首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Questions: How do arbuscular mycorrhiza and earthworms affect the structure and diversity of a ruderal plant community? Is the establishment success of newcomer plants enhanced by these soil organisms and their interactions? Methods: We grew a native ruderal plant community composed of different functional groups (grasses, legumes and forbs) in the presence and absence of arbuscular mycorrhizal fungi (AMF) and endogeic earthworms in mesocosms. We introduced seeds of five, mainly exotic, plant species from the same functional groups after a disturbance simulating mowing. The effects of the soil organisms on the native ruderal plant community and seedling establishment of the newcomer plants were assessed. Results: After disturbance, the total above‐ground regrowth of the native plant community was not affected by the soil organisms. However, AMF increased plant diversity and shoot biomass of forbs, but decreased shoot biomass of grasses of the native plant community. Earthworms led to a reduction in total root biomass. Establishment of the introduced newcomer plants increased in the presence of AMF and earthworms. Especially, seedling establishment of the introduced non‐native legume Lupinus polyphyllus and the native forb Plantago lanceolata was promoted in the presence of AMF and earthworms, respectively. The endogeic earthworms gained more weight in the presence of AMF and led to increased extraradical AMF hyphal length in soil. However, earthworms did not seem to modify the effect of AMF on the plant community. Conclusion: The present study shows the importance of mutualistic soil organisms in mediating the establishment success of newcomer plants in a native plant community. Mutualistic soil organisms lead to changes in the structure and diversity of the native plant community and might promote newcomer plants, including exotic species.  相似文献   

2.

Background and aims

Spatial distribution of soil nutrients (soil heterogeneity) and availability have strong effects on above- and belowground plant functional traits. Although there is ample evidence on the tight links between functional traits and ecosystem functioning, the role played by soil heterogeneity and availability as modulators of such relationship is poorly known.

Methods

We conducted a factorial experiment in microcosms containing grasses, legumes and non-legume forbs communities differing in composition to evaluate how soil heterogeneity and availability (50 and 100 mg N) affect the links between traits and ecosystem functioning. Community-aggregated specific leaf area (SLAagg) and specific root length (SRLagg) were measured as both relevant response traits to soil heterogeneity and availability, and significant effect traits affecting ecosystem functioning (i.e., belowground biomass, β-glucosidase and acid phosphatase activities, and in situ N availability rate).

Results

SRLagg was negatively and significantly associated to β-glucosidase, phosphatase and N availability rate in the high nutrient availability and heterogeneous distribution scenario. We found a significant negative relationship between SLAagg and availability rate of mineral-N under low nutrient availability conditions.

Conclusions

Soil heterogeneity modulated the effects of both traits and nutrient availability on ecosystem functioning. Specific root length was the key trait associated with soil nutrient cycling and belowground biomass in contrasted heterogeneous soil conditions. The inclusion of soil heterogeneity into the trait-based response-effect framework may help to scale from plant communities to the ecosystem level.  相似文献   

3.
An experiment was conducted to determine if spatial nutrient heterogeneity affects mean plant size or size hierarchies in experimental populations of the weedy annual Abutilon theophrasti Medic. (Malvaceae). Heterogeneity was imposed by alternating 8 × 8 × 10 cm blocks of low and high nutrient soil in a checkerboard design, while a homogeneous soil treatment consisted of a spatially uniform mixture of the two soil types (mixed soil). Populations were planted at three densities. The effect of soil type on the growth of individuals was determined through a bioassay experiment using potted plants. The high nutrient, low nutrient, and mixed soil differed in their ability to support plant growth as indicated by differences in growth rates and final aboveground biomass. Concentrations of N, K, P, and Mg, measured at the end of the growing season in the experimental plots, also differed among all three soil types. Nevertheless, nutrient heterogeneity had little effect at the population level. Mean maximum leaf width measured at midseason was greater for populations on heterogeneous soil, but soil treatment did not affect midseason measurements of plant height, total number of leaves per plant, or canopy width. Population density affected all these parameters except plant height. When aboveground biomass was harvested at the end of the growing season, soil treatment was found to have no main effect on mean plant biomass, total population biomass, the coefficient of variation in plant biomass, or the combined biomass of the five largest plants in the population, but mean plant biomass was greater for populations on heterogeneous soils at the intermediate planting density. Mean plant biomass, total population biomass, and the coefficient of variation in plant biomass all varied with planting density. Mortality was low overall but significantly higher on homogeneous soil across all three densities. Soil heterogeneity had its strongest effect on individuals. In heterogeneous treatments plant size depended on the location of the plant stem with respect to high and low nutrient patches. Thus, soil nutrient heterogeneity influenced whether particular individuals were destined to be dominant or subordinate within the population but had little effect on overall population structure.  相似文献   

4.
Plant community composition is affected by a wide array of soil organisms with diverse feeding modes and functions. Former studies dealt with the high diversity and complexity of soil communities by focusing on particular functional groups in isolation, by grouping soil organisms into body size classes or by using whole communities from different origins. Our approach was to investigate both the individual and the interaction effects of highly abundant soil organisms (microorganisms, nematodes and earthworms) to evaluate their impacts on grassland plant communities. Earthworms increased total plant community biomass by stimulating root growth. Nematodes reduced the biomass of grasses, but this effect was alleviated by the presence of earthworms. Non-leguminous forb biomass increased in the presence of nematodes, probably due to an alleviation of the competitive strength of grasses by nematodes. Microorganisms reduced the diversity and evenness of the plant community, but only in the absence of earthworms. Legume biomass was not affected by soil organisms, but Lotus corniculatus flowered earlier in the presence of microorganisms and the number of flowers decreased in the presence of nematodes. The results indicate that earthworms have a profound impact on the structure of grassland plant communities by counterbalancing the negative effects of plant-feeding nematodes on grasses and by conserving the evenness of the plant community. We propose that interacting effects of functionally dissimilar soil organisms on plant community performance have to be taken into account in future studies, since individual effects of soil organism groups may cancel out each other in functionally diverse soil communities.  相似文献   

5.
2010 年和2011 年8 月在青海省果洛州矮嵩草草甸,采用样方法测定了不同密度高原鼠兔栖息地内杂草斑和秃斑植物群落特征及地上生物量的变化。结果表明:2010 年与2011 年相比,相同高原鼠兔密度的栖息地内杂草斑和秃斑植物总盖度、平均高度和总地上生物量差异不显著,但同一年份不同密度栖息地间差异显著。高原鼠兔低、中、高密度栖息地植物总盖度、平均高度和总地上生物量显著低于无鼠兔对照组(P < 0.05),不同密度间无明显变化规律。低、中、高密度栖息地的莎草、禾草和豆科植物盖度、平均高度和地上生物量显著低于无鼠兔对照组(P <0.05),秃斑上豆科植物消失;杂类草平均高度在低密度栖息地和无鼠兔对照组显著高于中、高密度栖息地(P < 0. 05),盖度和地上生物量对照组最小,随高原鼠兔密度增加呈增加趋势。2010 年和2011 年,高原鼠兔低、中、高密度栖息地内杂草斑面积分别占样地面积的4. 0% 、4.3% 、13. 3% 和3.8% 、4. 3% 、11. 0% ,秃斑面积分别占样地面积的0 2% 、2 6% 、4 0% 和0 2% 、2 2% 、3 4% ;植物损失地上生物量分别为110.84 kg/ hm2 、203. 18 kg/ hm2 、431.58 kg / hm2 和107.67 kg / hm2 、189. 46 kg / hm2 、365. 72 kg/ hm2 。高原鼠兔
的密度(x)与植物损失地上生物量(y)之间存在对数曲线关系,说明高原鼠兔的活动显著降低了植物总盖度、平均高度和总地上生物量,同时也改变了植物功能群组成。随高原鼠兔密度增加,栖息地内杂草斑、秃斑的面积和植物损失地上生物量呈增加趋势。  相似文献   

6.
Human-mediated nutrient amendments have widespread effects on plant communities. One of the major consequences has been the loss of species diversity under increased nutrient inputs. The loss of species can be functional group dependent with certain functional groups being more prone to decline than others. We present results from the sixth year of a long-term fertilization and litter manipulation study in an old-field grassland. We measured plant tissue chemistry (C:N ratio) to understand the role of plant physiological responses in the increase or decline of functional groups under nutrient manipulations. Fertilized plots had significantly more total aboveground biomass and live biomass than unfertilized plots, which was largely due to greater productivity by exotic C3 grasses. We found that both fertilization and litter treatments affected plant species richness. Species richness was lower on plots that were fertilized or had litter intact; species losses were primarily from forbs and non-Poaceae graminoids. C3 grasses and forbs had lower C:N ratios under fertilization with forbs having marginally greater %N responses to fertilization than grasses. Tissue chemistry in the C3 grasses also varied depending on tissue type with reproductive tillers having higher C:N ratios than vegetative tillers. Although forbs had greater tissue chemistry responses to fertilization, they did not have a similar positive response in productivity and the number of forb species is decreasing on our experimental plots. Overall, differential nutrient uptake and use among functional groups influenced biomass production and species interactions, favoring exotic C3 grasses and leading to their dominance. These data suggest functional groups may differ in their responses to anthropogenic nutrient amendments, ultimately influencing plant community composition.  相似文献   

7.
Abstract: The effects of a nutrient addition experiment on the plant biomass of garigue vegetation on ultramafic (serpentine) soils in Tuscany, Italy, were investigated. Although community composition was not significantly changed, fertilization had a significant positive influence on biomass production. The most affected species groups were woody species (chamaephytes and phanerophytes), annual grasses and annual forbs; the bio mass increase of the perennial grasses and perennial forbs was statistically not significant. Soil extractable elements differed for calcium and potassium in the plots where they were added; sodium and nickel extractabilities were reduced by calcium ad dition due to the increased soil pH. Biomass production was linked more to major nutrient addition than to reduced nickel extractability, confirming that serpentine vegetation of Tuscany is mainly affected by nutritional stress rather than soil heavy metal content. The addition of calcium had a low effect on pri mary production of these ultramafic soils.  相似文献   

8.
The addition of nutrients has been shown to decrease the species richness of plant communities. Herbivores feed on dominant plant species and should release subdominant species from competitive exclusion at high levels of nutrient availability with a severe competitive regime. Therefore, the effects of nutrients and invertebrate herbivory on the structure and diversity of plant communities should interact. To test this hypothesis, we used artificial plant communities in microcosms with different levels of productivity (applying fertilizer) and herbivory (adding different numbers of the snail, Cepaea hortensis, and the grasshopper, Chorthippus parallelus). For analyses, we assigned species to three functional groups: grasses, legumes and (non-leguminous) herbs. With the addition of nutrients aboveground biomass increased and species richness of plants decreased. Along the nutrient gradient, species composition shifted from a legume-dominated community to a community dominated by fast-growing annuals. But only legumes showed a consistent negative response to nutrients, while species of grasses and herbs showed idiosyncratic patterns. Herbivory had only minor effects, and bottom–up control was more important than top–down control. With increasing herbivory the biomass of the dominant plant species decreased and evenness increased. We found no interaction between nutrient availability and invertebrate herbivory. Again, species within functional groups showed no consistent responses to herbivory. Overall, the use of the functional groups grasses, legumes and non-leguminous herbs was of limited value to interpret the effects of nutrients and herbivory during our experiments.  相似文献   

9.
Although many empirical experiments have shown that increasing degradation results in lower aboveground biomass (AGB), our knowledge of the magnitude of belowground biomass (BGB) for individual plants is a prerequisite for accurately revealing the biomass trade‐off in degraded grasslands. Here, by linking the AGB and BGB of individual plants, species in the community, and soil properties, we explored the biomass partitioning patterns in different plant functional groups (grasses of Stipa capillacea and forbs of Anaphalis xylorhiza). Our results indicated that 81% and 60% of the biomass trade‐off variations could be explained by environmental factors affecting grasses and forbs, respectively. The change in community species diversity dominated the biomass trade‐off via either direct or indirect effects on soil properties and biomass. However, the community species diversity imparted divergent effects on the biomass trade‐off for grasses (scored at −0.72) and forbs (scored at 0.59). Our findings suggest that plant communities have evolved two contrasting strategies of biomass allocation patterns in degraded grasslands. These are the “conservative” strategy in grasses, in which plants with larger BGB trade‐off depends on gigantic roots for soil resources, and the “opportunistic” strategy in forbs, in which plants can adapt to degraded lands using high variation and optimal biomass allocation.  相似文献   

10.
Plant-mediated soil legacy effects can be important determinants of the performance of plants and their aboveground insect herbivores, but, soil legacy effects on plant–insect interactions have been tested for only a limited number of host plant species and soils. Here, we tested the performance of a polyphagous aboveground herbivore, caterpillars of the cabbage moth Mamestra brassicae, on twelve host plant species that were grown on a set of soils conditioned by each of these twelve species. We tested how growth rate (fast- or slow-growing) and functional type (grass or forb) of the plant species that conditioned the soil and of the responding host plant species growing in those soils affect the response of insect herbivores to conditioned soils. Our results show that plants and insect herbivores had lower biomass in soils that were conditioned by fast-growing forbs than in soils conditioned by slow-growing forbs. In soils conditioned by grasses, growth rate of the conditioning plant had the opposite effect, i.e. plants and herbivores had higher biomass in soils conditioned by fast-growing grasses, than in soils conditioned by slow-growing grasses. We show that the response of aboveground insects to soil legacy effects is strongly positively correlated with the response of the host plant species, indicating that plant vigour may explain these relationships. We provide evidence that soil communities can play an important role in shaping plant–insect interactions aboveground. Our results further emphasize the important and interactive role of the conditioning and the response plant in mediating soil–plant–insect interactions.  相似文献   

11.
不同载畜率对荒漠草原群落结构和功能群生产力的影响   总被引:5,自引:3,他引:2  
采用随机区组试验研究了内蒙古高原荒漠草原亚带短花针茅(S tip a brev if lora)草原群落不同载畜率对草原群落结构和功能群生产力的影响。结果表明:随着载畜率的增加,群落的植物种数逐渐减少,在每个载畜率水平下,冷蒿(A rtem isia f rig id a)占有绝对优势地位,优势度为35.66%~41.95%;群落的地上生物量随载畜率的增加而降低,各功能群地上生物量组成中,灌木类处于主体地位,分别占据了群落68%(CK)、77.40%(LG)、73.25%(M G)、76.91%(HG)的生物量;在植物生活型功能组成中,灌木类和杂类草、多年生丛生禾草和杂类草功能群,在生物量上具有生态互补效应(n iche com p lem en tary effect)。  相似文献   

12.
The effects of herbivores and their interactions with nutrient availability on primary production and plant community composition in grassland systems is expected to vary with herbivore type. We examined the effects of invertebrate and small vertebrate herbivores and their interactions with nutrient availability on grassland plant community composition and aboveground biomass in a tallgrass prairie ecosystem. The abundance of forbs relative to grasses increased with invertebrate herbivore removals. This increase in forb abundance led to a shift in community composition, where invertebrate removals resulted in greater plant species evenness as well as a divergence in composition among plots. In contrast, vertebrate herbivore removals did not affect plant community composition or aboveground biomass. Nutrient additions alone resulted in a decrease in plant species richness and an increase in the abundance of the dominant grass, but the dominant grass species did not greatly increase in abundance when nutrient additions were combined with invertebrate removals. Rather, several subdominant forbs came to dominate the plant community. Additionally, the combined nutrient addition and invertebrate herbivore removal treatment increased forb biomass, suggesting that invertebrate herbivores suppress the responses of forb species to chronic nutrient additions. Overall, the release of forbs from invertebrate herbivore pressure may result in large shifts in species composition, with consequences for aboveground biomass and forage quality due to altered grass:forb ratios in grassland systems.  相似文献   

13.
Spehn  Eva M.  Joshi  Jasmin  Schmid  Bernhard  Alphei  Jörn  Körner  Christian 《Plant and Soil》2000,224(2):217-230
The loss of plant species from terrestrial ecosystems may cause changes in soil decomposer communities and in decomposition of organic material with potential further consequences for other ecosystem processes. This was tested in experimental communities of 1, 2, 4, 8, 32 plant species and of 1, 2 or 3 functional groups (grasses, legumes and non-leguminous forbs). As plant species richness was reduced from the highest species richness to monocultures, mean aboveground plant biomass decreased by 150%, but microbial biomass (measured by substrate induced respiration) decreased by only 15% (P = 0.05). Irrespective of plant species richness, the absence of legumes (across diversity levels) caused microbial biomass to decrease by 15% (P = 0.02). No effect of plant species richness or composition was detected on the microbial metabolic quotient (qCO2) and no plant species richness effect was found on feeding activity of the mesofauna (assessed with a bait-lamina-test). Decomposition of cellulose and birchwood sticks was also not affected by plant species richness, but when legumes were absent, cellulose samples were decomposed more slowly (16% in 1996, 27% in 1997, P = 0.006). A significant decrease in earthworm population density of 63% and in total earthworm biomass by 84% was the single most prominent response to the reduction of plant species richness, largely due to a 50% reduction in biomass of the dominant `anecic' earthworms. Voles (Arvicola terrestris L.) also had a clear preference for high-diversity plots. Soil moisture during the growing season was unaffected by plant species richness or the number of functional groups present. In contrast, soil temperature was 2 K higher in monocultures compared with the most diverse mixtures on a bright day at peak season. We conclude that the lower abundance and activity of decomposers with reduced plant species richness was related to altered substrate quantity, a signal which is not reflected in rates of decomposition of standard test material. The presence of nitrogen fixers seemed to be the most important component of the plant diversity manipulation for soil heterotrophs. The reduction in plant biomass due to the simulated loss of plant species had more pronounced effects on voles and earthworms than on microbes, suggesting that higher trophic levels are more strongly affected than lower trophic levels.  相似文献   

14.
Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2)). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that belowground-aboveground linkages involving earthworms and AMF are important mediators of the diversity, structure and functioning of plant communities.  相似文献   

15.
Priority effects occur when species that arrive first in a habitat significantly affect the establishment, growth, or reproduction of species arriving later and thus affect functioning of communities. However, we know little about how the timing of arrival of functionally different species may alter structure and function during assembly. Even less is known about how plant density might interact with initial assembly. In a greenhouse experiment legumes, grasses or forbs were sown a number of weeks before the other two plant functional types were sown (PFT) in combination with a sowing density treatment. Legumes, grasses or non-legume forbs were sown first at three different density levels followed by sowing of the remaining PFTs after three or six-weeks. We found that the order of arrival of different plant functional types had a much stronger influence on aboveground productivity than sowing density or interval between the sowing events. The sowing of legumes before the other PFTs produced the highest aboveground biomass. The larger sowing interval led to higher asymmetric competition, with highest dominance of the PFT sown first. It seems that legumes were better able to get a head-start and be productive before the later groups arrived, but that their traits allowed for better subsequent establishment of non-legume PFTs. Our study indicates that the manipulation of the order of arrival can create priority effects which favour functional groups of plants differently and thus induce different assembly routes and affect community composition and functioning.  相似文献   

16.
Low‐input grassland biomass from marginal and other slightly more fertile sites can be used for energy production without competing with food or fodder production. The effect of grassland diversity on methane yield has received some attention, but we do not know how community assembly may affect methane yield from grassland biomass. However, methane yields determine the potential economic value of a bioenergy substrate. Hence, a better understanding of how plant community assembly affects methane yield would be important. We measured biomass production and methane yield in the second year of a grassland field experiment which manipulated the order of arrival of different plant functional groups (forbs, grasses or legumes sown first and all sown simultaneously) and sown diversity (9 vs. 21 species). The order of arrival of the plant functional groups significantly determined the relative dominance of each group which in turn mainly explained the variance in aboveground biomass production. Differences in area‐specific methane yields were driven by differences in biomass production and which plant functional groups dominated a plot. When grasses were sown first, legumes and grasses codominated a plot and the highest area‐specific methane yield was obtained. Overall, the results indicate that altering the order of arrival affected the community functional and species composition (and hence methane yields) much more than sown diversity. Our study shows that a combined use of positive biodiversity effects and guided plant community assembly may be able to optimize methane yields under field conditions. This may allow a guided, sustainable, and lucrative use of grassland biomass for biogas production in the future.  相似文献   

17.
Question: Does the spatial pattern of nutrient supply modify community biomass responses to changes in both species composition and richness? Location: Duke University Phytotron (Durham, North Carolina, USA). Methods: We conducted a microcosm experiment to evaluate individual plant and whole community responses to species richness, species composition and soil nutrient heterogeneity. The experiment consisted of seven levels of species composition (all possible combinations of Lolium perenne, Poa pratensis and Plantago lanceolata) crossed with three levels of soil nutrient distribution (homogeneous, heterogeneous‐up, and heterogeneous‐down, where up and down indicates the location of a nutrient patch in either the upper or the lower half of the soil column, respectively). Results: Communities containing Plantago and Lolium responded to nutrient heterogeneity by increasing above‐ and below‐ground biomass. Nutrient heterogeneity also increased size inequalities among individuals of these species. Significant species composition X nutrient heterogeneity interactions on community biomass and individual size inequality were observed when nutrient patches were located in the upper 10 cm of the soil columns. However, root proliferation in nutrient patches was equivalent regardless of the vertical placement of the patch. Conclusions: Our results suggest that nutrient heterogeneity may interact with plant species composition to determine community biomass, and that small‐scale vertical differences in the location of nutrient patches affect individual and community responses to this heterogeneity.  相似文献   

18.
Plant–soil feedback (PSF) can influence plant community structure via changes in the soil microbiome. However, how these feedbacks depend on the soil environment remains poorly understood. We hypothesized that disintegrating a naturally aggregated soil may influence the outcome of PSF by affecting microbial communities. Furthermore, we expected plants to differentially interact with soil structure and the microbial communities due to varying root morphology. We carried out a feedback experiment with nine plant species (five forbs and four grasses) where the “training phase” consisted of aggregated versus disintegrated soil. In the feedback phase, a uniform soil was inoculated in a fully factorial design with soil washings from conspecific‐ versus heterospecific‐trained soil that had been either disintegrated or aggregated. This way, the effects of prior soil structure on plant performance in terms of biomass production and allocation were examined. In the training phase, soil structure did not affect plant biomass. But on disintegrated soil, plants with lower specific root length (SRL) allocated more biomass aboveground. PSF in the feedback phase was negative overall. With training on disintegrated soil, conspecific feedback was positively correlated with SRL and significantly differed between grasses and forbs. Plants with higher SRL were likely able to easily explore the disintegrated soil with smaller pores, while plants with lower SRL invested in belowground biomass for soil exploration and seemed to be more susceptible to fungal pathogens. This suggests that plants with low SRL could be more limited by PSF on disintegrated soils of early successional stages. This study is the first to examine the influence of soil structure on PSF. Our results suggest that soil structure determines the outcome of PSF mediated by SRL. We recommend to further explore the effects of soil structure and propose to include root performance when working with PSF.  相似文献   

19.
2009 年4 月至2011 年9 月采用围栏封育和去除法,对去除高原鼠兔的处理组和鼠兔扰动(对照组)区域植物群落结构、物种组成和地上生物量进行了比较分析,旨在阐明高原鼠兔对草地植物群落结构和群落演替的影响。结果表明:去除高原鼠兔处理组和对照区域植物群落平均高度和种盖度逐年上升,均在2011 年达到最大值,平均高度分别为6. 5 cm 和4. 2 cm,二者差异极显著(F =127. 80,df = 1,10,P < 0.01),种盖度分别为126. 5%和117. 9% ,差异不显著;植物群落组成中,处理区域禾草和莎草地上生物量比对照区域分别增加了1 965.1% 和33. 2% ,二者差异极显著(F = 41. 29,df = 1,10,P < 0.001),豆科植物和杂类草分别下降了89. 9% 和30.7% ;处理区域植物群落生态优势度发生了显著变化,由以杂类草为主改变为以禾草为主,而对照组均以杂类草为主,变化不明显。相似性指数2009 - 2011 年在对照区域年间变化范围为0.7168 - 0. 7550,在去除高原鼠兔处理区域年间变化范围为0.6464 - 0. 6732;对照区域和处理区间变化范围为0. 5354 - 0. 8956。根据试验结果我们认为,高原鼠兔的扰动可以有效降低植物群落的平均高度和植物种盖度,但植物种类组成主要以杂类草为主,年间变化不明显,表明鼠兔的扰动延缓了植物群落的恢复演替。  相似文献   

20.
Dominant grasses can suppress subordinate species in grassland restorations. Examining factors that influence performance of a dominant grass when interacting with subordinate forbs may provide insights for maintaining plant community diversity. The objective of our study was to determine how soils of different restoration ages and functionally different forbs influence the performance (using biomass and tillering rate as proxies) of a dominant grass: Andropogon gerardii. Sites included a cultivated field and two restored prairies (4 or 16 years after restoration) at Konza Prairie (NE Kansas). We hypothesized A. gerardii performance would be greater in more degraded soils and when interacting with legumes. Soil structure, nutrient status, and microbial biomass were measured in soil that was used to conduct the plant interaction study. Andropogon gerardii performance was measured during an 18-week greenhouse experiment using the relative yield index calculated from net absolute tillering rate and final biomass measurements in three soil restoration age treatments combined with four interacting forb treatments. Restoration improved soil structure, reduced plant-available nutrients, and increased microbial biomass. Relative yield index values of A. gerardii were greater with non-legumes than legumes. Andropogon gerardii performed best in degraded soils, which may explain the difficulty in restoring tallgrass prairie diversity in long-term cultivated soil. Results from this study suggest practices that promote soil aggregation and fungal biomass, coupled with including a high abundance of legumes in seed mixes could reduce dominance of A. gerardii and likely increase plant diversity in tallgrass prairie restorations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号