首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物生态型分类研究进展*   总被引:10,自引:0,他引:10  
综述了国内外植物生态型分类的研究进展,介绍了一些常用的分类指标:形态指标--外部形态指标和内部形态指标,生理指标--光合速率和内源激素,生育期指标,化学成分,抗逆性--逆境和受污染环境,遗传指标--同工酶和随即扩增的多态DNA(RAPD)等,并根据国内外植物生态型分类研究进展,结合我国生态型分类研究现状,对我国植物生态型分类的研究前景进行了展望。  相似文献   

2.
3.
Summary Seedling recruitment in salt marsh plant communities is generally precluded in dense vegetation by competition from adults, but is also relatively rare in disturbance-generated bare space. We examined the constraints on seedling recruitment in New England salt marsh bare patches. Under typical bare patch conditions seed germination is severely limited by high substrate salinities. We examined the germination requirements of common high marsh plants and found that except for one notably patch-dependent fugitive species, the germination of high marsh plants is strongly inhibited by the high soil salinities routinely encountered in natural bare patches. Watering high marsh soil in the greenhouse to alleviate salt stress resulted in the emergence of up to 600 seedlings/225 cm2. The vast majority of this seed bank consisted of Juncus gerardi, the only common high marsh plant with high seed set. We tested the hypothesis that salt stress limits seedling contributions to marsh patch secondary succession in the field. Watering bare patches with fresh water partially alleviated patch soil salinities and dramatically increased both the emergence and survival of seedlings. Our results show that seedling recruitment by high marsh perennial turfs is limited by high soil salinities and that consequently their population dynamics are determined primarily by clonal growth processes. In contrast, populations of patch-dependent fugitive marsh plants which cannot colonize vegetatively are likely governed by spatially and temporally unpredictable windows of low salinities in bare patches.  相似文献   

4.
The rhizosphere microbiome and plant health   总被引:38,自引:0,他引:38  
The diversity of microbes associated with plant roots is enormous, in the order of tens of thousands of species. This complex plant-associated microbial community, also referred to as the second genome of the plant, is crucial for plant health. Recent advances in plant-microbe interactions research revealed that plants are able to shape their rhizosphere microbiome, as evidenced by the fact that different plant species host specific microbial communities when grown on the same soil. In this review, we discuss evidence that upon pathogen or insect attack, plants are able to recruit protective microorganisms, and enhance microbial activity to suppress pathogens in the rhizosphere. A comprehensive understanding of the mechanisms that govern selection and activity of microbial communities by plant roots will provide new opportunities to increase crop production.  相似文献   

5.
The interaction of plants with complex microbial communities is the result of co-evolution over millions of years and contributed to plant transition and adaptation to land. The ability of plants to be an essential part of complex and highly dynamic ecosystems is dependent on their interaction with diverse microbial communities. Plant microbiota can support, and even enable, the diverse functions of plants and are crucial in sustaining plant fitness under often rapidly changing environments. The composition and diversity of microbiota differs between plant and soil compartments. It indicates that microbial communities in these compartments are not static but are adjusted by the environment as well as inter-microbial and plant–microbe communication. Hormones take a crucial role in contributing to the assembly of plant microbiomes, and plants and microbes often employ the same hormones with completely different intentions. Here, the function of hormones as go-betweens between plants and microbes to influence the shape of plant microbial communities is discussed. The versatility of plant and microbe-derived hormones essentially contributes to the creation of habitats that are the origin of diversity and, thus, multifunctionality of plants, their microbiota and ultimately ecosystems.  相似文献   

6.
Sedimentation and overfishing are important local stressors on coral reefs that can independently result in declines in coral recruitment and shifts to algal-dominated states. However, the role of herbivory in driving recovery across environmental gradients is often unclear. Here we investigate early successional benthic communities and coral recruitment across a sediment gradient in Palau, Micronesia over a 12-month period. Total sedimentation rates measured by ‘TurfPods’ varied from 0.03 ± 0.1 SE mg cm−2 d−1 at offshore sites to 1.32 ± 0.2 mg cm−2 d−1 at inshore sites. To assess benthic succession, three-dimensional settlement tiles were deployed at sites with experimental cages used to exclude tile access to larger herbivorous fish. Benthic assemblages exhibited rapid transitions across the sediment gradient within three months of deployment. At low levels of sedimentation (less than 0.6 mg cm−2 d−1), herbivory resulted in communities dominated by coral recruitment inducers (short turf algae and crustose coralline algae), whereas exclusion of herbivores resulted in the overgrowth of coral inhibitors (encrusting and upright foliose macroalgae). An ‘inducer threshold’ was found under increasing levels of sedimentation (greater than 0.6 mg cm−2 d−1), with coral inducers having limited to no presence in communities, and herbivore access to tiles resulted in sediment-laden turf algal assemblages, while exclusion of herbivores resulted in invertebrates (sponges, ascidians) and terrestrial sediment accumulation. A ‘coral recruitment threshold’ was found at 0.8 mg cm−2 d−1, below which net coral recruitment was reduced by 50% in the absence of herbivores, while recruitment was minimal above the threshold. Our results highlight nonlinear trajectories of benthic succession across sediment gradients and identify strong interactions between sediment and herbivory that have cascading effects on coral recruitment. Local management strategies that aim to reduce sedimentation and turbidity and manage herbivore fisheries can have measurable effects on benthic community succession and coral recruitment, enhancing reef resilience and driving coral recovery.  相似文献   

7.
  1. Download : Download high-res image (165KB)
  2. Download : Download full-size image
  相似文献   

8.
Bacterial colonisation of the gut plays a major role in postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Individually, these systems have been implicated in the neuropathology of many CNS disorders and collectively they form an important bidirectional pathway of communication between the microbiota and the brain in health and disease. Regulation of the microbiome–brain–gut axis is essential for maintaining homeostasis, including that of the CNS. Moreover, there is now expanding evidence for the view that commensal organisms within the gut play a role in early programming and later responsivity of the stress system. Research has focused on how the microbiota communicates with the CNS and thereby influences brain function. The routes of this communication are not fully elucidated but include neural, humoral, immune and metabolic pathways. This view is underpinned by studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics which indicate a role for the gut microbiota in the regulation of mood, cognition, pain and obesity. Thus, the concept of a microbiome–brain–gut axis is emerging which suggests that modulation of the gut microflora may be a tractable strategy for developing novel therapeutics for complex stress-related CNS disorders where there is a huge unmet medical need.  相似文献   

9.
Drought stress responses in crops   总被引:1,自引:0,他引:1  
Among the effects of impending climate change, drought will have a profound impact on crop productivity in the future. Response to drought stress has been studied widely, and the model plant Arabidopsis has guided the studies on crop plants with genome sequence information viz., rice, wheat, maize and sorghum. Since the value of functions of genes, dynamics of pathways and interaction of networks for drought tolerance in plants can only be judged by evidence from field performance, this mini-review provides a research update focussing on the current developments on the response to drought in crop plants. Studies in Arabidopsis provide the basis for interpreting the available information in a systems biology perspective. In particular, the elucidation of the mechanism of drought stress response in crops is considered from evidence-based outputs emerging from recent omic studies in crops.  相似文献   

10.
Zhang  Zekun  Su  Rui  Chang  Chao  Cheng  Xiao  Peng  Qi  Lambers  Hans  He  Honghua 《Plant and Soil》2021,461(1-2):501-515
Plant and Soil - Residues of antibiotics such as oxytetracycline (OTC) in soil can affect microbial compositions and activities, thus affecting soil P availability, and consequently plant P uptake...  相似文献   

11.
Interactions among species determine local‐scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse‐plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a ‘safety net’ sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change.  相似文献   

12.
Reproductive rates and survival of young in animal populations figure centrally in generating management and conservation strategies. Model systems suggest that food supply can drive these often highly variable properties, yet for many wild species, quantifying such effects and assessing their implications have been challenging. We used spatially explicit time series of a well-studied marine reef fish (black surfperch Embiotoca jacksoni) and its known prey resources to evaluate the extent to which fluctuations in food supply influenced production of young by adults and survival of young to subadulthood. Our analyses reveal: (i) variable food available to both adults and to their offspring directly produced an order of magnitude variation in the number of young-of-year (YOY) produced per adult and (ii) food available to YOY produced a similar magnitude of variation in their subsequent survival. We also show that such large natural variation in vital rates can significantly alter decision thresholds (biological reference points) important for precautionary management. These findings reveal how knowledge of food resources can improve understanding of population dynamics and reduce risk of overharvest by more accurately identifying periods of low recruitment.  相似文献   

13.
14.
Concerted gene recruitment in early plant evolution   总被引:1,自引:0,他引:1  

Background  

Horizontal gene transfer occurs frequently in prokaryotes and unicellular eukaryotes. Anciently acquired genes, if retained among descendants, might significantly affect the long-term evolution of the recipient lineage. However, no systematic studies on the scope of anciently acquired genes and their impact on macroevolution are currently available in eukaryotes.  相似文献   

15.
16.
Seed and microsite limitation of recruitment in plant populations   总被引:40,自引:0,他引:40  
O. Eriksson  J. Ehrlén 《Oecologia》1992,91(3):360-364
Summary Availability of seed and microsites, respectively, are two factors that potentially may limit recruitment in plant populations. Microsites are small-scale sites suitable for germination and survival of seedlings. We discuss this dichotomy of recruitment limitation both from a theoretical and empirical point of view. Investigations of recruitment in 14 woodland species showed that 3 species were seed limited, 6 species were limited by a combination of seed and microsite availability, and 5 species were found not to be seed limited, but the limiting factor was not identified. A combination of seed and microsite limitation implies that recruitment is promoted by increasing both seed and microsite availability. We suggest that the importance of seed limitation in plant populations has been underestimated, and that the operating limiting factors may be dependent on spatial and temporal scale. We expect that many species, if adequately studied, will turn out to be both seed and microsite limited. Experimental field studies that incorporate a range of seed and microsite densities in various spatial and temporal scales are needed to examine the extent to which plant populations are seed and microsite limited.  相似文献   

17.
Drought stress and cereal aphid performance   总被引:1,自引:0,他引:1  
The performance of clones of Rhopalosiphum padi and Sitobion avenae from England and Spain was examined on drought-stressed tillering winter wheat in an environment chamber at 14 ± 1°C. Two different levels of drought stress and an unstressed control were established by different watering regimes which resulted in drought-stressed plants being smaller at the end of the experiment. The effect of drought stress to plants on aphid performance was not significantly different between the clones tested. Drought stress had no effect on aphid development time, nymphal mortality, the weight of teneral adults and the number of embryos in teneral adults up to the onset of reproduction in the first F1 generation. The subsequent reproductive capacity, as measured by the effective and potential fecundity, and the reproductive rate, were much reduced on drought-stressed plants. However, there was only a small decrease in the intrinsic rate of increase (rm). Overall the clone of R. padi from Spain performed better than that from England, the development and prereproductive times being shorter and the fecundity higher in the Spanish clone, giving a higher rm. There were no differences in the fecundity and the rm between the Spanish and the English clones of S. avenae. The proportion of the F2 generation that was alate differed greatly between clones, and only the English S. avenae produced significantly more alatae on drought-stressed than on unstressed plants.  相似文献   

18.
Tracking human sewage microbiome in a municipal wastewater treatment plant   总被引:1,自引:0,他引:1  
Human sewage pollution is a major threat to public health because sewage always comes with pathogens. Human sewage is usually received and treated by wastewater treatment plants (WWTPs) to control pathogenic risks and ameliorate environmental health. However, untreated sewage that flows into water environments may cause serious waterborne diseases, as reported in India and Bangladesh. To examine the fate of the human sewage microbiome in a local municipal WWTP of Hong Kong, we used massively parallel sequencing of 16S rRNA gene to systematically profile microbial communities in samples from three sections (i.e., influent, activated sludge, and effluent) obtained monthly throughout 1 year. The results indicated that: (1) influent sewage bacterial profile reflected the human microbiome; (2) human gut bacterial community was the dominant force shaping influent sewage bacterial profile; (3) most human sewage bacteria could be effectively removed by the WWTP; (4) a total of 75 genera were profiled as potentially pathogenic bacteria, most of which were still present in the effluent although at a very low level; (5) a grouped pattern of bacterial community was observed among the same section samples but a dispersed pattern was found among the different section samples; and (6) activated sludge was less affected by the influent sewage bacteria, but it showed a significant impact on the effluent bacteria. All of these findings provide novel insights toward a mechanistic understanding of the fate of human sewage microbiome in the WWTP.  相似文献   

19.
AtALMT1 (Arabidopsis thaliana ALuminum activated Malate Transporter 1) encodes an Arabidopsis thaliana malate transporter that has a pleiotropic role in Arabidopsis stress tolerance. Malate released through AtALMT1 protects the root tip from Al rhizotoxicity, and recruits beneficial rhizobacteria that induce plant immunity. To examine whether the overexpression of AtALMT1 can improve these traits, the gene, driven by the cauliflower mosaic virus 35S promoter, was introduced into the Arabidopsis ecotype Columbia. Overexpression of the gene enhanced both Al-activated malate excretion and the recruitment of beneficial bacteria Bacillus subtilis strain FB17. These findings suggest that overexpression of AtALMT1 can be used as an approach to enhance a plant's ability to release malate into the rhizosphere, which can enhance plant tolerance to some environmental stress factors.  相似文献   

20.

Background

The need to enhance the sustainability of intensive agricultural systems is widely recognized One promising approach is to encourage beneficial services provided by soil microorganisms to decrease the inputs of fertilizers and pesticides. However, limited success of this approach in field applications raises questions as to how this might be best accomplished.

Scope

We highlight connections between root exudates and the rhizosphere microbiome, and discuss the possibility of using plant exudation characteristics to selectively enhance beneficial microbial activities and microbiome characteristics. Gaps in our understanding and areas of research that are vital to our ability to more fully exploit the soil microbiome for agroecosystem productivity and sustainability are also discussed.

Conclusion

This article outlines strategies for more effectively exploiting beneficial microbial services on agricultural systems, and cals attention to topics that require additional research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号