首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influenza and human parainfluenza virus infections are of both medical and economical importance. Currently, inactivated vaccines provide suboptimal protection against influenza, and vaccines for human parainfluenza virus infection are not available, underscoring the need for new vaccines against these respiratory diseases. Furthermore, to reduce the burden of vaccination, the development of multivalent vaccines is highly desirable. Thus, to devise a single vaccine that would elicit immune responses against both influenza and parainfluenza viruses, we used reverse genetics to generate an influenza A virus that possesses the coding region for the hemagglutinin/neuraminidase ectodomain of parainfluenza virus instead of the influenza virus neuraminidase. The recombinant virus grew efficiently in eggs but was attenuated in mice. When intranasally immunized with the recombinant vaccine, all mice developed antibodies against both influenza and parainfluenza viruses and survived an otherwise lethal challenge with either of these viruses. This live bivalent vaccine has obvious advantages over combination vaccines, and its method of generation could, in principle, be applied in the development of a "cocktail" vaccine with efficacy against several different infectious diseases.  相似文献   

2.
Suguitan AL  Cheng X  Wang W  Wang S  Jin H  Lu S 《PloS one》2011,6(7):e21942
Priming immunization plays a key role in protecting individuals or populations to influenza viruses that are novel to humans. To identify the most promising vaccine priming strategy, we have evaluated different prime-boost regimens using inactivated, DNA and live attenuated vaccines in ferrets. Live attenuated influenza A/Vietnam/1203/2004 (H5N1) candidate vaccine (LAIV, VN04 ca) primed ferrets efficiently while inactivated H5N1 vaccine could not prime the immune response in seronegative ferrets unless an adjuvant was used. However, the H5 HA DNA vaccine alone was as successful as an adjuvanted inactivated VN04 vaccine in priming the immune response to VN04 ca virus. The serum antibody titers of ferrets primed with H5 HA DNA followed by intranasal vaccination of VN04 ca virus were comparable to that induced by two doses of VN04 ca virus. Both LAIV-LAIV and DNA-LAIV vaccine regimens could induce antibody responses that cross-neutralized antigenically distinct H5N1 virus isolates including A/HongKong/213/2003 (HK03) and prevented nasal infection of HK03 vaccine virus. Thus, H5 HA DNA vaccination may offer an alternative option for pandemic preparedness.  相似文献   

3.
Infections by intracellular pathogens such as viruses, some bacteria and many parasites, are cleared in most cases after activation of specific T cellular immune responses that recognize foreign antigens and eliminate infected cells. Vaccines against those infectious organisms have been traditionally developed by administration of whole live attenuated or inactivated microorganisms. Nowadays, research is focused on the development of subunit vaccines, containing the most immunogenic antigens from the particular pathogen. However, when purified subunit vaccines are administered using traditional immunization protocols, the levels of cellular immunity induced are mostly low and not capable of eliciting complete protection against diseases caused by intracellular microbes. In this review, we present a promising alternative to those traditional protocols, which is the use of recombinant viruses encoding subunit vaccines as immunization tools. Recombinant viruses have several interesting features that make them extremely efficient at inducing immune responses mediated by T-lymphocytes. This cellular immunity has recently been demonstrated to be of key importance for protection against malaria and AIDS, both of which are major targets of the World Health Organization for vaccine development. Thus, this review will focus in particular on the development of new vaccination protocols against these diseases.  相似文献   

4.
Human influenza is a seasonal disease associated with significant morbidity and mortality. The most effective means for controlling infection and thereby reducing morbidity and mortality is vaccination with a three inactivated influenza virus strains mixture, or by intranasal administration of a group of three different live attenuated influenza vaccine strains. Comparing to the inactivated vaccine, the attenuated live viruses allow better elicitation of a long-lasting and broader immune (humoral and cellular) response that represents a naturally occurring transient infection. The cold-adapted (ca) influenza A/AA/6/60 (H2N2) (AA ca) virus is the backbone for the live attenuated trivalent seasonal influenza vaccine licensed in the United States. Similarly, the influenza A components of live-attenuated vaccines used in Russia have been prepared as reassortants of the cold-adapted (ca) H2N2 viruses, A/Leningrad/134/17/57-ca (Len/17) and A/Leningrad/134/47/57-ca (Len/47) along with virulent epidemic strains. However, the mechanism of temperature-sensitive attenuation is largely elusive. To understand how modification at genetic level of influenza virus would result in attenuation of human influenza virus A/PR/8/34 (H1N1,A/PR8), we investigated the involvement of key mutations in the PB1 and/or PB2 genes in attenuation of influenza virus in vitro and in vivo. We have demonstrated that a few of residues in PB1 and PB2 are critical for the phenotypes of live attenuated, temperature sensitive influenza viruses by minigenome assay and real-time PCR. The information of these mutation loci could be used for elucidation of mechanism of temperature-sensitive attenuation and as a new strategy for influenza vaccine development.  相似文献   

5.
Almost all vaccinations today are delivered through parenteral routes. Mucosal vaccination offers several benefits over parenteral routes of vaccination, including ease of administration, the possibility of self-administration, elimination of the chance of injection with infected needles, and induction of mucosal as well as systemic immunity. However, mucosal vaccines have to overcome several formidable barriers in the form of significant dilution and dispersion; competition with a myriad of various live replicating bacteria, viruses, inert food and dust particles; enzymatic degradation; and low pH before reaching the target immune cells. It has long been known that vaccination through mucosal membranes requires potent adjuvants to enhance immunogenicity, as well as delivery systems to decrease the rate of dilution and degradation and to target the vaccine to the site of immune function. This review is a summary of current approaches to mucosal vaccination, and it primarily focuses on adjuvants as immunopotentiators and vaccine delivery systems for mucosal vaccines based on protein, DNA or RNA. In this context, we define adjuvants as protein or oligonucleotides with immunopotentiating properties co-administered with pathogen-derived antigens, and vaccine delivery systems as chemical formulations that are more inert and have less immunomodulatory effects than adjuvants, and that protect and deliver the vaccine through the site of administration. Although vaccines can be quite diverse in their composition, including inactivated virus, virus-like particles and inactivated bacteria (which are inert), protein-like vaccines, and non-replicating viral vectors such as poxvirus and adenovirus (which can serve as DNA delivery systems), this review will focus primarily on recombinant protein antigens, plasmid DNA, and alphavirus-based replicon RNA vaccines and delivery systems. This review is not an exhaustive list of all available protein, DNA and RNA vaccines, with related adjuvants and delivery systems, but rather is an attempt to highlight many of the currently available approaches in immunopotentiation of mucosal vaccines.  相似文献   

6.
Despite significant efforts in many countries, there is still no commercially viable dengue vaccine. Currently, attention is focused on the development of either live attenuated vaccines or live attenuated chimaeric vaccines using a variety of backbones. Alternate vaccine approaches, such as whole inactivated virus and subunit vaccines are in the early stages of development, and are each associated with different problems. Subunit vaccines offer the advantage of providing a uniform antigen of well-defined nature, without the added risk of introducing any genetic material into the person being inoculated. Preliminary trials of subunit vaccines (using dengue E protein) in rhesus monkeys have shown promising results. However, the primary disadvantages of dengue subunit vaccines are the low levels of expression of dengue proteins in mammalian or insect cells, as well as the added unknown risks of antigens produced from mammalian cells containing other potential sources of contamination. In the past two decades, plants have emerged as an alternative platform for expression of biopharmaceutical products, including antigens of bacterial, fungal or viral origin. In the present minireview, we highlight the current plant expression technologies used for expression of biopharmaceutical products, with an emphasis on plants as a production system for dengue subunit vaccines.  相似文献   

7.
猪瘟疫苗研究进展   总被引:2,自引:0,他引:2  
猪瘟是猪的一种重要传染病,给世界养猪业造成了巨大的经济损失。疫苗免疫是预防该病的主要手段。本文综述了猪瘟流行现状、传统疫苗、亚单位疫苗、活载体疫苗、标记疫苗、核酸疫苗的研究进展,并对它们的发展趋势作了初步探讨和展望。  相似文献   

8.
Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.  相似文献   

9.
In the influenza H5N1 virus incident in Hong Kong in 1997, viruses that are closely related to H5N1 viruses initially isolated in a severe outbreak of avian influenza in chickens were isolated from humans, signaling the possibility of an incipient pandemic. However, it was not possible to prepare a vaccine against the virus in the conventional embryonated egg system because of the lethality of the virus for chicken embryos and the high level of biosafety therefore required for vaccine production. Alternative approaches, including an avirulent H5N4 virus isolated from a migratory duck as a surrogate virus, H5N1 virus as a reassortant with avian virus H3N1 and an avirulent recombinant H5N1 virus generated by reverse genetics, have been explored. All vaccines were formalin inactivated. Intraperitoneal immunization of mice with each of vaccines elicited the production of hemagglutination-inhibiting and virus-neutralizing antibodies, while intranasal vaccination without adjuvant induced both mucosal and systemic antibody responses that protected the mice from lethal H5N1 virus challenge. Surveillance of birds and animals, particularly aquatic birds, for viruses to provide vaccine strains, especially surrogate viruses, for a future pandemic is stressed.  相似文献   

10.
伪狂犬病新型疫苗研究进展   总被引:2,自引:0,他引:2  
伪狂犬病是多种家畜和野生动物的一种重要传染病,给世界畜牧业特别是养猪业造成了巨大的经济损失,疫苗免疫是预防控制该病的主要手段。综述了伪狂犬病亚单位疫苗,核酸疫苗,重组疫苗,基因缺失疫苗等新型疫苗的研究进展。  相似文献   

11.
BackgroundMany ruminant diseases of viral aetiology can be effectively prevented using appropriate vaccination measures. For diseases such as Rift Valley fever (RVF) the long inter-epizootic periods make routine vaccination programs unfeasible. Coupling RVF prophylaxis with seasonal vaccination programmes by means of multivalent vaccine platforms would help to reduce the risk of new RVF outbreaks.Methodology/Principal findingsIn this work we generated recombinant attenuated Rift Valley fever viruses (RVFVs) encoding in place of the virulence factor NSs either the VP2 capsid protein or a truncated form of the non-structural NS1 protein of bluetongue virus serotype 4 (BTV-4). The recombinant viruses were able to carry and express the heterologous BTV genes upon consecutive passages in cell cultures. In murine models, a single immunization was sufficient to protect mice upon RVFV challenge and to elicit a specific immune response against BTV-4 antigens that was fully protective after a BTV-4 boost. In sheep, a natural host for RVFV and BTV, both vaccines proved immunogenic although conferred only partial protection after a virulent BTV-4 reassortant Morocco strain challenge.Conclusions/SignificanceThough additional optimization will be needed to improve the efficacy data against BTV in sheep, our findings warrant further developments of attenuated RVFV as a dual vaccine platform carrying heterologous immune relevant antigens for ruminant diseases in RVF risk areas.  相似文献   

12.
Vaccines provide a primary means to limit disease but may not be effective at blocking infection and pathogen transmission. The objective of the present study was to evaluate the efficacy of commercial inactivated swine influenza A virus (IAV) vaccines and experimental live attenuated influenza virus (LAIV) vaccines against infection with H3N2 virus and subsequent indirect transmission to naive pigs. The H3N2 virus evaluated was similar to the H3N2v detected in humans during 2011-2012, which was associated with swine contact at agricultural fairs. One commercial vaccine provided partial protection measured by reduced nasal shedding; however, indirect contacts became infected, indicating that the reduction in nasal shedding did not prevent aerosol transmission. One LAIV vaccine provided complete protection, and none of the indirect-contact pigs became infected. Clinical disease was not observed in any group, including nonvaccinated animals, a consistent observation in pigs infected with contemporary reassortant H3N2 swine viruses. Serum hemagglutination inhibition antibody titers against the challenge virus were not predictive of efficacy; titers following vaccination with a LAIV that provided sterilizing immunity were below the level considered protective, yet titers in a commercial vaccine group that was not protected were above that level. While vaccination with currently approved commercial inactivated products did not fully prevent transmission, certain vaccines may provide a benefit by limitating shedding, transmission, and zoonotic spillover of antigenically similar H3N2 viruses at agriculture fairs when administered appropriately and used in conjunction with additional control measures.  相似文献   

13.
14.
A live attenuated influenza vaccine has been available in Germany since the influenza season 2012/13, which is approved for children aged 2-17 years. Using data from our laboratory-based surveillance system, we described the circulation of influenza and non-influenza respiratory viruses during the influenza season 2012/13 in Saxony-Anhalt. We estimated the effectiveness of live and inactivated trivalent influenza vaccines in preventing laboratory-confirmed cases among children and adolescents. From week 40/2012 to 19/2013, sentinel paediatricians systematically swabbed acute respiratory illness patients for testing of influenza and 5 non-influenza viruses by PCR. We compared influenza cases and influenza-negative controls. Among children aged 2-17 years, we calculated overall and vaccine type-specific effectiveness against laboratory-confirmed influenza, stratified by age group (2-6; 7-17 years). We used multivariable logistic regression to adjust estimates for age group, sex and month of illness. Out of 1,307 specimens, 647 (35%) were positive for influenza viruses and 189 (15%) for at least one of the tested non-influenza viruses. For vaccine effectiveness estimation, we included 834 patients (mean age 7.3 years, 53% males) in our analysis. Of 347 (42%) influenza-positive specimens, 61 (18%) were positive for A(H1N1)pdm09, 112 (32%) for A(H3N2) and 174 (50%) for influenza B virus. The adjusted overall vaccine effectiveness including both age groups was 38% (95% CI: 0.8-61%). The adjusted effectiveness for inactivated vaccines was 37% (95% CI: -35-70%) and for live vaccines 84% (95% CI: 45-95%). Effectiveness for the live vaccine was higher in 2-6 year-old children (90%, 95% CI: 20-99%) than in children aged 7-17 years (74%, 95% CI: -32-95%). Our study of the strong influenza season in 2012/13 suggests a high preventive effect of live attenuated influenza vaccine especially among young children, which could not be reached by inactivated vaccines. We recommend the use of live attenuated influenza vaccines in children unless there are contraindications.  相似文献   

15.
Peptides delivered by immunostimulating reconstituted influenza virosomes.   总被引:1,自引:0,他引:1  
Vaccines have been well accepted and used effectively for more than 100 years. Traditional vaccines are generally composed of whole inactivated or attenuated microorganisms that have lost their disease-causing properties. These classical prophylactic live vaccines evoke protective immune responses, but have often been associated with an unfavorable safety profile, as observed, for example, for smallpox and polio myelitis vaccines [1,2]. First improvements were subunit vaccines that do not focus on attenuation of whole organisms but concentrate on particular proteins. These vaccines are able to generate protective immune responses (e.g. diphtheria, tetanus, pertussis)3. However, next generation vaccines should focus on specific antigens (e.g. proteins, peptides), since the requirements by regulatory authorities to crude biological material are becoming more stringent over time. An increasing number of such antigens capable of inducing protective humoral or cellular immune responses have been identified in the last few years. But most of these are weak immunogens. This reemphasizes the need for adjuvants to promote a potent immune response and also for delivery antigens to the immune system in an appropriate way (carrier capability). Here we review a new approach for prophylactic and therapeutic vaccines, which focuses on the induction of highly specific immune responses directed against antigen-derived peptides using a suitable carrier system.  相似文献   

16.
Recovery from live influenza virus infection is known to induce heterosubtypic immunity. In contrast, immunity induced by inactivated vaccines is predominantly subtype specific. In this study, we investigated the heterosubtypic protective immunity induced by inactivated influenza virus. Intranasal immunization of mice with inactivated influenza virus A/PR8 (H1N1) provided complete protection against the homologous virus and a drift virus within the same subtype, A/WSN (H1N1), but not against the heterosubtypic virus A/Philippines (H3N2). However, coadministration of inactivated virus with cholera toxin as an adjuvant conferred complete heterosubtypic protection, without observed illness, even under conditions of CD4+ or CD8+ T-cell depletion. Analysis of immune correlates prior to challenge and postchallenge indicated that humoral immune responses with cross-neutralizing activity in lungs and in sera play a major role in conferring protective immunity against heterosubtypic challenge. This study has significant implications for developing broadly cross-reactive vaccines against newly emerging pathogenic influenza viruses.  相似文献   

17.
Vaccinia viruses defective in the essential gene coding for the enzyme uracil DNA glycosylase (UDG) do not undergo DNA replication and do not express late genes in wild-type cells. A UDG-deficient vaccinia virus vector carrying the tick-borne encephalitis (TBE) virus prM/E gene, termed vD4-prME, was constructed, and its potential as a vaccine vector was evaluated. High-level expression of the prM/E antigens could be demonstrated in infected complementing cells, and moderate levels were found under noncomplementing conditions. The vD4-prME vector was used to vaccinate mice; animals receiving single vaccination doses as low as 10(4) PFU were fully protected against challenge with high doses of virulent TBE virus. Single vaccination doses of 10(3) PFU were sufficient to induce significant neutralizing antibody titers. With the corresponding replicating virus, doses at least 10-fold higher were needed to achieve protection. The data indicate that late gene expression of the vaccine vector is not required for successful vaccination; early vaccinia virus gene expression induces a potent protective immune response. The new vaccinia virus-based defective vectors are therefore promising live vaccines for prophylaxis and cancer immunotherapy.  相似文献   

18.
Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling). Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus.  相似文献   

19.
Intranasally administered influenza vaccines could be more effective than injected vaccines, because intranasal vaccination can induce virus-specific immunoglobulin A (IgA) antibodies in the upper respiratory tract, which is the initial site of infection. In this study, immune responses elicited by an intranasal inactivated vaccine of influenza A(H5N1) virus were evaluated in healthy individuals naive for influenza A(H5N1) virus. Three doses of intranasal inactivated whole-virion H5 influenza vaccine induced strong neutralizing nasal IgA and serum IgG antibodies. In addition, a mucoadhesive excipient, carboxy vinyl polymer, had a notable impact on the induction of nasal IgA antibody responses but not on serum IgG antibody responses. The nasal hemagglutinin (HA)-specific IgA antibody responses clearly correlated with mucosal neutralizing antibody responses, indicating that measurement of nasal HA-specific IgA titers could be used as a surrogate for the mucosal antibody response. Furthermore, increased numbers of plasma cells and vaccine antigen-specific Th cells in the peripheral blood were observed after vaccination, suggesting that peripheral blood biomarkers may also be used to evaluate the intranasal vaccine-induced immune response. However, peripheral blood immune cell responses correlated with neutralizing antibody titers in serum samples but not in nasal wash samples. Thus, analysis of the peripheral blood immune response could be a surrogate for the systemic immune response to intranasal vaccination but not for the mucosal immune response. The current study suggests the clinical potential of intranasal inactivated vaccines against influenza A(H5N1) viruses and highlights the need to develop novel means to evaluate intranasal vaccine-induced mucosal immune responses.  相似文献   

20.
Reactogenicity, immunogenicity and viability of the vaccine virus were studied during vaccination of adults with live allantoic influenza vaccines of the types A (H1N1), A (H3N2) and B in different seasons of the year. Seasonal oscillations of reactogenicity of the vaccines (minimum in summer, maximum in winter) were demonstrated. A decrease in the re-isolation rate of vaccine viruses and in their content in the secretions of the upper respiratory passages was observed in summer. Seasonal oscillations of immunogenicity of the commercial live allantoic influenza vaccine with a marked reduction in its activity in summer were established. The administration of moderately attenuated influenza vaccine viruses in summer results in the production of antibodies up to the level observed in other seasons of the year. Theoretical problems and practical aspects of seasonal oscillations of vaccination activity of live influenza vaccines were studied in connection with the necessity of investigation new vaccine strains in varying seasons of the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号