首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High yield, high quality, stable yield, adaptability to growth period, and modern mechanization are the basic requirements for crops in the 21st century. Soybean oleic acid is a natural unsaturated fatty acid with strong antioxidant properties and stability. Known as a safe fatty acid, it has the ability to successfully prevent cardiovascular and cerebrovascular disorders. Improving the fatty acid composition of soybean seeds, can not only speed up the breeding process of high-quality high-oil and high-oleic soybeans, but also have important significance in human health, and provide the possibility for the development of soybean oil as a new energy source. Hence, the aim of this study was to analyze the high oleic acid elated gene GmSAM22 in soybean. In this research the soybean oleic acid-related gene GmSAM22 was screened out by Genome-wide association analysis, a 662 bp fragment was acquired by specific PCR amplification, and the pMD18T cloning vector was linked by the use of a seamless cloning technique. Bioinformatics analysis of the signal peptide prediction, subcellular localization, protein hydrophobicity, transmembrane region analysis, a phosphorylation site, protein secondary and tertiary structure and protein interaction analysis of the protein encoded by the SAM22 gene was carried out. The plasmid of the gene editing vector is pBK041. The overexpression vector was transformed from pCAMBIA3301 as the base vector, and overexpression vector were designed. Positive plants were obtained by genetic transformation by the pollen tube channel method. Fluorescence quantitative PCR was performed on the T2 generation plants to detect the relative expression levels in different tissues. Southern Blot was used to detect the presence of hybridization signal. Screening genes BAR, 35S, and NOS in plants were identified by conventional PCR. 10 seeds with high and low oleic acid content were chosen for quantitative PCR identification, and finally, the concentration and morphology of soybean fatty acids were identified by near-far infrared spectroscopy. On 10 seeds with an upper and lower oleic acid content, a quantitative fluorescence analysis was done. In Southern blot hybridization, the SAM22 gene was integrated into the recipient soybean plant in hands of a sole copy. Fluorescence quantitative PCR appeared that the average relative expression of the SAM22 gene in roots, stems, leaves, and seeds was 1.70, 1.67, 3.83, and 4.41, respectively. Positive expression seeds had a 4.77% increase in oleic acid content. The level of oleic acid in the altered seeds was reduced by 4.13% when compared to CK, and it was discovered that the GmSAM22 gene could be a regulatory and secondary gene that promotes the conversion of stearic acid to oleic acid in soybean. There has not been a discussion of gene cloning or functional verification. The cloning and genetic transformation of the soybean SAM22 gene can effectively increase the content of oleic acid, which lays a foundation for the study of soybean with high oleic acid.  相似文献   

2.
3.
Soybean (Glycine max (L.) Merr.) is an important cultivated crop, which requires much water during its growth, and drought seriously affects soybean yields. Studies have shown that the expression of small heat shock proteins can enhance drought resistance, cold resistance and salt resistance of plants. In this experiment, soybean GmHsps_p23-like gene was successfully cloned by RT-PCR, the protein encoded by the GmHsps_p23-like gene was subjected to bioinformatics analysis, and the pCAMBIA3301-GmHsps_p23-like overexpression vector and pCBSG015-GmHsps_p23-like gene editing vector were constructed. Agrobacterium-mediated method was used to transform soybeans to obtain positive plants. RT-PCR detection, rehydration experiment and drought resistance physiological and biochemical index detection were performed on the T2 generation positive transgenic soybean plants identified by PCR and Southern hybridization. The results showed that the overexpression vector plant GmHsps_p23-like gene expression increased. After rehydration, the transgenic overexpression plants returned to normal growth, and the damage to the plants was low. After drought stress, the SOD and POD activities and the PRO content of the transgenic overexpression plants increased, while the MDA content decreased. The reverse was true for soybean plants with genetically modified editing vectors. The drought resistance of the overexpressed soybeans under drought stress was higher than that of the control group, and had a stronger drought resistance. It showed that the expression of soybean GmHsps_p23-like gene can improve the drought resistance of soybean. The cloning and functional verification of soybean GmHsps_p23-like gene had not been reported yet. This is the first time that PCR technology has been used to amplify the soybean GmHsps_p23-like gene and construct an expression vector for this gene. This research has laid the foundation for transgenic technology to improve plant drought resistance and cultivate new drought-resistant transgenic soybean varieties.  相似文献   

4.
Soybean oleic acid content is one of the important indexes to evaluate the quality of soybean oil. In the synthesis pathway of soybean fatty acids, the FAD2 gene family is the key gene that regulates the production of linoleic acid from soybean oleic acid. In this study, CRISPR/Cas9 gene editing technology was used to regulate FAD2 gene expression. Firstly, the CRISPR/Cas9 single knockout vectors GmFAD2-1B and GmFAD2-2C and double knockout vectors GmFAD2-2A-3 were constructed. Then, the three vectors were transferred into the recipient soybean variety Jinong 38 by Agrobacterium-mediated cotyledon node transformation, and the mutant plants were obtained. Functional analysis and comparison of the mutant plants of the T2 and T3 generations were carried out. The results showed that there was no significant difference in agronomic traits between the CRISPR/Cas9 single and double knockout vectors and the untransformed CRISPR/Cas9 receptor varieties. The oleic acid content of the plants that knocked out the CRISPR/Cas9 double gene vector was significantly higher than that of the single gene vector.  相似文献   

5.
6.
In agricultural production, a single insect-resistant and disease-resistant variety can no longer meet the demand. In this study, the expression vector pCAMBIA-3301-PR1 containing the disease-resistant gene PR1 was constructed by means of genetic engineering, and the PR1 gene was genetically transformed to contain the PR1 gene through the pollen tube method. In CryAb-8Like transgenic high-generation T7 receptor soybean, a new material that is resistant to insects and diseases is obtained. For T2 transformed plants, routine PCR detection, Southern Blot hybridization, fluorescence quantitative PCR detection, indoor and outdoor pest resistance identification and indoor disease resistance identification were performed. The results showed that there were 9 positive plants in the routine PCR test of T2 generation. In Southern Blot hybridization, both PR1 and CryAb-8Like genes are integrated in soybeans in the form of single copies. Fluorescence quantitative PCR showed that the expression levels of PR1 and CryAb-8Like genes are different in different tissues. The average expression levels of PR1 gene in plant roots, stems, and leaves are 2.88, 1.54, and 5.26, respectively. CryAb-8Like genes are found in roots, stems, and leaves. The average expression levels were 1.36, 1.39, and 4.25, respectively. The insectivorous rate of the CryAb-8Like gene in outdoor plants with positive insect resistance identification was 3.78%. The disc partition method was used indoors for pest resistance identification, and the bud length of transformed plants increased significantly. The average mortality rate of untransformed plants in indoor disease resistance identification was as high as 56.66%, and the average mortality rate of plants transformed with PR1 gene was 10.00%, and disease resistance was significantly improved. Therefore, a new material with resistance to diseases and insects is obtained.  相似文献   

7.
High oleic acid soybeans were produced by combining mutant FAD2-1A and FAD2-1B genes. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6 %, which may be high enough to cause oxidative instability of the oil. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high oleic acid background to further reduce the linolenic acid content. As a result, soybean lines with high oleic acid and low linolenic acid (HOLL) content were produced using different sources of mutant FAD2-1A genes. While oleic acid content of these HOLL lines was stable across two testing environments, the reduction of linolenic acid content varied depending on the number of mutant FAD3 genes combined with mutant FAD2-1 genes, on the severity of mutation in the FAD2-1A gene, and on the testing environment. Combination of two mutant FAD2-1 genes and one mutant FAD3 gene resulted in less than 2 % linolenic acid content in Portageville, Missouri (MO) while four mutant genes were needed to achieve the same linolenic acid in Columbia, MO. This study generated non-transgenic soybeans with the highest oleic acid content and lowest linolenic acid content reported to date, offering a unique alternative to produce a fatty acid profile similar to olive oil.  相似文献   

8.
9.
10.

Background  

The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B.  相似文献   

11.
A transgenic approach was used to alter soybean seed phytate content by expressing a soybean phytase gene (GmPhy) during seed development to degrade accumulating phytic acid (IP6). An expression vector containing the soybean phytase cDNA controlled by the seed-specific -conglycinin promoter (-subunit) was used to transform embryogenic soybean cultures. Plants from four independent transgenic lines were analyzed for transgene integration and seed IP6 levels. The reduction in IP6 levels in transgenic seeds compared to control Jack soybeans ranged from 12.6 to 24.8 as determined by HPLC. A low copy transformant was propagated to the T4 generation and examined in more detail for phytase expression and enzyme activity during seed development. Expression of phytase mRNA and phytase activity increased during seed development, consistent with the use of an embryo-specific promoter. Ectopic phytase expression during seed development offers potential as an effective strategy for reducing phytate content in soybean seed.  相似文献   

12.
A hairpin RNA-encoding construct targeting gmFAD2-1 was transformed into soybean, and an optimised Agrobacterium-mediated embryonic tip system was employed. A novel intergeneric grafting method using transgenic plantlets as scions was used instead of the conventional rooting method. Compared with traditional acclimatisation, the survival ratio of cleft grafts increased by 70%, and the culture period was shortened by about 40 days. The regeneration frequency of the grafted shoots in this embryonic tip system was approximately 74.6%. Soybean transformants were confirmed by Southern and Northern blot hybridisation analyses. The fatty acid composition of the T1 and T2 seeds from the transformed plants was determined by gas chromatography. The resulting downregulation of the gmFAD2-1 gene substantially increased the level of oleic acid from 16% to 55% as indicated by the oleic desaturation proportion (ODP). The ratio of plants with high ODP, moderate ODP and low ODP was about 1:2:1, which was consistent with a single-gene segregation pattern.  相似文献   

13.
14.
15.
山东产野生大豆胰蛋白酶抑制剂的初步研究   总被引:2,自引:0,他引:2  
该实验建立了HPLC测定大豆胰蛋白酶抑制剂(STI)活性的方法,并对山东产野生大豆(G.soja)与同地区产的黑豆和黄豆(G.max)的胰蛋白酶抑制活性差异进行了比较.用耦合了胰蛋白酶的亲合色谱柱对野生大豆的STI进行分离纯化,紫外分光光度法比较3种大豆的STI含量;PCR结合TA克隆技术对野生大豆STI中的Kunitz型(KSTI)蛋白基因编码区的氨基酸顺序进行初步测定.结果发现,山东产野生大豆的STI活性和含量均高于同地区产的黑豆和黄豆;山东产野生大豆的KSTI蛋白基因编码区的氨基酸顺序与已知的Tia型基本一致,仅第59位氨基酸由于单核苷酸的置换发生了Ser→Thr的转变,此位置位于活性中心附近.研究表明,山东产野生大豆胰蛋白酶抑制活性较强,且含量高.  相似文献   

16.
17.
18.
Summary A binary vector, pPTN133, was assembled that harbored two separate T-DNAs. T-DNA one contained a bar cassette, while T-DNA two carried a GUS cassette. The plasmid was mobilized into the Agrobacterium tumefaciens strain EHA101. Mature soybean cotyledonary node explants were inoculated and regenerated on medium amended with glufosinate. Transgenic soybeans were grown to maturity in the greenhouse. Fifteen primary transformants (T0) representing 10 independent events were characterized. Seven of the 10 independent T0 events co-expressed GUS. Progeny analysis was conducted by sowing the T1 seeds and monitoring the expression of the GUS gene after 21 d. Individual T1 plants were subsequently scored for herbicide tolerance by leaf painting a unifoliate leaf with a 100 mgl−1 solution of glufosinate and scoring the leaf 5 d post application. Herbicide-sensitive and GUS-positive individuals were observed in four of the 10 independent events. Southern blot analysis confirmed the absence of the bar gene in the GUS positive/herbicide-sensitive individuals. These results demonstrate that simultaneous integration of two T-DNAs followed by their independent segregation in progeny is a viable means to obtain soybeans that lack a selectable marker.  相似文献   

19.
Soybean (Glycine max (Linn.) Merr.) annual leguminous crop is cultivated all over the world. The occurrence of diseases has a great impact on the yield and quality of soybean. In this study, based on the RNA-seq of soybean variety M18, a complete CDS (Coding sequence) GmPR1L of the pathogenesis-related protein 1 family was obtained, which has the ability to resist fungal diseases. The overexpression vector and interference expression vector were transferred into tobacco NC89, and the resistance of transgenic tobacco (Nicotiana tabacum L.) to Botrytis cinerea infection was identified. The results show that: Compared with the control, the activities of related defense enzymes SOD (Superoxide dismutase), POD (Peroxidase), PAL (L-phenylalanine ammonia-lyase) and PPO (Polyphenol oxidase) in the over-expressed transgenic tobacco OEA1 and OEA2 increased to different degrees, and increased significantly at different infection time points. The activities of defense enzymes in the interfering strains IEA1 and IEA2 were significantly lower than those in the control strains. The results of resistance level identification showed that the disease spot rate of OEA1 was significantly lower than that of the control line, and the disease spot rate of OEA2 was significantly lower than that of the control line. The plaque rate of the interfering expression line IEA1-IEA2 was significantly higher than that of the control line. It is preliminarily believed that the process related protein GmPR1L can improve the resistance of tobacco to B. cinerea.  相似文献   

20.
To develop cold-tolerant maize germplasms and identify the activation of INDUCER OF CRT/DRE-BINDING FACTOR EXPRESSION (ICE1) expression in response to cold stress, RT-PCR was used to amplify the complete open reading frame sequence of the ICE1 gene and construct the plant expression vector pCAMBIA3301-ICE1-Bar. Immature maize embryos and calli were transformed with the recombinant vector using Agrobacterium tumefaciens-mediated transformations. From the regenerated plantlets, three T1 lines were screened and identified by PCR. A Southern blot analysis showed that a single copy of the ICE1 gene was integrated into the maize (Zea mays L.) genomes of the three T1 generations. Under low temperature-stress conditions (4°C), the relative conductivity levels decreased by 27.51%–31.44%, the proline concentrations increased by 12.50%–17.50%, the malondialdehyde concentrations decreased by 16.78%–18.37%, and the peroxidase activities increased by 19.60%–22.89% in the T1 lines compared with those of the control. A real-time quantitative PCR analysis showed that the ICE1 gene was ectopically expressed in the roots, stems, and leaves of the T1 lines. ICE1 positively regulates the expression of the CBF genes in response to cold stress. Thus, this study showed the successful transformation of maize with the ICE1 gene, resulting in the generation of a new maize germplasm that had increased tolerance to cold stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号