首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蔷薇科(Rosaceae)是在中国广泛分布并具有重要经济价值的植物类群, 但蔷薇科资源植物的物种多样性格局及其保护状况尚缺乏较系统的评估。该文旨在: 1)整理中国蔷薇科资源植物名录, 显示其物种多样性格局及热点地区, 并探究这一格局的形成机制。2)评估中国蔷薇科资源植物的保护状况, 为其保护规划提供基础数据。通过广泛收集整理《中国植物志》、省级植物志等资料中关于蔷薇科的记录, 建立了中国蔷薇科物种名录(共914种), 确定了物种的主要经济用途(包括食用植物、园林绿化植物、药用植物和水果种质资源), 并建立了每种植物的高精度分布图。在此基础上, 估算了蔷薇科全部物种及主要资源植物类别的物种多样性格局, 并利用广义线性模型和冗余分析探讨了蔷薇科物种多样性格局与环境的关系。最后将物种分布与中国国家级和省级自然保护区进行叠加分析, 评估了蔷薇科植物的保护现状。结果显示: 1)四川盆地北部、东部和西部山区以及横断山区是中国蔷薇科植物的热点地区。2)蔷薇科植物多样性主要受水分因子影响。3)横断山区、云南东南部和西藏东南部等地是保护薄弱物种集中的区域, 而悬钩子属(Rubus)等类群的保护不足。  相似文献   

2.
喜马拉雅山脉为全球生物多样性的热点研究地区,探究该地区植物海拔梯度格局及其影响因素对揭示生物多样性形成和保护具有重要意义。本研究收集整理喜马拉雅山脉11886种种子植物以及不同生长型植物(7918种草本、2587种灌木和1388种乔木)的海拔分布范围,使用最优回归模型拟合得出喜马拉雅山脉种子植物物种丰富度与谱系多样性随海拔升高主要呈现单峰形曲线,所有物种、乔木、灌木、草本植物的多样性分别在约2000、1000、1600和3000 m的海拔处达到最大值。层次分割和偏回归分析结果表明,气候和地形因素共同决定着物种的海拔梯度格局,其中年均温和年均降水量对物种海拔分布的影响较大,比表面积和地形异质性对物种海拔分布的影响较小。相较于所有物种与草本植物,乔木和灌木分布格局的构建更多受到气候与地形因素交互作用的影响。  相似文献   

3.
植物物种多样性的垂直分布格局   总被引:81,自引:6,他引:75  
生物多样性沿环境梯度的变化趋势是生物多样性研究的一个重要议题,而海拔梯度包含了多种环境因子的梯度效应,因此研究生物多样性的海拔梯度格局对于揭示生物多样性的环境梯度变化规律具有重要意义。在不同的研究尺度,植物多样性沿海拔梯度具有不同的分布格局,而形成这种格局的因素有很大差异。本文从α多样性,β多样性和γ多样性三个尺度总结了植物物种多样性沿海拔梯度分布格局及其环境解释。α多样性沿海拔梯度的分布格局在不同生活型的物种之间差异很大,但对于木本植物来说,虽然也存在其他格局,但α多样性随海拔升高而降低是被广泛接受的一种格局。在一般情况下,β多样性随着海拔的升高而降低,并且对于不同生活型的物种,β多样性沿海拔梯度具有相似的分布格局。γ多样性沿海拔梯度具有两种分布格局:偏峰分布格局和显著的负相关格局;特有物种数往往随着海拔的升高而减少,而特有度则随着海拔的升高而增加。  相似文献   

4.
滇西北地区是全球25个生物多样性保护热点地区之一, 是验证生物多样性理论的理想场所。为探索取样尺度效应对植物物种多样性纬度分布格局的影响, 我们探讨了不同取样尺度下滇西北地区种子植物物种多样性的纬度分布格局及其影响因子。我们利用野外考察数据和文献资料建立了群落尺度下的源数据集和区域尺度(县域尺度)下的源数据集, 共建立、收集了68个植物群落样方和26个县域的种子植物物种丰富度; 采用二元相关性和多元逐步回归分析植物物种多样性纬度分布格局与气候、地理因子间的关系。结果表明, 从南到北, 物种多样性在群落尺度下呈单调递减格局, 在区域尺度下反而呈线性递增趋势; 在群落尺度下受到热量因子的显著影响, 在区域尺度下主要受单位面积海拔高差的影响。这一结果在一定程度上表明了取样的尺度效应对物种多样性纬度分布格局的显著影响。了解滇西北地区植物多样性的热点区域, 应该基于不同取样尺度下的分析, 以消除或减少植物多样性保护的盲点。在今后的相关研究中, 应关注不同的取样尺度下多样性的纬度分布格局可能的表现形式及其内在机制, 这或许可以减少或消除相关研究中的争议或不一致。  相似文献   

5.
特有植物多样性分布格局测度方法的新进展   总被引:3,自引:0,他引:3  
特有植物是生物多样性保护的重要对象,对其分布格局的研究可以为生物多样性优先保护区的确定提供重要参考.研究人员利用多种测度和分析方法,在不同地理区域对特有现象的分布格局开展了大量研究.随着分子系统学方法的不断完善及一些空间统计分析方法的引入,新的生物多样性测度方法应运而生.本文介绍了生物多样性测度方法的类型及其特点、应用现状与前景.这些测度方法的发展经历了从单一的时间或空间格局到时空格局统一的过程,具体涉及物种丰富度、谱系多样性、进化特异性以及这3种测度方法整合空间分布加权的算法.其中,谱系多样性指数(phylogenetic diversity)、谱系特有性指数(phylogenetic endemism)以及空间加权的进化特异性指数(biogeographically weighted evolutionary distinctiveness)尤其值得关注.中国特有植物分布格局的研究需要在以下4个方面进一步开展工作:(1)完善特有物种的分布格局研究;(2)加强物种的测序工作,完善谱系多样性格局的分析;(3)结合系统发育信息,揭示谱系多样性及进化历史的分布格局,进而深入开展物种p多样性和谱系p多样性的研究;(4)加强物种分布区变化的模拟,在时间维度上探讨特有现象的变化格局,为生物多样性保护提供更完善的理论支持.  相似文献   

6.
中国蔷薇科植物多样性格局及其资源植物保护现状   总被引:1,自引:0,他引:1       下载免费PDF全文
蔷薇科(Rosaceae)是在中国广泛分布并具有重要经济价值的植物类群,但蔷薇科资源植物的物种多样性格局及其保护状况尚缺乏较系统的评估。该文旨在:1)整理中国蔷薇科资源植物名录,显示其物种多样性格局及热点地区,并探究这一格局的形成机制。2)评估中国蔷薇科资源植物的保护状况,为其保护规划提供基础数据。通过广泛收集整理《中国植物志》、省级植物志等资料中关于蔷薇科的记录,建立了中国蔷薇科物种名录(共914种),确定了物种的主要经济用途(包括食用植物、园林绿化植物、药用植物和水果种质资源),并建立了每种植物的高精度分布图。在此基础上,估算了蔷薇科全部物种及主要资源植物类别的物种多样性格局,并利用广义线性模型和冗余分析探讨了蔷薇科物种多样性格局与环境的关系。最后将物种分布与中国国家级和省级自然保护区进行叠加分析,评估了蔷薇科植物的保护现状。结果显示:1)四川盆地北部、东部和西部山区以及横断山区是中国蔷薇科植物的热点地区。2)蔷薇科植物多样性主要受水分因子影响。3)横断山区、云南东南部和西藏东南部等地是保护薄弱物种集中的区域,而悬钩子属(Rubus)等类群的保护不足。  相似文献   

7.
青藏高原拥有丰富的种子植物, 但对该地区特有植物的区系特征以及多样性还鲜有报道。本文通过植物志(书)以及在线数据库, 整理了只分布于青藏高原地区的种子植物名录及其地理分布, 分析了它们的科属特征、区系成分以及多样性空间分布格局。结果表明: 青藏高原共有特有种子植物3,764种, 隶属113科519属, 多数为草本植物(76.3%); 包含100种以上的科有菊科、毛茛科、列当科等15个, 属有马先蒿属(Pedicularis)、杜鹃花属(Rhododendron)、紫堇属(Corydalis)等7个; 从属的区系成分来看, 温带成分占主导(67.5%)。青藏高原特有植物多样性格局呈现从高原东南部向西北部逐渐递减的趋势, 其中东喜马拉雅-横断山脉的物种多样性非常丰富, 而且多数物种分布在高原的中海拔地带。理解青藏高原特有物种的特征及多样性格局对探讨高原植物区系的演化历史和物种保护有重要启示。  相似文献   

8.
于2019~2022年对广东象头山国家级自然保护区内的兰科植物进行专项调查,记录兰科植物种类、数量、生活型、海拔、生境等信息,分析保护区内兰科植物的垂直分布格局,并根据《广东高等植物红色名录》和《国家重点保护野生植物名录》对各海拔高度兰花濒危等级的物种数量进行统计。结果显示:(1) 实地记录兰科植物33属48种,多数种类种群数量较少;(2) 随着海拔上升,各海拔梯度的兰科植物总种数和不同生活型的种数均呈现“中间高度膨胀型”分布特点,峰值在中低海拔区域;(3) 濒危物种主要集中在海拔200~500 m区间;(4) 相邻海拔段的兰科植物种类相似性系数较高,垂直梯度差异越大,相似性系数越小。低海拔地区可能由于人为干扰频繁,兰科植物物种多样性较低;中海拔物种多样性最丰富;高海拔地区生长环境较苛刻,物种数量较少。  相似文献   

9.
探索和揭示生物多样性的空间格局和维持机制是生态学和生物地理学研究的热点内容, 但综合物种、系统进化和功能属性等方面的多样性海拔格局研究很少。该文以关帝山森林群落为研究对象, 综合物种、谱系和功能α和β多样性指数, 旨在初步探讨关帝山森林群落多样性海拔格局及其维持机制。研究结果表明: 随着海拔的升高(1 409-2 150 m), 关帝山森林群落物种丰富度指数(S)、谱系多样性指数(PD)和功能丰富度指数(FRic)整体上表现出上升的趋势, 特别是海拔1 800 m以上区域。随着海拔的升高, 总β多样性(βtotal)和更替(βrepl)上升趋势明显, 而丰富度差异(βrich)则逐渐下降。不同生活型植物的物种、谱系和功能多样性海拔格局差异较大。随着海拔的升高, 草本植物S和物种多样性指数(H′)上升趋势高于木本植物。影响草本植物S分布的主要因素是地形因子, 而影响木本植物S分布的主要因素是历史过程。随着海拔的升高, 木本植物βtotal上升趋势要比草本植物明显。随着海拔的升高, 木本植物βreplβrich分别表现出单峰格局和“U”形格局, 而草本植物βreplβrich则分别表现出单调递增和单调递减的格局。随着环境差异和地理距离的增加, 群落间物种、谱系和功能β多样性显著增加。环境差异(环境过滤)对木本植物的β多样性具有相对较强的作用; 而环境差异(环境过滤)和地理距离(扩散限制)共同作用于草本植物的β多样性。  相似文献   

10.
高黎贡山种子植物物种丰富度沿海拔梯度的变化   总被引:27,自引:4,他引:23  
物种丰富度沿海拔梯度的分布格局成为生物多样性研究的热点。为探讨中尺度区域物种丰富度沿海拔梯度的分布,本文以高黎贡山为研究对象,利用该地区的地方植物志资料,结合通过GIS生成的区域数字高程模型(DEM)数据,分析了该区域全部种子植物和乔木、灌木、草本三种生活型种子植物物种丰富度的垂直分布格局以及物种密度沿海拔梯度的变化特征。结果表明:(1)全部种子植物和不同生活型植物物种丰富度随着海拔的升高呈现先增加后减小的趋势,最大值出现在海拔1500—2000m的范围;(2)物种密度与海拔也呈现单峰曲线关系;(3)物种丰富度和物种密度分布格局的形成主要受海拔所反映的水、热状况组合以及物种分布的边界影响。  相似文献   

11.
The species richness of 109 amphi-Pacific disjunct genera was examined in eastern Asia and North America. Although the entire flora of eastern Asia contains approximately one-third more species than that of North America, the difference in species richness among disjunct taxa is less. When woody and herbaceous genera are considered separately, the former exhibit a strong diversity bias favouring eastern Asia whereas there is no significant difference in diversity between continents among herbaceous genera. This result is not due to habitat differences between woody and herbaceous genera, because the disjunct herbs inhabit primarily moist forests and woodlands. This result is also not related to relative phylogenetic advancement, even though older major lineages of plants tend to have a predominance of woody taxa. Woody genera are distributed in lower latitudes than herbaceous genera on both continents, and both woody and herbaceous genera are distributed in lower latitudes in eastern Asia than in North America. The North American temperate flora is primarily a relict of a flora form 7 more widespread throughout the Northern Hemisphere. Contemporary patterns of diversity suggest that the effects of climate changes in the late Tertiary were less severe in eastern Asia and promoted diversification, but were more severe in North America and may have caused widespread extinction. The difference in the effect of climate change on diversity in herbaceous and woody lineages reflects the different ecological relationships of species having these contrasting life forms. Clearly, the contemporary floras of eastern Asia and North America bear the imprint of history and emphasize the important interface between ecological relationships and evolutionary responses.  相似文献   

12.
Mechanisms underlying species richness patterns remain a central yet controversial issue in biology. Climate has been regarded as a major determinant of species richness. However, the relative influences of different evolutionary processes, (i.e. niche conservatism, diversification rate and time for speciation) on species richness–climate relationships remain to be tested. Here, using newly compiled distribution maps for 11 422 woody plant species in eastern Eurasia, we estimated species richness patterns for all species and for families with tropical and temperate affinities separately, and explored the phylogenetic signals in species richness patterns of different families and their relationships with contemporary climate and climate change since the Last Glacial Maximum (LGM). We further compared the effects of niche conservatism (represented by contemporary-ancestral climatic niches differences), diversification rate and time for speciation (represented by family age) on variation in the slopes of species richness–climate relationships. We found that winter coldness was the best predictor for species richness patterns of most tropical families while Quaternary climate change was the best predictor for those of most temperate families. Species richness patterns of closely-related families were more similar than those of distantly-related families within eudicots, and significant phylogenetic signals characterized the slopes of species richness–climate relationships across all angiosperm families. Contemporary-ancestral climatic niche differences dominated variation in the relationships between family-level species richness and most climate variables. Our results indicate significant phylogenetic conservatism in family-level species richness patterns and their relationships with contemporary climate within eudicots. These findings shed light on the mechanisms underlying large-scale species richness patterns and suggest that ancestral climatic niche may influence the evolution of species richness–climate relationships in plants through niche conservatism.  相似文献   

13.
Large-scale patterns of biodiversity and the underlying mechanisms that regulate these patterns are central topics in biogeography and macroecology. The Qinghai-Tibet Plateau serves as a natural laboratory for studying these issues. However, most previous studies have focused on the entire Qinghai-Tibet Plateau, leaving independent physical geographic subunits in the region less well understood. We studied the current plant diversity of the Kunlun Mountains, an independent physical geographic subunit located in northwestern China on the northern edge of the Qinghai-Tibet Plateau. We integrated measures of species distribution, geological history, and phylogeography, and analyzed the taxonomic richness, phylogenetic diversity, and community phylogenetic structure of the current plant diversity in the area. The distribution patterns of 1911 seed plants showed that species were distributed mainly in the eastern regions of the Kunlun Mountains. The taxonomic richness, phylogenetic diversity, and genera richness showed that the eastern regions of the Kunlun Mountains should be the priority area of biodiversity conservation, particularly the southeastern regions. The proportion of Chinese endemic species inhabiting the Kunlun Mountains and their floristic similarity may indicate that the current patterns of species diversity were favored via species colonization. The Hengduan Mountains, a biodiversity hotspot, is likely the largest source of species colonization of the Kunlun Mountains after the Quaternary. The net relatedness index indicated that 20 of the 28 communities examined were phylogenetically dispersed, while the remaining communities were phylogenetically clustered. The nearest taxon index indicated that 27 of the 28 communities were phylogenetically clustered. These results suggest that species colonization and habitat filtering may have contributed to the current plant diversity of the Kunlun Mountains via ecological and evolutionary processes, and habitat filtering may play an important role in this ecological process.  相似文献   

14.
Aim Late Pleistocene glacial changes had a major impact on many boreal and temperate taxa, and this impact can still be detected in the present‐day phylogeographic structure of these taxa. However, only minor effects are expected in species with generalist habitat requirements and high dispersal capability. One such species is the white‐tailed eagle, Haliaeetus albicilla, and we therefore tested for the expected weak population structure at a continental level in this species. This also allowed us to describe phylogeographic patterns, and to deduce Ice Age refugia and patterns of postglacial recolonization of Eurasia. Location Breeding populations from the easternmost Nearctic (Greenland) and across the Palaearctic (Iceland, continental Europe, central and eastern Asia, and Japan). Methods Sequencing of a 500 base‐pair fragment of the mitochondrial DNA control region in 237 samples from throughout the distribution range. Results Our analysis revealed pronounced phylogeographic structure. Overall, low genetic variability was observed across the entire range. Haplotypes clustered in two distinct haplogroups with a predominantly eastern or western distribution, and extensive overlap in Europe. These two major lineages diverged during the late Pleistocene. The eastern haplogroup showed a pattern of rapid population expansion and colonization of Eurasia around the end of the Pleistocene. The western haplogroup had lower diversity and was absent from the populations in eastern Asia. These results suggest survival during the last glaciation in two refugia, probably located in central and western Eurasia, followed by postglacial population expansion and admixture. Relatively high genetic diversity was observed in northern regions that were ice‐covered during the last glacial maximum. This, and phylogenetic relationships between haplotypes encountered in the north, indicates substantial population expansion at high latitudes. Areas of glacial meltwater runoff and proglacial lakes could have provided suitable habitats for such population growth. Main conclusions This study shows that glacial climate fluctuations had a substantial impact on white‐tailed eagles, both in terms of distribution and demography. These results suggest that even species with large dispersal capabilities and relatively broad habitat requirements were strongly affected by the Pleistocene climatic shifts.  相似文献   

15.
Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.  相似文献   

16.
? Premise of the study: The high mountains in southern Anatolia and the eastern Mediterranean are assumed to play a major role as a primary center of genetic diversity and species richness in Eurasia. We tested this hypothesis by focusing on the widespread perennial arctic-alpine Arabis alpina and its sympatrically distributed closest relatives in the eastern Mediterranean. ? Methods: Plastid (trnL intron, trnL-F intergenic spacer) and nuclear (ITS) DNA sequence analysis was used for phylogenetic reconstruction. Broad-scale plastid haplotype analyses were conducted to infer ancestral biogeographic patterns. ? Key results: Five Arabis species, identified from the eastern Mediterranean (Turkey mainland and Cyprus), evolved directly and independently from A. alpina, leaving Arabis alpina as a paraphyletic taxon. These species are not affected by hybridization or introgression, and species divergence took place at the diploid level during the Pleistocene. ? Conclusions: Pleistocene climate fluctuations produced local altitudinal range-shifts among mountain glacial survival areas, resulting not only in the accumulation of intraspecific genotype diversity but also in the formation of five local species. We also show that the closest sister group of Arabis alpina consists exclusively of annuals/winter annuals and diverged prior to Pleistocene climatic fluctuations during the colonization of the lowland Mediterranean landscape. These findings highlight that Anatolia is not only a center of species richness but also a center for life-history diversification.  相似文献   

17.
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic gradient in vegetation types that can be observed from low to high elevation zones. However, species richness and phylogenetic diversity of this mountain have not been well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants of this mountain and calculated species richness and phylogenetic diversity across seven vegetation zones. We also measured phylogenetic structure using the net relatedness index (NRI) and the nearest species index (NTI). Our results show that lower montane wet forest has the highest level of species richness, density, and phylogenetic diversity of woody plants, while lower montane dry forest has the highest level of species richness, density, and phylogenetic diversity in herbaceous plants. In total plants, NRI and NTI of four forest zones were smaller than three alpine zones. In woody plants, lower montane wet forest and upper montane forest have overdispersed phylogenetic structures. In herbaceous plants, NRI of Afro‐alpine zone and nival zone are smaller than those of bamboo zone, upper montane forest, and heath zone. We suggest that compared to open dry forest, humid forest has fewer herbaceous plants because of the closed canopy of woody plants. Woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. We also proposed lower and upper montane forests with high species richness or overdispersed phylogenetic structures as the priority areas in conservation of Mount Kenya and other high mountains in the Eastern Afro‐montane biodiversity hotspot regions.  相似文献   

18.
Systematically quantifying diversity across landscapes is necessary to understand how clade history and ecological heterogeneity contribute to the origin, distribution, and maintenance of biodiversity. Here, we chart the spatial structure of diversity among all species in the sedge family (Cyperaceae) throughout the USA and Canada. We first identify areas of remarkable species richness, phylogenetic diversity, and functional trait diversity, and highlight regions of conservation priority. We then test predictions about the spatial structure of this diversity based on the historical biogeography of the family. Incorporating a phylogeny, over 400 000 herbarium records, and a database of functional traits mined from online floras, we find that species richness and functional trait diversity peak in the Northeastern USA, while phylogenetic diversity peaks along the Gulf of Mexico. Floristic turnover among assemblages increases significantly with distance, but phylogenetic turnover is twice as rapid along latitudinal gradients as along longitudinal gradients. These patterns reflect the expected distribution of Cyperaceae, which originated in the tropics but radiated in temperate regions. We identify assemblages with an abundance of rare, range‐restricted lineages, and assemblages composed of species generally lacking from diverse regions. We argue that both of these metrics are useful for developing targeted conservation strategies. We use the data generated here to establish future research priorities, including the testing of a series of hypotheses regarding the distribution of chromosome numbers, photosynthetic pathways, and resource partitioning in sedges.  相似文献   

19.
本文以云南被子植物蔷薇分支为研究对象,基于物种间的演化关系,结合其地理分布,从进化历史的角度探讨了物种、特有种、受威胁物种的种类组成及系统发育组成的分布格局,并整合自然保护地的空间分布,对生物多样性的重点保护区域进行识别。结果显示:云南被子植物蔷薇分支的物种密度与系统发育多样性、特有种密度、受威胁物种密度均呈显著正相关,云南南部和西北部是物种丰富度与系统发育多样性最为丰富的区域;就云南整体而言,蔷薇分支的标准化系统发育多样性较低;云南南部、东南部、西北部是蔷薇分支的重点保护区域。  相似文献   

20.
Large-scale patterns of species richness and their causes are still poorly understood for most terrestrial invertebrates, although invertebrates can add important insights into the mechanisms that generate regional and global biodiversity patterns. Here we explore the general plausibility of the climate-based “water-energy dynamics” hypothesis using the latitudinal pattern of land-snail species richness across extensive topographically homogeneous lowlands of northern Eurasia. We established a 1480-km long latitudinal transect across the Western Siberian Plain (Russia) from the Russia-Kazakhstan border (54.5°N) to the Arctic Ocean (67.5°N), crossing eight latitudinal vegetation zones: steppe, forest-steppe, subtaiga, southern, middle and northern taiga, forest-tundra, and tundra. We sampled snails in forests and open habitats each half-degree of latitude and used generalized linear models to relate snail species richness to climatic variables and soil calcium content measured in situ. Contrary to the classical prediction of latitudinal biodiversity decrease, we found a striking unimodal pattern of snail species richness peaking in the subtaiga and southern-taiga zones between 57 and 59°N. The main south-to-north interchange of the two principal diversity constraints, i.e. drought stress vs. cold stress, explained most of the variance in the latitudinal diversity pattern. Water balance, calculated as annual precipitation minus potential evapotranspiration, was a single variable that could explain 81.7% of the variance in species richness. Our data suggest that the “water-energy dynamics” hypothesis can apply not only at the global scale but also at subcontinental scales of higher latitudes, as water availability was found to be the primary limiting factor also in this extratropical region with summer-warm and dry climate. A narrow zone with a sharp south-to-north switch in the two main diversity constraints seems to constitute the dominant and general pattern of terrestrial diversity across a large part of northern Eurasia, resulting in a subcontinental diversity hotspot of various taxa in this zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号