首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 241 毫秒
1.
果胶裂解酶基因(Pectate lyase,PL)是调控果实软化的重要靶点。本研究测定了红颜草莓果实在发育过程中果胶裂解酶活性变化和硬度变化规律,并通过人工小干扰RNA(artificial micro-interfering RNA interference,amiRNA)技术,以拟南芥miR390a前体序列作为沉默PL基因的骨架,在番茄果实特异性启动子P119的驱动下,通过农杆菌介导转入草莓果实中瞬时表达,通过RT-PCR分析草莓瞬时转染后PL基因的表达量,并检测了PL沉默对果实硬度的影响。结果表明,随着草莓果实发育的推进,果胶裂解酶活性呈逐渐上升趋势,与果实硬度呈负相关;构建了基于拟南芥miR390a为骨架的amiRNA靶向栽培草莓中的PL基因;在番茄果实特异性启动子P119驱动下,miRNA前体可以在草莓果实中瞬时表达;草莓果实中总PL基因表达量下降达34. 5%;基因沉默组果实硬度比对照组更高,且沉默对果实颜色发育进程无明显影响。该结果表明:果胶裂解酶主要在果实发育后期调节细胞壁的解离,采用amiRNA沉默PL基因可以延缓草莓果实软化进程。  相似文献   

2.
李佳  刘运华  张余  陈晨  余霞  余舜武 《遗传》2017,39(9):837-846
内源生物钟的节律运动不仅调控植物的生长发育,而且在调控植物响应和适应环境过程中发挥重要的作用。为了解水稻(Oryza sativa L.)干旱胁迫响应基因和生物钟基因在干旱条件下每日表达变化情况,本文利用实时荧光定量PCR方法研究旱稻品种IRAT109在干旱胁迫下相关基因的表达变化。结果表明,干旱胁迫导致早晨生物钟基因OsPRRsOsLHYOsZTL1的表达量显著下降,振幅减弱;同时导致夜晚生物钟基因OsTOC1OsGIOsELF3整体表达量升高,振幅增强,但对OsFKF1基因影响不大。同样,大部分水稻干旱胁迫响应基因在干旱胁迫后整体表达量显著升高,但OsDST基因表达量下降;同时大部分抗逆基因周期性表达被扰乱,但OsCIPK12OsCDPK7OsDREB1A依然保持24 h内震荡。本研究结果表明干旱胁迫能影响生物钟元件的基因表达,这种互相影响改变了部分基因每日的震荡变化。  相似文献   

3.
张丽珍  张永  胡景华  王子龙  曾志将 《遗传》2018,40(2):155-161
酪胺(tyramine)属于生物多聚胺类,是昆虫中枢神经系统内重要的神经递质、神经调质和神经激素,参与调控昆虫的多种行为和生理过程,如酪胺受体基因参与调控动物的学习与记忆。本研究首次克隆获得中华蜜蜂(Apis cerana cerana)酪胺受体基因Actyr1Actyr2的全长cDNA序列,利用qRT-PCR方法鉴定了Actyr1Actyr2在中华蜜蜂不同组织器官中的表达谱,采用地高辛原位杂交技术对Actyr1Actyr2在大脑中的表达进行了定位。中华蜜蜂Actyr1Actyr2的cDNA全长序列分别为1241 bp(GenBank登录号:KC814693)和1270 bp(GenBank登录号:KC814694),分别编码297、399个氨基酸残基。qRT-PCR分析结果表明,Actyr1Actyr2在不同组织中的表达量为头部最高,其次是腹部表皮,触角和胸部肌肉的表达量最低,并且头部的表达量显著高于其他组织的表达量;原位杂交结果显示,Acytr1Actyr2在中华蜜蜂大脑蘑菇体的凯尼恩细胞、触角叶周围的细胞处均有较强阳性着色。这些研究表明,Acytr1Actyr2基因可能参与了蜜蜂的学习记忆,并且在相同的细胞中互相作用,共同调控蜜蜂的生物学功能。  相似文献   

4.
多数重要的功能基因属于多基因家族,这些家族成员间存在功能冗余,高效的多基因干扰体系对研究多基因家族成员的生物学功能及其分子调控机制具有重要意义。对pCAMBIA1301载体改造,构建了适用于植物的多基因干扰体系pCAMBIA1301m和pCAMBIA1301s。使用该多基因干扰体系构建了四基因的干扰载体pCAMBIA1301m:35S∷SlPP2C1-2-3-4,4个目标基因为来源于番茄PP2C家族A组的PP2C1PP2C2PP2C3PP2C4,并通过遗传转化导入番茄,用GUS染色和PCR检测转基因阳性植株,再利用RT-qPCR技术检测T1和T2代转基因植株中目标基因的干扰效率,用T2代种子分析转基因番茄对ABA敏感性。结果表明,应用该干扰体系成功获得了四基因干扰的转基因植株35S∷SlPP2C1-2-3-4。在转基因番茄中4个目标基因的表达量显著低于野生型,其干扰效率均高于70%,转基因番茄种子萌发具有强烈的ABA不敏感性。多基因干扰体系能高效地同时沉默多个目标基因。  相似文献   

5.
4-二磷酸胞苷-2-C-甲基赤藓糖激酶(CMK)是萜类花香合成甲基赤藓糖醇磷酸(MEP)途径的关键酶,为揭示其对百合花香的调控作用,从‘西伯利亚’百合(Lilium ‘Siberia’)中克隆LiCMK基因,进行生物信息学分析,利用亚细胞定位确定蛋白位置,采用荧光定量PCR技术检测基因时空表达模式,并运用病毒诱导基因沉默(VIGS)方法瞬时沉默LiCMK,验证其功能。结果显示,LiCMK全长1 200 bp,编码399个氨基酸,属于IspE家族,与油棕(Elaeis guineensis)中的CMK相似度最高。LiCMK的表达随花期呈现先上升后降低的规律,在盛花期的表达量达到峰值,在花器官中的表达量明显高于茎、叶中的表达量。LiCMK蛋白定位于叶绿体中。LiCMK在百合中瞬时沉默后,LiCMK表达水平下降了约84%,主要的单萜合成基因表达量明显下降,月桂烯合酶基因(MYS)、罗勒烯合酶基因(OCS)和芳樟醇合酶基因(LIS)分别降低了57%、59%和63%,主要的单萜类化合物月桂烯、罗勒烯和芳樟醇释放量显著下降。结果表明,LiCMK基因对‘西伯利亚’百合单萜化合物的合成与花香释放有重要...  相似文献   

6.
MicroRNAs(miRNAs)是一类小的非编码RNA,在植物逆境及生物胁迫中通过调节靶基因来发挥重要的调控作用。半夏内源miR167是否参与了大豆花叶病毒(soybean mosaic virus,SMV)的胁迫及相互作用关系尚不清楚。本研究利用茎环法扩增半夏内源miR167基因,命名为pt-miR167,采用生物信息学软件对其进行保守性分析,系统进化性分析及靶基因预测。在此基础上,采用qRT-PCR技术检测病毒积累量、miR167及其潜在的靶基因的表达水平,分析miR167及靶基因响应病毒侵染的表达模式。结果表明,病毒积累量在5~15 d时迅速增加,其中10 d时增加最快,随后呈现缓慢上升趋势。病毒侵染后,pt-miR167相比对照组,表达量呈下调,并且在10 d时表达量最低。进化树分析表明,pt-miR167与番茄(Solanum lycopersicum)中的sly-miR167a聚为一族,高度同源。预测的潜在主要靶基因ARF6表达量与pt-miR167表达量呈现正好相反的趋势,其在10 d时表达量达到最高。本研究表明,miRNA167参与了寄主半夏与病毒SMV的相互作用关系...  相似文献   

7.
盐胁迫下大豆根组织定量PCR分析中内参基因的选择   总被引:1,自引:0,他引:1  
实时荧光定量PCR已广泛用于基因表达的分析, 适当的内参基因选择是获得准确分析结果的关键。在大豆(Glycine max)分子生物学研究中, 逆境响应基因和microRNA (miRNA)表达的内参辅助检测基因均有哪些目前尚不清楚。该研究选用不同盐梯度和时间点组合处理的大豆根组织为材料, 对已报道的其它条件下表达相对稳定的内参基因(ACTACT2/7CYP2ELF1AELF1BF-BoxTUAUBC2)以及miRNA内参基因(U6、miR1515a、miR1520c、miR1520d、miR171a和miR171b)的表达情况进行了全面检测; 并采用Δ-Ct、Bestkeeper、NormFinder和Genorm四种方法对检测结果进行了综合分析, 发现ELF1BCYP2适合作为大豆根系盐胁迫响应基因研究的内参基因, miR1515a和U6适合作为盐胁迫下大豆根组织miRNA研究的内参。上述研究结果为大豆盐胁迫响应基因和miRNA表达及其进一步的功能研究奠定了基础。  相似文献   

8.
MYC2(MYeloCytomatosis)转录因子是植物应对逆境胁迫过程中茉莉酸信号传导相关的核心转录因子。本研究旨在初步分析木薯MeMYC2.2基因在低温胁迫响应中的功能。利用生物信息学分析木薯MeMYC2.1MeMYC2.2基因的结构及其编码蛋白的理化性质;通过定量PCR分析了上述2个基因在木薯组培苗叶片中对低温胁迫的响应;通过转基因拟南芥研究MeMYC2.2的抗冻功能。木薯组培苗叶片中2个MeMYC2基因的表达均在低温胁迫早期被诱导,其中,与MeMYC2.1相比,MeMYC2.2差异表达更显著。MeMYC2.2蛋白主要定位于细胞核中,且在酵母中具有明显转录自激活功能,表明该蛋白具有转录因子特性。与野生型相比,过表达MeMYC2.2的转基因拟南芥抗冻能力显著提高。在低温处理下,CBF3基因在转基因拟南芥中的表达量要明显高于其在野生型的表达量,但另外3个CBF基因在转基因拟南芥中的表达量明显下降。木薯MeMYC2.2的表达受低温和茉莉酸调控,可以提高植物的抗冻性,且可能影响CBF基因对低温的响应。本研究为进一步利用MeMYC2基因改良木薯的低温耐受性奠定了理论基础。  相似文献   

9.
张娜  刘秀霞  陈学森 《植物学报》1983,54(6):733-743
为阐明外源茉莉酸甲酯(MeJA)诱导的苹果(Malus domestica)抗病分子机制, 以生长30天的Gala组培苗为试材, 用100 μmol?L -1MeJA处理叶片12小时, 通过转录组测序, 结合生物信息学分析鉴定出苹果叶片中受MeJA诱导表达的基因。结果表明, 外源MeJA主要影响苹果叶片倍半萜类、三萜和类黄酮的生物合成, 以及芸薹素(BR)信号转导途径间接诱导的抗病性; 倍半萜类、三萜及类黄酮生物合成途径中的关键基因为MDP0000702120MDP0000692178; MDP0000123379是联系芸薹素信号转导途径和植物-病原菌互作途径的关键调控基因。  相似文献   

10.
蛋白磷酸酶催化的蛋白质可逆磷酸化反应是叶片衰老的关键环节。该研究筛选并克隆了1个新的参与水稻(Oryza sativa)叶片衰老调控的PP2C基因OsSAPP3。研究表明, OsSAPP3的启动子在ProOsSAPP3-GUS转基因拟南芥(Arabidopsis thaliana)的莲座叶中有活性, 并且活性以依赖叶龄方式增加。利用CaMV 35S启动子驱动组成型异源过表达OsSAPP3导致转基因拟南芥无法正常生长。用可诱导型启动子GVG系统驱动OsSAPP3异源过表达导致转基因拟南芥出现莲座叶变小、数量增加、叶片早衰及抽薹开花提前等早衰表型。外源诱导OsSAPP3基因异源过表达后, 利用实时荧光定量PCR检测到SAG12WRKY6NAC2等衰老标志基因显著上调表达。研究结果表明, OsSAPP3是参与水稻叶片衰老的正向调控因子。  相似文献   

11.
12.
13.
Phytophthora infestans , the cause of potato and tomato late blight disease, produces INF1 elicitin, a 10 kDa extracellular protein. INF1 induces a hypersensitive response (HR) and systemic acquired resistance in species of the Nicotiana genus and a few other genera. We analysed the response of tomato to INF1 and INF1 S3 , which has a Cys to Ser substitution at position 3 of the processed protein and therefore lacks HR induction activity in tobacco. No HR cell death was induced in either INF1- or INF1 S3 -treated tomato leaves. The expression of salicylic acid (SA)-responsive PR-1a ( P6 ) and PR-2a genes was not induced by treatment with either INF1 or INF1 S3 . However, the expression of jasmonic acid (JA)-responsive PR-6 encoding proteinase inhibitor II, LeATL6 encoding ubiquitin ligase E3, and LOX-E encoding lipoxygenase, was up-regulated in tomato leaves treated with INF1 but not in those treated with INF1 S3 . Their induction was completely compromised in INF1-treated jai1-1 mutant tomato, in which the JA signalling pathway is impaired. The accumulation of ethylene (ET) and the expression of ET-responsive genes were also induced in tomato by INF1 but not INF1 S3 treatment. The activation of JA and ET-mediated signals but not the SA-mediated signalling in INF1-treated tomato was also demonstrated by global gene expression analysis. INF1-treated tomatoes, but not those treated with INF1 S3 , exhibited resistance to bacterial wilt disease caused by Ralstonia solanacearum . Thus, INF1 seems to induce resistance to bacterial wilt disease in tomato and activate JA- and ET-mediated signalling pathways without development of HR cell death.  相似文献   

14.
Both jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are thought to be significant components of the signaling pathway regulating the expression of plant defense genes in response to various stresses. JA and MeJA are plant lipid derivatives synthesized from [alpha]-linolenic acid by a lipoxygenase-mediated oxygenation leading to 13-hydroperoxylinolenic acid, which is subsequently transformed by the action of allene oxide synthase (AOS) and additional modification steps. AOS converts lipoxygenase-derived fatty acid hydroperoxide to allene epoxide, which is the precursor for JA formation. Overexpression of flax AOS cDNA under the regulation of the cauliflower mosaic virus 35S promoter in transgenic potato plants led to an increase in the endogenous level of JA. Transgenic plants had six- to 12-fold higher levels of JA than the nontransformed plants. Increased levels of JA have been observed when potato and tomato plants are mechanically wounded. Under these conditions, the proteinase inhibitor II (pin2) genes are expressed in the leaves. Despite the fact that the transgenic plants had levels of JA similar to those found in nontransgenic wounded plants, pin2 genes were not constitutively expressed in the leaves of these plants. Transgenic plants with increased levels of JA did not show changes in water state or in the expression of water stress-responsive genes. Furthermore, the transgenic plants overexpressing the flax AOS gene, and containing elevated levels of JA, responded to wounding or water stress by a further increase in JA and by activating the expression of either wound- or water stress-inducible genes. Protein gel blot analysis demonstrated that the flax-derived AOS protein accumulated in the chloroplasts of the transgenic plants.  相似文献   

15.
16.
Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD.  相似文献   

17.
18.
正Jasmonic acid (JA) and some of its derivatives are important signals in plant stress responses such as biotic or abiotic stresses during alteration of the environment and are signals in several developmental processes such as trichome development, growth/defense balance, root growth, senescence, or light signaling m entary  相似文献   

19.
Wound-induced systemic expression of defensive proteinase inhibitor (PI) genes in tomato plants requires the action of systemin and its precursor protein prosystemin. Although it is well established that systemin induces PI expression through the octadecanoid pathway for jasmonic acid (JA) biosynthesis, relatively little is known about how systemin and JA interact to promote long-distance signaling between damaged and undamaged leaves. Here, this question was addressed by characterizing a systemin-insensitive mutant (spr1) that was previously identified as a suppressor of prosystemin-mediated responses. In contrast to JA biosynthetic or JA signaling mutants that lack both local and systemic PI expression in response to wounding, spr1 plants were deficient mainly in the systemic response. Consistent with this phenotype, spr1 plants exhibited normal PI induction in response to oligosaccharide signals that are thought to play a role in the local wound response. Moreover, spr1 abolished JA accumulation in response to exogenous systemin, and reduced JA accumulation in wounded leaves to approximately 57% of wild-type (WT) levels. Analysis of reciprocal grafts between spr1 and WT plants showed that spr1 impedes systemic PI expression by blocking the production of the long-distance wound signal in damaged leaves, rather than inhibiting the recognition of that signal in systemic undamaged leaves. These experiments suggest that Spr1 is involved in a signaling step that couples systemin perception to activation of the octadecanoid pathway, and that systemin acts at or near the site of wounding (i.e. in rootstock tissues) to increase JA synthesis to a level that is required for the systemic response. It was also demonstrated that spr1 plants are not affected in the local or systemic expression of a subset of rapidly induced wound-response genes, indicating the existence of a systemin-independent pathway for wound signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号