首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent research suggests that humans have some ability to selectively activate or relax some muscles during isometric or dynamic muscle actions without changing posture or position. This study sought to reveal whether trained athletes could isolate either the pectoral or triceps muscles, respectively, at different intensities when given verbal technique instruction. Eleven male Division III football players performed 3 sets of bench press at 50% 1-repetition max (1RM) and 80% 1RM while electromyographic (EMG) activity was recorded from the pectoralis major (PM), anterior deltoid (AD), and triceps brachii (TB). In the first set, the subjects performed the exercise without instruction. In the second set, the subjects were given verbal instructions to use only chest muscles. In the third set, the subjects were instructed to use only triceps muscles. Mean normalized root mean square EMG activity was calculated during 3 repetitions in each condition. Repeated-measures analysis of variance was used to detect differences from the preinstruction condition, with significance set to p ≤ 0.017 as indicated by a Bonferroni correction for multiple comparisons. During the 50% max lift with verbal instructions to focus on chest muscles, PM EMG activity increased by 22% over preinstruction activity (p = 0.005), whereas AD and TB activities were statistically unchanged. When the subjects were instructed to focus on only the triceps muscles, PM returned to baseline activity, whereas TB activity was increased by 26% (p = 0.005). When the lift was increased to 80% max, PM and AD activities were both increased with verbal instructions to use only chest muscles. The TB activity was unchanged during the 80% lifts, regardless of instructions. In conclusion, it is found that verbal technique instruction is effective in shifting muscle activity during a basic lift, but it may be less effective at higher intensities.  相似文献   

2.
The purpose of this study was to determine if handgrip position during arm cranking exercise influences the neuromuscular activity of muscles biceps brachii (BB), lateral head of triceps brachii (TB), middle deltoid (DT), infraspinatus (IS) and brachioradialis (BR). Fifteen participants cranked an arm ergometer using three different handgrip positions (supinated, pronated, and neutral). Electromyographic (EMG) data were recorded from the aforementioned muscles, and relative duration of EMG activation and amplitude were quantified for the first and second 180 degrees of crank angle. EMG measures were analyzed with MANOVA and follow-up univariate procedures; alpha was set at 0.01. The relative durations of EMG activation did not differ between handgrip positions. Muscle IS exhibited 36% less amplitude in the supinated versus neutral handgrip position (second half-cycle), and muscle BR displayed 63% greater amplitude across cycles in the neutral versus supinated and pronated handgrip positions. The greater BR activity displayed in the neutral handgrip position may reflect its anatomical advantage as an elbow flexor when the forearm is in neutral position. Muscle IS exhibited less activity in the supinated position and may be clinically relevant if it allows arm cranking to occur without subsequent shoulder pain, which is often the aim of shoulder rehabilitation.  相似文献   

3.
The study examined the fatigue effect on tennis performance and upper limb muscle activity. Ten players were tested before and after a strenuous tennis exercise. Velocity and accuracy of serve and forehand drives, as well as corresponding surface electromyographic (EMG) activity of eight upper limb muscles were measured. EMG and force were also evaluated during isometric maximal voluntary contractions (IMVC). Significant decreases were observed after exercise in serve accuracy (−11.7%) and velocity (−4.5%), forehand accuracy (−25.6%) and consistency (−15.6%), as well as pectoralis major (PM) and flexor carpi radialis (FCR) IMVC strength (−13.0% and −8.2%, respectively). EMG amplitude decreased for PM and FCR in serve, forehand and IMVC, and for extensor carpi radialis in forehand. No modification was observed in EMG activation timing during strokes or in EMG frequency content during IMVC. Several hypotheses can be put forward to explain these results. First, muscle fatigue may induce a reduction in activation level of PM and forearm muscles, which could decrease performance. Second, conscious or subconscious strategies could lead to a redistribution of muscle activity to non-fatigued muscles in order to protect the organism and/or limit performance losses. Otherwise, the modifications of EMG activity could also illustrate the strategies adopted to manage the speed-accuracy trade-off in such a complex task.  相似文献   

4.
This study aimed at investigating the relationship between trunk and upper limb muscle coordination and stroke velocity during tennis forehand drive. The electromyographic (EMG) activity of ten trunk and dominant upper limb muscles was recorded in 21 male tennis players while performing five series of ten crosscourt forehand drives. The forehand drive velocity ranged from 60% to 100% of individual maximal velocity. The onset, offset and activation level were calculated for each muscle and each player. The analysis of muscle activation order showed no modification in the recruitment pattern regardless of the velocity. However, the increased velocity resulted in earlier activation of the erector spinae, latissimus dorsi and triceps brachii muscles, as well as later deactivation of the erector spinae, biceps brachii and flexor carpi radialis muscles. Finally, a higher level of activation was observed with the velocity increase in the external oblique, latissimus dorsi, middle deltoid, biceps brachii and triceps brachii. These results might bring new knowledge for strength and tennis coaches to improve resistance training protocols in a performance and prophylactic perspective.  相似文献   

5.
Muscular activity in terms of surface electromyography (sEMG) is usually normalised to maximal voluntary isometric contractions (MVICs). This study aims to compare two different MVIC-modes in handcycling and examine the effect of moving average window-size. Twelve able-bodied male competitive triathletes performed ten MVICs against manual resistance and four sport-specific trials against fixed cranks. sEMG of ten muscles [M. trapezius (TD); M. pectoralis major (PM); M. deltoideus, Pars clavicularis (DA); M. deltoideus, Pars spinalis (DP); M. biceps brachii (BB); M. triceps brachii (TB); forearm flexors (FC); forearm extensors (EC); M. latissimus dorsi (LD) and M. rectus abdominis (RA)] was recorded and filtered using moving average window-sizes of 150, 200, 250 and 300 ms. Sport-specific MVICs were higher compared to manual resistance for TB, DA, DP and LD, whereas FC, TD, BB and RA demonstrated lower values. PM and EC demonstrated no significant difference between MVIC-modes. Moving average window-size had no effect on MVIC outcomes. MVIC-mode should be taken into account when normalised sEMG data are illustrated in handcycling. Sport-specific MVICs seem to be suitable for some muscles (TB, DA, DP and LD), but should be augmented by MVICs against manual/mechanical resistance for FC, TD, BB and RA.  相似文献   

6.
Popular fitness literature suggests that varied hand placements during push-ups may isolate different muscles. Scientific literature, however, offers scant evidence that varied hand placements elicit different muscle responses. This study examined whether different levels of electromyographic (EMG) activity in the pectoralis major and triceps brachii muscles are required to perform push-ups from each of 3 different hand positions: shoulder width base, wide base, and narrow base hand placements. Forty subjects, 11 men and 29 women, performed 1 repetition of each push-up. The EMG activity for subjects' dominant arm pectoralis major and triceps brachii was recorded using surface electrodes. The EMG activity was greater in both muscle groups during push-ups performed from the narrow base hand position compared with the wide base position (p < 0.05). This study suggests that, if a goal is to induce greater muscle activation during exercise, then push-ups should be performed with hands in a narrow base position compared with a wide base position.  相似文献   

7.
The purpose of this study was to determine if performing isometric 3-point kneeling exercises on a Swiss ball influenced the isometric force output and EMG activities of the shoulder muscles when compared with performing the same exercises on a stable base of support. Twenty healthy adults performed the isometric 3-point kneeling exercises with the hand placed either on a stable surface or on a Swiss ball. Surface EMG was recorded from the posterior deltoid, pectoralis major, biceps brachii, triceps brachii, upper trapezius, and serratus anterior muscles using surface differential electrodes. All EMG data were reported as percentages of the average root mean square (RMS) values obtained in maximum voluntary contractions for each muscle studied. The highest load value was obtained during exercise on a stable surface. A significant increase was observed in the activation of glenohumeral muscles during exercises on a Swiss ball. However, there were no differences in EMG activities of the scapulothoracic muscles. These results suggest that exercises performed on unstable surfaces may provide muscular activity levels similar to those performed on stable surfaces, without the need to apply greater external loads to the musculoskeletal system. Therefore, exercises on unstable surfaces may be useful during the process of tissue regeneration.  相似文献   

8.
During an external isometric constant torque (25% of the maximal voluntary contraction) maintained until the maximal endurance time (limit time), we analysed and compared the changes in electromyographic (EMG) activity illustrating muscular fatigue simultaneously with mechanical activity (the tangential acceleration theta") related to physiological tremor. The EMG activities recorded were of two agonistic flexors, the biceps brachii (BB) and the brachioradialis (BR) muscles and one of the main extensors, the triceps brachii (TB). The integrated EMG increase and the mean power frequency (MPF) of the power spectrum density function (PSDF) decrease were larger for BR than for BB activity. These two findings suggested a greater BR fatigability. However, it is shown that differences between BB and BR MPF changes could be related to differences in the PSDF upper frequency limit of the two muscles and also to the relative magnitude of their tremor component.  相似文献   

9.
The purpose of the study was (1) to assess changes in electromyographical (EMG) and mechanomyographical (MMG) signals of the biceps and triceps brachii muscles during absolute submaximal load holding in Parkinson’s disease patients tested during their medication “ON-phase” and in age-matched controls, and (2) to check whether mechanomyography can be useful in evaluation of neuromuscular system activity in Parkinson’s disease patients.The data analysis was performed on nine females with Parkinson’s disease and six healthy, age-matched females. The EMG and MMG signals were recorded from the short head of the biceps brachii (BB) and the lateral head of the triceps brachii (TB) muscles.It was concluded that compared to the controls, the Parkinson’s disease patients exhibited higher amplitude in the biceps brachii muscle and lower median frequency of the MMG signal in the both tested muscles. However, no differences in the EMG amplitude and an increase of the EMG median frequency in the triceps brachii muscle of the Parkinson’s disease group were observed. The MMG was not affected by physiological postural tremor and can depict differences between parkinsonians and controls, which may suggest that it is valuable tool for neuromuscular assessment for this condition.  相似文献   

10.
The present study aimed to evaluate the effect of a resistance training program based on the electromyographic fatigue threshold (EMGFT, defined as the highest exercise intensity performed without EMG alterations), on the EMG amplitude (root mean square, RMS) and frequency (median frequency, MF) values for biceps brachii (BB), brachioradialis (BR), triceps brachii (TB) and multifidus (MT). Twenty healthy male subjects, (training group [TG], n = 10; control group [CG], n = 10), firstly performed isometric contractions, and after this, dynamic biceps curl at four different loads to determine the EMGFT. The TG training program used the BB EMGFT value (8 weeks, 2 sessions/week, 3 exhaustive bouts/session, 2 min rest between bouts). No significant differences were found for the isometric force after the training. The linear regression slopes of the RMS with time during the biceps curl presented significant decrease after training for the BB, BR and TB muscles. For the MT muscle, the slope and MF intercept values changed with training. The training program based on the EMGFT influenced EMG the amplitude more than EMG frequency, possibly related to the recruitment patterns of the muscles, although the trunk extensor muscles presented changes in the frequency parameter, showing adaptation to the training program.  相似文献   

11.
We analyzed the time course of changes in muscle activity of the prime mover and synergist muscles during a sustained brake-pulling action and investigated the relationship between muscle activity and braking force fluctuation (FF). Thirty-two participants performed a continuous fatiguing protocol (CFP) at 30% of maximal voluntary contraction (MVC) until failure. Surface electromyography was used to analyze root mean square (RMS) values in the flexor digitorum superficialis (FD), flexor carpi radialis (FC), extensor digitorum communis (ED), extensor carpi radialis (EC), brachioradialis (BR), biceps brachii (BB), and triceps brachii (TB). The FF and RMS in all muscles increased progressively (P<0.01) during the CFP, with sharp increments at time limit particularly in FD and FC (P<0.001). The RMS of the FD and FC were comparable to the baseline MVC values at time limit, in comparison to the other muscles that did not reach such levels of activity (P<0.003). The three flexor/extensor ratios used to measure coactivation levels decreased significantly (P<0.001). In contrast to RMS, MVC was still depressed at the minute 10 of recovery. The results suggest that the time limit was mainly constrained by fatigue-related mechanisms of the FD and FC but not by those of other synergist and antagonist muscles.  相似文献   

12.
The intensity of cold-induced shivering, quantified by surface electromyography (EMG) and then expressed as a function of the maximal myoelectrical activity (integrated EMG) obtained during a maximum voluntary contraction (MVC), was examined in this study in individuals classified by body fat. In addition, the relationship between shivering and metabolic rate (MR) and the relative contribution of various muscle groups to total heat production were studied. Ten seminude male volunteers, 5 LEAN (less than 11% body fat) and 5 NORM (greater than 15% body fat) were exposed to 10 degrees C air for 2 h. EMG of six muscle groups (pectoralis major, rectus abdominis, rectus femoris, gastrocnemius, biceps brachii, and brachioradialis) was measured and compared with the EMG of each muscle's MVC. A whole body index of shivering, determined from the mass-weighted intensity of shivering of each muscle group, was correlated with MR. After the initial few minutes of exposure, only the pectoralis major, rectus femoris, and biceps brachii continued to increase their intensity of shivering. Shivering intensity was higher in the central muscles, ranging from 5 to 16% of MVC compared with that in the peripheral muscles, which ranged from 1 to 4% of MVC. Shivering intensities were similar in the peripheral muscles for the LEAN and NORM groups, whereas differences occurred in the trunk muscles for the pectoralis major and rectus abdominis. The whole body index of shivering correlated significantly with each individual's increase in MR (r = 0.63-0.97).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To study the role of coactivation in strength and force modulation in the elbow joint of children and adolescents with cerebral palsy (CP), we investigated the affected and contralateral arm of 21 persons (age 8-18) with spastic unilateral CP in three tasks: maximal voluntary isokinetic concentric contraction and passive isokinetic movement during elbow flexion and extension, and sub-maximal isometric force tracing during elbow flexion. Elbow flexion-extension torque and surface electromyography (EMG) of the biceps brachii (BB) and triceps brachii (TB) muscles were recorded. During the maximal contractions, the affected arm was weaker, had decreased agonist and similar antagonist EMG amplitudes, and thus increased antagonist co-activation (% of maximal activity as agonist) during both elbow flexion and extension, with higher coactivation levels of the TB than the BB. During passive elbow extension, the BB of the affected arm showed increased resistance torque and indication of reflex, and thus spastic, activity. No difference between the two arms was found in the ability to modulate force, despite increased TB coactivation in the affected arm. The results indicate that coactivation plays a minor role in muscle weakness in CP, and does not limit force modulation. Moreover, spasticity seems particularly to increase coactivation in the muscle antagonistic to the spastic one, possibly in order to increase stability.  相似文献   

14.
The purpose of this study was to examine how resistance load influenced the kinematic characteristics and the activity of selected muscles (flexor and extensor carpi radialis, biceps brachii, triceps brachii, antero-middle and postero-middle deltoids, pectoralis major, and upper trapezius) during maximum effort racing wheelchair stroking using 3D videographic and surface EMG techniques. Fifteen male experienced wheelchair racers served as subjects and three consecutive stroke cycles were analyzed for two load conditions. In contrast to previous studies where variations in speed were a result of variations in pushing effort or disability classification, a reduction in stroking speed caused by increasing load did not result in a decrease in stroking frequency. Increases in load significantly influenced the push and recovery times but not the stroke time or frequency. The vertical ranges of motion and vertical velocities at initial hand contact of the upper extremity joints decreased significantly from light to heavy resistance conditions. These results suggest that the vertical motion is influenced greatly by the load. Various degrees of muscle co-contractions were observed in most phases of the stroke cycle. The activation pattern of the deltoid muscle was different from what has been previously reported, probably because of the exaggerated forward lean trunk position adopted by our subjects. Although the overall EMG activity remained the same or decreased when the resistance was increased, stroking under a heavy resistance load is likely to be more demanding physiologically because of the greater push time-recovery time (work-rest) ratio with increasing resistance.  相似文献   

15.
The main aim of the study was to compare the peak surface electromyography (sEMG) amplitude of muscles during low and high loaded bench press exercises performed to muscular failure on the dominant and non-dominant body side. Ten resistance-trained healthy males with at least six-year experience in resistance training (27.7 ± 5.6 years, 81.1 ± 5.8 kg and 175.3 ± 5.2 cm, bench press one-repetition maximum [1RM] = 98.9 ± 7.1 kg) performed the bench press at 50% and at 90%1RM. The differences in peak sEMG amplitude between body-sides and the external loads were recorded for the pectoralis major (PM), anterior deltoid (AD), and the long head of the triceps brachii (TB) during each attempt. A two-way repeated-measures ANOVAs revealed statistically significant main effect of side for AD (p < 0.001) and TB (p < 0.001) but not for PM (p = 0.168) and a significant main effect of load for TB (p < 0.001) but not for AD and PM (p = 0.229; p = 0.072; respectively). The post-hoc analysis for the main effect of side showed significantly higher peak sEMG amplitude for the dominant side compared to the non-dominant side for AD and TB at 50%1RM and 90%1RM (p < 0.001; all) with no statistically significant differences for PM (p = 0.187; p = 0.155; both loads). The post-hoc analysis for the main effect of load for TB revealed a significantly higher peak sEMG amplitude at 90%1RM compared to the 50%1RM (p = 0.009). The obtained results indicate that regardless of the external load, the peak sEMG activity of the AD, PM, and TB during the bench press exercise performed to muscular failure was higher on the dominant body-side.  相似文献   

16.
ObjectiveTo evaluate the electromyographic activity of the Pectoralis Major (PM), Biceps Brachii (BB), Pronator Teres (PT) and Flexor Carpi Ulnaris (FCU) muscles involved in simulated armwrestling.MethodsTen trained volunteers were selected to perform the armwrestling movement, during dynamic tests with 40% and 80% of maximum voluntary load (MVL) and static tests in the initial, intermediary and final positions. Electromyographic and force data were normalized for analyses.ResultsIn dynamic tests with 40% MVL, electric activity of the PT muscle was greater than FCU (p < 0.01) and BB (p < 0.05) muscles, and with 80% MVL, PM and PT muscles were the most active. In static tests, electric activity increased from the initial to final positions for the PM muscle (p < 0.05), while it decreased for the BB and PT muscles (p < 0.001 and p < 0.05, respectively). No significant changes were observed for force and no correlation was found with the simultaneous electric activity.ConclusionsIt can be concluded that the PM and FCU muscles participate as agonists in the simulated armwrestling whereas the BB and PT muscles seem to perform secondary functions. Electric activity showed to be dependent on the load and on the position of the upper limb, but not on the force produced during the movement.  相似文献   

17.
The purpose of this study was to investigate the influence of eccentric contractions (ECC) on the biceps (BB) and triceps brachii (TB) muscles during maximal voluntary contraction (MVC) of elbow flexors using electrical (EMG) and mechanomyographical activities (MMG). Each of 18 male students performed 25 submaximal contractions (50% MVC) of the elbow flexors. Root mean square amplitude (RMS) and median frequency (MDF) were calculated for the EMG and MMG signals recorded during MVC. All measurements were taken before, immediately after, 24, 48, 72, and 120 h post-ECC from the BB and TB muscles. MVC was reduced by 34% immediately after exercise and did not return to the resting value within 120 h (P0.05). The EMG MDF decreased significantly (P< or =0.05) in both muscles after ECC. The MMG RMS at 24h, 48, 72 and 120 h post-ECC was significantly lower compared to that recorded immediately after ECC in both muscles (P< or =0.05). The present research showed that (i) there were similar changes in electrical and mechanical activities during MVC after submaximal ECC in agonist and antagonist muscles suggesting a common drive controlling the agonist and antagonist motoneuron pool, (ii) the ECC induced different changes in EMG than in MMG immediately after ECC and during 120 h of recovery that suggested an increased tremor and contractile impairments, i.e., reduced rate of calcium release from the sarcoplasmic reticulum (acute effect), and changes in motor control mechanisms of agonist and antagonist muscles, and increased muscle stiffness (chronic effect).  相似文献   

18.
Electromyographic (EMG) recordings were taken from 14 shoulder muscles (or major parts of them) in a gorilla, a chimpanzee and an orangutan as they stood quadrupedally and tripedally, descended from elevated substrates, crutch-walked, and progressed quadrupedally on inclined and level substrates. In the African apes, low potentials commonly (but not always) occurred in the sternocostal pectoralis major, anterior deltoid, supraspinatus and subscapularis muscles during quadrupedal stance. The quadrupedal orangutan always exhibited low potentials in the pectoralis major muscle and EMG activity commonly occurred in her supraspinatus and subscapularis muscles. Quiescent tripedal stances were not accompanied by striking changes in EMG patterns from those which characterized quadrupedal stances. Per contra, eccentric loadings of the forelimb during descents from elevated substrates generally recruited notable EMG activity in the deltoid, supraspinatus and, to a lesser extent, infraspinatus muscles of the three pongid apes. The pectoralis major and caudal serratus anterior muscles were much more active in Pongo and Pan during these descents. Supportive segments of quadrupedal locomotive cycles were generally accompanied by EMG activity in the pectoralis major, intermediate and posterior deltoid and supraspinatus muscles. The intermediate and posterior deltoid muscles were characteristically active during pre-release of the hand and early swing phase. The cranial trapezius and supraspinatus muscles also may act during early swing phase. We conclude that the pectoralis major and perhaps the supraspinatus and subscapularis might serve regularly as postural muscles during static terrestrial quadrupedalism in pongid apes. The lack of dramatic differences between the EMG patterns exhibited during fist-walking versus knuckle-walking indicates that an evolutionary transformation from a shoulder complex like that of Pongo to ones like Pan or vice versa need not entail major changes in myological features.  相似文献   

19.
Conventional bipolar EMG provides imprecise muscle activation estimates due to possibly heterogeneous activity within muscles and due to improper alignment of the electrodes with the muscle fibers. Principal component analysis (PCA), applied on multi-channel monopolar EMG yielded substantial improvements in muscle activation estimates in pennate muscles. We investigated the degree of heterogeneity in muscle activity and the contribution of PCA to muscle activation estimates in biceps brachii (BB), which has a relatively simply parallel-fibered architecture. EMG-based muscle activation estimates were assessed by comparison to elbow flexion forces in isometric, two-state isotonic contractions in eleven healthy male subjects. Monopolar EMG was collected over the entire surface of the BB with about 63 electrodes. Estimation quality of different combinations of EMG channels showed that heterogeneous activation was found mainly in medio-lateral direction, whereas adding channels in the longitudinal direction added largely redundant information. Multi-channel bipolar EMG amplitude improved muscle activation estimates by 5–14% as compared to a single bipolar. PCA-processed monopolar EMG amplitude yielded a further improvement of (12–22%). Thus multi-channel EMG, processed with PCA, substantially improves the quality of muscle activation estimates compared conventional bipolar EMG in BB.  相似文献   

20.
An inability to perform tasks involving reaching is a common problem for stroke patients. Knowledge of normal muscle activation patterns during these tasks is essential to the identification of abnormal patterns in post-stroke hemiplegia. Findings will provide insight into changes in muscle activation patterns associated with recovery of upper limb function.In this study with neurologically intact participants the co-ordination of shoulder and elbow muscle activity during two dimensional reaching tasks is explored. Eight participants undertook nine tracking tasks in which trajectory (orientation and length), duration, speed and resistance to movement were varied. The participants’ forearm was supported using a hinged arm-holder, which constrained their hand to move in a two dimensional plane. EMG signals were recorded from triceps, biceps, anterior deltoid, upper, middle and lower trapezius and pectoralis major.A wide variation in muscle activation patterns, in terms of timing and amplitude, was observed between participants performing the same task. EMG amplitude increased significantly with length, duration and resistance of the task for all muscles except anterior deltoid. Co-activation between biceps and triceps was significantly dependent on both task and trajectory orientation. Activation pattern of pectoralis major was dependent on trajectory. Neither trajectory orientation nor task condition affected the activation pattern of anterior deltoid. Normal ranges of timing of muscle activity during the tasks were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号