首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leucine‐rich repeat(LRR) receptor‐like kinases(RLKs), evolutionarily related LRR receptor‐like proteins(RLPs) and receptor‐like cytoplasmic kinases(RLCKs) have important roles in plant signaling, and their gene subfamilies are large with a complicated history of gene duplication and loss. In three pairs of closely related lineages, including Arabidopsis thaliana and A. lyrata(Arabidopsis), Lotus japonicus,and Medicago truncatula(Legumes), Oryza sativa ssp. japonica,and O. sativa ssp. indica(Rice), we find that LRR RLKs comprise the largest group of these LRR‐related subfamilies, while the related RLCKs represent the smallest group. In addition,comparison of orthologs indicates a high frequency of reciprocal gene loss of the LRR RLK/LRR RLP/RLCK subfamilies.Furthermore, pairwise comparisons show that reciprocal gene loss is often associated with lineage‐specific duplication(s) in the alternative lineage. Last, analysis of genes in A. thaliana involved in development revealed that most are highly conserved orthologs without species‐specific duplication in the two Arabidopsis species and originated from older Arabidopsis‐specific or rosid‐specific duplications. We discuss potential pitfalls related to functional prediction for genes that have undergone frequent turnover(duplications, losses, and domain architecture changes), and conclude that prediction based on phylogenetic relationships will likely outperform that based on sequence similarity alone.  相似文献   

2.
Human α1D-adrenoceptors (truncated at the amino terminus (Δ1–79) to increase their membrane expression) were stably expressed in Rat-1 fibroblasts (1–1.5 pmol/mg protein). The receptors were functional as evidenced by a robust increase in intracellular calcium in response to noradrenaline. Using this cell line, the possibility that activation of receptor tyrosine kinases could modulate this adrenoceptor subtype was studied. It was observed that cell preincubation with insulin, IGF-I, EGF or PDGF markedly reduced the intracellular calcium increase observed in response to noradrenaline. Inhibitors of PI3K and PKC essentially blocked insulin-, IGF-I- and EGF-induced desensitizations. Interestingly, PDGF-induced α1D-adrenergic desensitization was only partially ameliorated by PI3K inhibitors and was not affected by those of PKC. Insulin, IGF-I, EGF and PDGF induced concentration-dependent increases in the phosphorylation state of α1D-adrenoceptors; phosphorylation took place on serine residues. Inhibitors of PI3K and PKC markedly reduced the effects of insulin, IGF-I and EGF on this parameter. These inhibitors only marginally reduced PDGF-induced α1D-adrenoceptors phosphorylation. The ability of IGF-I to induce α1D-adrenergic desensitization and phosphorylation was confirmed in cells expressing non-truncated rat α1D-adrenenoceptors. Our data indicate that the function and phosphorylation state of α1D-adrenoceptors is modulated by activation of receptor tyrosine kinases. Insulin, IGF-I and EGF actions take place through the action of PI3K and PKC; additional pathway(s) seem to participate in PDGF-induced α1D-adrenoceptor desensitization and phosphorylation.  相似文献   

3.
Laboratory studies of manganese reduction by naturally occurring reduced inorganic compounds were undertaken, both to study further possible in situ mechanisms of manganese reduction and to examine how manganese redox reactions might be coupled to other biogeochemical processes. Chemical manganese reduction by sulfide (in the presence of excess manganese oxide) was found to be rapid and complete, with all sulfide being oxidized within 5–10 min. The reduction of δMnO2 by sulfide involves a two‐electron transfer, with S° the predominant oxidized sulfur product. Using a marine sulfate‐reducing bacterium (Desulfovibrio sp.), the kinetics of sulfide‐dependent, bacterially mediated manganese reduction were studied; the rate‐limiting step was bacterial sulfide production. These findings suggest that in stratified marine environments (such as the Black Sea, Saanich Inlet, or certain coastal sediments) manganese reduction should occur just below the oxic‐anoxic (O2/H2S) interface or redox boundary as a result of the chemical reaction between manganese oxides and sulfide produced by sulfate‐reducing bacteria.  相似文献   

4.
Both plant receptor‐like protein kinases (RLKs) and ubiquitin‐mediated proteolysis play crucial roles in plant responses to drought stress. However, the mechanism by which E3 ubiquitin ligases modulate RLKs is poorly understood. In this study, we showed that Arabidopsis PLANT U‐BOX PROTEIN 11 (PUB11), an E3 ubiquitin ligase, negatively regulates abscisic acid (ABA)‐mediated drought responses. PUB11 interacts with and ubiquitinates two receptor‐like protein kinases, LEUCINE RICH REPEAT PROTEIN 1 (LRR1) and KINASE 7 (KIN7), and mediates their degradation during plant responses to drought stress in vitro and in vivo. pub11 mutants were more tolerant, whereas lrr1 and kin7 mutants were more sensitive, to drought stress than the wild type. Genetic analyses show that the pub11 lrr1 kin7 triple mutant exhibited similar drought sensitivity as the lrr1 kin7 double mutant, placing PUB11 upstream of the two RLKs. Abscisic acid and drought treatment promoted the accumulation of PUB11, which likely accelerates LRR1 and KIN7 degradation. Together, our results reveal that PUB11 negatively regulates plant responses to drought stress by destabilizing the LRR1 and KIN7 RLKs.  相似文献   

5.
6.
The two-drug combined chemotherapy of platinum and fluorouracil has been reported to efficiently kill tumor cells as the first-line treatment for advanced gastric cancer.However,the effect of these drugs on T cells remains unclear.Here,we showed that T cells including CD4+T cells and CD8+T cells of the patients with advanced gastric cancer after platinum and fluorouracil chemotherapy exhibited enhanced ex vivo proliferation ability as compared to that before chemotherapy.In addition,platinum and fluorouracil also promoted the differentiation of human T cells into Th1 and Th9 subtypes and cytotoxic T lymphocytes(CTLs)in vitro and in vivo.Accordingly,the combination therapy greatly suppressed tumor growth with increased tumor infiltration of Th1,Th9,and CTL cells in a mouse tumor model.Moreover,in activated T cells,long-term treatment with these two drugs further facilitates T cell activation along with promoted nuclear factor-κB(NF-κB)activation.Our findings demonstrate a previously unidentified function of platinum and fluorouracil combination chemotherapy in promoting T cell–mediated antitumor immunity.  相似文献   

7.
We introduce nutrient recycling into a model where competitors differ in the scale at which they perceive their environment. In a two-resource system with both external nutrient inputs and recycling, larger consumers ("integrators") often generate resource distributions that favor their smaller ("nonintegrator") competitors, and vice versa. This occurs because recycling of integrator biomass reduces between-patch resource heterogeneity, whereas recycling of nonintegrator biomass does not. Combined, recycling and throughput can allow coexistence when it is not possible with either alone. With recycling, the presence of an integrator also may facilitate higher biomass of a co-occurring nonintegrator. Our model provides a context where recycling can generate negative feedback between competitors that differ in size and so promote coexistence. This is opposite to the positive recycling-mediated feedback commonly expected on the basis of litter chemistry differences between competitors. Effects of recycling and homogenization on nonintegrators may also be negative in our model, depending on the conformation of the system's resource supply points and the species' relative resource requirements. Our model suggests that the effects of plant size on competitive outcomes may depend critically on the degree of resource recycling found in the system and, reciprocally, that the effects of recycling may depend on plant size.  相似文献   

8.
9.
10.
The discovery of the enzyme L,L‐diaminopimelate aminotransferase(LL‐DAP‐AT, EC 2.6.1.83) uncovered a unique step in the L‐lysine biosynthesis pathway in plants. In Arabidopsis thaliana, LL‐DAP‐AT has been shown to play a key role in plant‐pathogen interactions by regulation of the salicylic acid(SA) signaling pathway. Here, a full‐length cDNA of LL‐DAP‐AT named as LjALD1 from Lotus japonicus(Regel)Larsen was isolated. The deduced amino acid sequence shares 67% identity with the Arabidopsis aminotransferase AGD2‐LIKE DEFENSE RESPONSE PROTEIN1(AtALD1) and is predicted to contain the same key elements: a conserved aminotransferase domain and a pyridoxal‐5'‐phosphate cofactor binding site.Quantitative real‐time PCR analysis showed that LjALD1 was expressed in all L. japonicus tissues tested, being strongest in nodules. Expression was induced in roots that had been infected with the symbiotic rhizobium Mesorhizobium loti or treated with SA agonist benzo‐(1, 2, 3)‐thiadiazole‐7‐carbothioic Researchacid. LjALD1 Knockdown exhibited a lower SA content, an increased number of infection threads and nodules, and a slight reduction in nodule size. In addition, compared with wild‐type,root growth was increased and shoot growth was suppressed in LjALD1 RNAi plant lines. These results indicate that LjALD1 may play important roles in plant development and nodulation via SA signaling in L. japonicus.  相似文献   

11.
Organogenesis and tumor metastasis involve the transformation of epithelia to highly motile mesenchymal-like cells. Septins are filamentous G proteins, which are overexpressed in metastatic carcinomas, but their functions in epithelial motility are unknown. Here, we show that a novel network of septin filaments underlies the organization of the transverse arc and radial (dorsal) stress fibers at the leading lamella of migrating renal epithelia. Surprisingly, septin depletion resulted in smaller and more transient and peripheral focal adhesions. This phenotype was accompanied by a highly disorganized lamellar actin network and rescued by the actin bundling protein α-actinin-1. We show that preassembled actin filaments are cross-linked directly by Septin 9 (SEPT9), whose expression is increased after induction of renal epithelial motility with the hepatocyte growth factor. Significantly, SEPT9 overexpression enhanced renal cell migration in 2D and 3D matrices, whereas SEPT9 knockdown decreased migration. These results suggest that septins promote epithelial motility by reinforcing the cross-linking of lamellar stress fibers and the stability of nascent focal adhesions.  相似文献   

12.
Zou L  Wang Z  Shen L  Bao GB  Wang T  Kang JH  Pei G 《Cell research》2007,17(5):389-401
Amyloid-β (Aβ) peptide, the primary constituent of senile plaques in Alzheimer's disease (AD), is generated by β-secretase- and y-secretase-mediated sequential proteolysis of the amyloid precursor protein (APP). The aspartic protease, β -site APP cleavage enzyme (BACE), has been identified as the main β-secretase in brain but the regulation of its activity is largely unclear. Here, we demonstrate that both BACE activity and subsequent Aβ production are enhanced after stimulation of receptor tyrosine kinases (RTKs), such as the receptors for epidermal growth factor (EGF) and nerve growth factor (NGF), in cultured cells as well as in mouse hippocampus. Furthermore, stimulation of RTKs also induces BACE internalization into endosomes and Golgi apparatus. This enhancement of BACE activity and A β production upon RTK activation could be specifically inhibited by Src family kinase inhibitors and by depletion of endogenous c-Src with RNAi, and could be mimicked by over-expressed c-Src. Moreover, blockage of BACE internalization by a dominant negative form of Rab5 also abolished the enhancement of BACE activity and Aβ production, indicating the requirement of BACE internalization for the enhanced activity. Taken together, our study presents evidence that BACE activity and Aβ production are under the regulation of RTKs and this is achieved via RTK-stimulated BACE internalization, and suggests that an aberration of such regulation might contribute to pathogenic Aβ production.  相似文献   

13.
14.
15.
16.
The IkappaB kinases (IKKs) IKK-alpha and IKK-beta, and the IKK-related kinases TBK1 and IKK-epsilon, have essential roles in innate immunity through signal-induced activation of NF-kappaB, IRF3 and IRF7, respectively. Although the signaling events within these pathways have been extensively studied, the mechanisms of IKK and IKK-related complex assembly and activation remain poorly defined. Recent data provide insight into the requirement for scaffold proteins in complex assembly; NF-kappaB essential modulator coordinates some IKK complexes, whereas TANK, NF-kappaB-activating kinase-associated protein 1 (NAP1) or similar to NAP1 TBK1 adaptor (SINTBAD) assemble TBK1 and IKK-epsilon complexes. The different scaffold proteins undergo similar post-translational modifications, including phosphorylation and non-degradative polyubiquitylation. Moreover, increasing evidence indicates that distinct scaffold proteins assemble IKK, and potentially TBK1 and IKK-epsilon subcomplexes, in a stimulus-specific manner, which might be a mechanism to achieve specificity.  相似文献   

17.
Nucleic acids from 41 strains of Metarhizium anisopliae, obtained from different parts of the world were extracted and examined by electrophoresis. Strong bands of double‐stranded RNA (dsRNA) were detected in two isolates from Brazil, V215 and V291, which had, respectively, 13 and 9 distinct bands ranging in size from ca. 0.75 to 3.5 kb. Icosahedral virus‐like particles (VLPs) (ca. 33 nm in diameter) were observed by transmission electron microscopy in extracts of these isolates. The VLPs and dsRNA were both absent from a clone of the isolate V291 which had been subcultured successively on solid medium. Bioassays against the aphid Myzus persicae showed no detectable difference in virulence between the clone of V291 which contained dsRNA and the clone that did not.  相似文献   

18.
Purpose: Immunologic-based cancer treatment modalities represent an active area of investigation. Included in these strategies are passive administration of monoclonal antibodies which recognize tumor-associated antigens and active vaccination with identified tumor antigens. However, several problems associated with these types of treatment strategies have been identified. Methods: In this report, we address certain issues by employing a murine model for experimental pulmonary metastasis and a tumor antigen vaccination strategy that induces complete tumor immunity in this system. Utilizing this model, we attempt to address issues related to unresponsiveness to tumor antigen immunization induced by passive administration of a rat monoclonal anti-CD4 and the induction of anti-idiotype responses to a passively administered monoclonal antibody and the effects on the induction of tumor immunity. Results: The results presented indicate that passive administration of rat monoclonal anti-CD4 exhibits immunosuppressive effects that inhibit the production of antibodies to the tumor antigen immunization and abolishes tumor immunity. Repeated administration of the rat monoclonal anti-CD4 results in an anti-idiotype response that can abrogate unresponsiveness to tumor antigen immunization and promote systemic tumor immunity. Conclusions: The data examine a number of potential problems associated with immunologic-based treatments for cancer. These problems include the potential for tolerance to the tumor antigen and establishing an immunocompromised state where immunization with a tumor antigen failed to generate tumor immunity. Approaches to eliminate tolerant T cells by targeting anti-CD4 via anti-idiotype responses that could be generated in vivo without CD4+ T cells allowed for recovery of nontolerant T cells, and an antibody response to the tumor antigen that results in tumor immunity.Abbreviations CTL Cytotoxic T lymphocyte - FITC Fluorescein isothiocyanate - OD Optical density - PBS Phosphate-buffered saline - SV40 Simian virus 40  相似文献   

19.
Glucose metabolism is under the cooperative regulation of both insulin receptor (IR) and β2-adrenergic receptor (β2AR), which represent the receptor tyrosine kinases (RTKs) and seven transmembrane receptors (7TMRs), respectively. Studies demonstrating cross-talk between these two receptors and their endogenous coexpression have suggested their possible interactions. To evaluate the effect of IR and prospective heteromerization on β2AR properties, we showed that IR coexpression had no effect on the ligand binding properties of β2AR; however, IR reduced β2AR surface expression and accelerated its internalization. Additionally, both receptors displayed a similar distribution pattern with a high degree of colocalization. To test the possible direct interaction between β2AR and IR, we employed quantitative BRET2 saturation and competition assays. Saturation assay data suggested constitutive β2AR and IR homo- and heteromerization. Calculated acceptor/donor (AD50) values as a measure of the relative affinity for homo- and heteromer formation differed among the heteromers that could not be explained by a simple dimer model. In heterologous competition assays, a transient increase in the BRET2 signal with a subsequent hyperbolical decrease was observed, suggesting higher-order heteromer formation. To complement the BRET2 data, we employed the informational spectrum method (ISM), a virtual spectroscopy method to investigate protein-protein interactions. Computational peptide scanning of β2AR and IR identified intracellular domains encompassing residues at the end of the 7th TM domain and C-terminal tail of β2AR and a cytoplasmic part of the IR β chain as prospective interaction domains. ISM further suggested a high probability of heteromer formation and homodimers as basic units engaged in heteromerization. In summary, our data suggest direct interaction and higher-order β2AR:IR oligomer formation, likely comprising heteromers of homodimers.  相似文献   

20.
Transgenic Research -  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号