exhibited highly significant negative values for stem borer resistance (–0.53, –1.06, –0.18 and –0.49, respectively) indicating they are the best combiners for stem borer resistance. Based on SCA analysis, nine cross combinations showed highly significant negative effects for stem borer resistance. Similarly, the cross Giza178 Hassawi was the best combination with significantly highest value for early maturity. In addition, seven crosses showed highly significant negative SCA for plant height trait. On the other hand, for panicle length, number of primary branches/panicle, panicle weight and 1000-grain weight, seven, four, eight and six crosses showed highly significant positive SCA, respectively. The result further revealed that the non-additive dominance genetic variance was higher than the additive variance for all evaluated traits indicating that non-additive genetic variances have a role in their inheritance. The broad-sense heritability estimates were high for all the studied traits. The stem borer resistance was significantly correlated with panicle weight and 1000-grain weight, which also showed a highly significant correlation with grain yield/plant. Thus these traits can be effectively employed in a breeding program to confer resistance against stem borer infestation in rice. It was further supported by biplot analysis, which clustered these potentially important traits into two quadrants showing their importance in any future breeding program to control stem borer infestation. This study has contributed valuable information for evaluation of genetic diversity in the local rice germplasm and its utilization in futuristic rice genetic improvement programs.  相似文献   

8.
Uncaria rhynchophylla (Gouteng) is a famous traditional Chinese medicine used for psychiatric and hypotensive purposes in China. In this study, the ethyl acetate (EtOAc) part of U. rhynchophylla was revealed with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Subsequent investigation on the EtOAc part yielded one new triterpenoid, 3β-formyloxy-6β,19α-dihydroxyurs-12-en-28-oic acid (1) and four known ones, 3β,6β,19α-trihydroxyurs-12-en-28-oic acid (2), 2-oxopomolic acid (3), 3β,19α-dihydroxy-6-oxo-olean-12-en-28-oic acid (4) and sumaresinolic acid (5). The structure of compound 1 was determined by extensive HRESIMS, IR, 1D and 2D NMR spectroscopic analyses. Two ursane-type triterpenoids (2 and 3) showed selective inhibition on PTP1B with IC50 values of 48.2 and 178.7 μM. The enzyme kinetic study suggested that compounds 2 and 3 were mix-type inhibitors on PTP1B with Ki values of 15.6 and 132.5 μM. This investigation manifests the antidiabetic potency of U. rhynchophylla with triterpenoids as the active constituents.  相似文献   

9.
Myzus persicae (M. persicae) is now considered a threat to agricultural crops due to economic losses. Numerous synthetic insecticides applied every year against M. persicae, are reported to be unsafe for environment, humans, and beneficial insects. Furthermore, several species of Myzus have been found to develop resistance due to over application of these insecticides. Therefore, it is required to find some novel insecticide that would be safe for the environment as well as for humans. In the current study, two major pure constituents α-pinene and β-caryophyllene were evaluated for their insecticidal potential against M. persicae using a fumigant toxicity assay. Furthermore, impact of α-pinene and β-caryophyllene on expression of five different genes, e.g., HSP 60, FPPS I, OSD, TOL and ANT responsible for reproduction, dispersion, and growth of M. persicae has also been investigated. To perform fumigant toxicity assay, five different concentrations (3.5, 4, 4.5, 5 and 6 μL L−1) of α-pinene and β-caryophyllene were prepared. Lethal concentration (LC) was calculated, and gene expression studies were executed through qRT PCR at LC30 of α-pinene and β-caryophyllene. Both constituents demonstrated excellent fumigant toxicity effects against M. persicae at all five concentrations. However, α-pinene shows significantly better results (98%) as compared to β-caryophyllene (80%) after 72 h at 6 μL L−1 of dose. The highest upregulation in expression was demonstrated at LC30 dose of α-pinene in five in three out of five genes understudy (TOL, ANT, and FPPS I). Conversely, two genes HSP 60 and OSD demonstrated downregulation at LC30 dose of β-caryophyllene. Conclusively, our results highlighted the promising insecticidal potential of both compounds α-pinene and β-caryophylleneby interfering with the reproduction and development related processes in M. persicae, allowing us to recommend the phytoconstituents under investigation as an ecofriendly alternative to synthetic insecticides.  相似文献   

10.
11.
Phytosulfokine-α (PSK-α), a sulfated pentapeptide with the sequence YIYTQ, is encoded by a small precursor gene family in Arabidopsis. PSK-α regulates multiple growth and developmental processes as a novel peptide hormone. Despite its importance, functions of PSK-α in M. truncatula growth remains unknown. In this study, we identified five genes to encode PSK-α precursors in M. truncatula. All of these precursors possess conserved PSK-α signature motif. Expression pattern analysis of these MtPSK genes revealed that each gene was expressed in a tissue-specific or ubiquitous pattern and three of them were remarkably expressed in root. Treatment of M. truncatula seedlings with synthetic PSK- α peptide significantly promoted root elongation. In addition, expression analysis of downstream genes by RNA-seq and qRT-PCR assays suggested that PSK-α signaling might regulate cell wall structure via PMEI-PME module to promote root cell growth. Taken together, our results shed light on the mechanism by which PSK-α promotes root growth in M. truncatula, providing a new resource for improvement of root growth in agriculture.  相似文献   

12.
13.
Fatty Acyl-ACP thioesterase (FAT) is a key enzyme controlling oil biosynthesis in plant seeds. FATs can be divided into two subfamilies, FATA and FATB according to their amino acid sequences and substrate specificity. The Upland cotton genome contains 20 GhFAT genes, amongst which 6 genes were of the GhFATA subfamily and 14 of the GhFATB subfamily. The 20 GhFAT genes are unevenly distributed on 14 chromosomes. The GhFATA genes have 5 or 7 exons and the GhFATB genes have 6 or 7 exons. All GhFAT proteins have the conserved Acyl-ACP_TE domain and PLN02370 super family, the typical characteristics of plant thioesterases. Analyses of the expression level of GhFATs and the compositions of fatty acid in 5–60 days-post-anthesis seeds showed that the ratio of saturated fatty acids to unsaturated fatty acids was consistent with the expression profile of GhFATB12, GhFATB3, and GhFATB10; the ratio of monounsaturated fatty acid to polyunsaturated fatty acids was consistent with the expression profile of GhFATA3. The oil contents of mature cottonseeds were positively correlated with the contents of palmitic acid and linolenic acid as well as seed vigor. These results provide essential information for further exploring the role(s) of the specific GhFATs in determining oil biosynthesis and cottonseed compositions.  相似文献   

14.
Yinkai Xi  Biao Zeng  Hengyu Huang 《Phyton》2021,90(3):987-1001
An efficient regeneration system of Rhynchostylis retusa was established to provide technical reference for the application of tissue culture tube seedlings in production. The mixtures of callus and protocorm from aseptic germination were used as explants. The optimal media of each stage was selected for callus proliferation, protocorm occurrence and growth, rejuvenation and rooting via a single, complete combination and orthogonal experiment. The results showed that the optimal medium for callus proliferation, protocorms occurrence and growth was 1/2 Murashige and Skoog (MS) medium adding 50 g·L−1 banana puree, 0.1 mg·L−1 α-naphthaleneacetic acid (NAA), 1.5 mg·L−1 6-benzylaminopurine (6-BA) and 1.0 mg·L−1 kinetin (KT) with 17.33 proliferation coefficient of callus and 19.63 occurrence coefficient of buds after 90 days. Then the buds occurred from protocorm were cultured on 1/2 MS medium including 100 g·L−1 banana puree, 1.0 mg·L−1 NAA, 2.0 mg·L−1 6-BA and 0.05 mg·L−1 KT, in which the proliferation coefficient of callus was 10.32 and occurrence coefficient of buds reached 17.87. In the further subculture, the same medium was simultaneously used for callus proliferation, protocorm occurrence and bud growth. The plantlets developed roots in 1/2 MS medium containing 70 mL·L−1 coconut water and 1.5 mg·L−1 NAA with 100% rooting rates after 90 days. The survival rate was more than 90% after domestication and transplantation. This regeneration protocol will provide technique foundation for protecting wild resource and developing artificial cultivation.  相似文献   

15.
In aquaculture, high-density seaweed farming brings higher economic benefits but also increases outbreaks of diatom felt. The effective control of diatom felt in high-density seaweed farming has always been a research hotspot. This study selected two potential allelochemicals 2-hydroxycinnamic acid and quinic acid to explore their effects on a diatom Nitzschia closterium and an economic seaweed Monostroma nitidum. The results showed that 2-hydroxycinnamic acid had better inhibitory effects than quinic acid on the growth, pigment content and photosynthetic efficiency of N. closterium. Their half-maximal inhibitory concentrations at 120 h (IC50–120 h) were 0.9000 and 1.278 mM, respectively. Additionally, these allelochemicals had limited inhibitory effects on the growth, pigment content and photosynthetic efficiency of M. nitidum before 24 h. To further explore the allelopathic effect of these chemicals, this study focused on the photosystem II energy fluxes of N. closterium. It was found that 3 mM 2-hydroxycinnamic acid could destroy the whole photosynthetic system by devastating the PSII reaction centre (RC) before 24 h; however, the same concentration of quinic acid could only down-regulate the electron transport efficiency by changing the effective antenna size of an active RC and downregulating the PSII reaction centre density. These experimental results are expected to provide a new strategy to control diatom felt blooms on the high-density seaweed farming areas.  相似文献   

16.
Many studies have already shown that dwarfism and moderate delayed leaf senescence positively impact rice yield, but the underlying molecular mechanism of dwarfism and leaf senescence remains largely unknown. Here, using map-based cloning, we identified an allele of DEP2, DDG1, which controls plant height and leaf senescence in rice. The ddg1 mutant displayed dwarfism, short panicles, and delayed leaf senescence. Compared with the wild-type, ddg1 was insensitive to exogenous gibberellins (GA) and brassinolide (BR). DDG1 is expressed in various organs, especially in stems and panicles. Yeast two-hybrid assay, bimolecular fluorescent complementation and luciferase complementation image assay showed that DDG1 interacts with the α-subunit of the heterotrimeric G protein. Disruption of RGA1 resulted in dwarfism, short panicles, and darker-green leaves. Furthermore, we found that ddg1 and the RGA1 mutant was more sensitive to salt treatment, suggesting that DDG1 and RGA1 are involved in regulating salt stress response in rice. Our results show that DDG1/DEP2 regulates plant height and leaf senescence through interacting with RGA1.  相似文献   

17.
Rice panicle is the sink organ where assimilation product accumulates, and its morphology determines the rice yield. Panicle length has been suggested as a yield-related trait, but the genetic factor for its control is still limited. In this study, we carried out fine-mapping of qPL8, a QTL identified for panicle length in our previous work. Near isogenic line (NIL) with qPL8 exhibited elongated panicle without obvious effect on other panicle elements. With five key recombinants from NIL population, the locus was finally narrowed down to a 278-kb region, where 44 genes are annotated. By comparing the genomic sequence of two parents, 17 genes were identified with SNPs or InDels variations in the coding region. Expression analysis showed that eight genes were up-regulated in the NIL with qPL8. Considering both the coding variation and expression status, several candidate genes for the locus were identified, and OsMADS37 was raised as the most possible candidate. Interestingly, an expression QTL (eQTL) also resides in the locus, leading to a cluster of gene expression variation in the region. This study will facilitate the application of qPL8 locus in rice breeding for yield potential.  相似文献   

18.
The lignocellulosic crop Miscanthus spp. has been identified as a good candidate for biomass production. The responses of Miscanthus sinensis Anderss. to salinity were studied to satisfy the needs for high yields in marginal areas and to avoid competition with food production. The results indicated that the relative advantages of the tolerant accession over the sensitive one under saline conditions were associated with restricted Na+ accumulation in shoots. Seedlings of two accessions (salt-tolerant ‘JM0119’ and salt-sensitive ‘JM0099’) were subjected to 0 (control), 100, 200, and 300 mM NaCl stress to better understand the salt-induced biochemical responses of genes involved in Na+ accumulation in M. sinensis. The adaptation responses of genes encoding for Na+ /H+ antiporters, NHX1 and SOS1 to NaCl stress were examined in JM0119 and JM0099.The cDNA sequences of genes examined were highly conserved among the relatives of M. sinensis based on the sequencing on approximate 600 bp-long cDNA fragments obtained from degenerate PCR. These salt-induced variations of gene expression investigated by quantitative real-time PCR provided evidences for insights of the molecular mechanisms of salt tolerance in M. sinensis. The expression of NHX1 was up-regulated by salt stress in JM0119 shoot and root tissues. However, it was hardly affected in JM0099 shoot tissue except for a significant increase at the 100 mM salt treatment, and it was salt-suppressed in the JM0099 root tissue. In the root tissue, the expression of SOS1 was induced by the high salt treatment in JM0119 but repressed by all salt treatments in JM0099. Thus, the remarkably higher expression of NHX1 and SOS1 were associated with the resistance to Na+ toxicity by regulation of the Na+ influx, efflux, and sequestration under different salt conditions.  相似文献   

19.
Three Hypericum perforatum hairy root lines (HR B, HR F and HR H) along with non-transformed roots were analyzed for phenolic compounds composition and in vitro enzyme inhibitory properties. In silico molecular modeling was performed to predict the interactions of the most representative phenolic compounds in HR clones with enzymes related to depression, neurodegeneration and diabetes. Chromatographic analyses revealed that HR clones represent an efficient source of quinic acid and hydroxybenzoic acids, epicatechin and procyanidin derivatives, quercetin and kaempferol glycosides, as well numerous xanthones. In vitro antidepressant activity of HR extracts through monoamine oxidase A (MAO-A) inhibition was attributed to the production of oxygenated and prenylated xanthones. The neuroprotective potential of HR extracts was related to the accumulation of quercetin 6-C-glucoside, epicatechin, procyanidins and γ-mangostin isomers as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Vanillic acid and prenylated xanthones in HR clones as promising inhibitors of tyrosinase additionally contributed to the neuroprotective activity. Five preeminent xanthones in HR (γ-mangostin, mangiferin, garcinone C, garcinone E and 1,3,7-trihydroxy-6-metoxy-8-prenyl xanthone) along with the flavonol quercetin 6-C-glucoside effectively inhibited α-amylase and α-glucosidase indicating the antidiabetic properties of HR extracts. Transgenic roots of H. perforatum can be exploited for the preparation of novel phytoproducts with multi-biological activities.  相似文献   

20.

Paclobutrazol is a well-known plant growth regulator. However, the application of paclobutrazol in fragrant rice production has not been reported. The present study conducted a field experiment with two cropping seasons and three fragrant rice cultivars to investigate the effects of paclobutrazol application on yield formation, grain quality, 2-acetyl-1-pyrroline (2-AP, key component of fragrant rice aroma) biosynthesis, and photosynthesis of fragrant rice. At the initial heading stage, paclobutrazol solutions at 0 (control), 30, 60, 100, and 120 mg L?1 were foliar applied to fragrant rice plants, respectively. Compared with control, paclobutrazol treatments significantly (P?<?0.05) increased grain yield and seed-setting rate of fragrant rice cultivars by 6.77–22.82% and 5.09–25.66%, respectively. Increased contents of photosynthetic pigments (chlorophyll a, chlorophyll b, and carotenoid) and the improved net photosynthetic rate at the grain-filling stage were observed due to paclobutrazol treatments. The paclobutrazol application increased head rice rate and grain 2-AP content by 3.94–8.94% and 6.47–18.80%, respectively. Lower chalky rice rate and chalkiness were recorded in paclobutrazol treatment than in control. Moreover, foliar application of paclobutrazol increased proline and Δ1-pyrroline contents in fragrant rice by 7.90–32.12% and 13.21–34.90%. Overall, foliar application of paclobutrazol could enhance productivity, improve grain quality, and increase the 2-AP content of fragrant rice, and 100–120 mg L?1 was considered the suggested concentration of paclobutrazol application in fragrant rice production.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号