首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Paeonia ostii is an economically important oil crop, which has been widely cultivated in the middle and lower reaches of the Yangtze River in China in recent years. Although P. ostii is highly adaptable to the environment, the prolonged high summer temperature in this region severely inhibits its growth, which adversely affects seed yield and quality. In this study, P. ostii plants were subjected to 20°C/15°C (day/night) and 40°C/35°C (day/night) temperatures for 15 days. The changes in physiological and biochemical indicators of P. ostii under high-temperature stress were initially investigated. The results showed that with the deepening of leaf etiolation, chlorophyll a and chlorophyll b concentration, carotenoid concentration, Soil Plant Analysis Development (SPAD) values and leaf relative water content decreased significantly, while both relative electrical conductivity (REC) and free proline concentration showed an upward trend. Meanwhile, the continuous accumulation of reactive oxygen species (ROS) in P. ostii plants, led to an increased activity of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX). Moreover, with the extension of the high-temperature treatment, the anatomical structures of P. ostii were destroyed, resulting in a decreased photochemical efficiency of the photosystem II (PSII) reaction center and photosynthesis was inhibited. Taken together, these results provide reference values for understanding the physiological response of P. ostii to high-temperature stress and establish a foundation for further research on the relevant underlying molecular mechanisms.

  相似文献   

2.
This study aimed to explore the cold tolerance of two cultivars of Dendrobium officinale (MG1, MG2) grown in different regions of China. Under -2°C incubation, cultivar MG1 remained active after 3 d, and continued to grow after returning to room temperature. However, MG2 could only maintain its activity after 2 d treatment at −2°C, and the seedlings died with the low temperature treatment time. Investigation of the characteristics of the plants grown in the south (Hangzhou) or north (Zhengzhou) of China indicated that the leaves of MG1 also had reduced stomatal density, the highest thickness, and a compact microstructure. The contents of proline and soluble sugars were higher in MG1 than those in MG2. The cultivar MG1 had higher SOD enzyme activity than MG2, while CAT and POD activities in samples from Zhengzhou were higher than those from Hangzhou. The contents of polysaccharides and alkaloids in stems of in MG1 were higher than those in MG2, while the content of flavonoids in the Zhengzhou samples was higher than that in the Hangzhou samples. In addition, plant heights, stem diameters, and chlorophyll content were higher in MG1. Overall, MG1 had better cold resistance than MG2. MG1 is a cold tolerant cultivar with thick leaves and reduced stomatal density, higher contents of soluble sugars, proline, CAT, POD, polysaccharides, flavonoids and alkaloids, which together make it more adaptable to low temperatures. Thus, the cultivar MG1, with its demonstrated cold tolerance, can accordingly be grown on a large scale in cold regions, thereby expanding the available planting area for this important traditional medicinal plant to meet the increasing commercial demand for it.  相似文献   

3.
花榈木组培苗茎段低温胁迫培养及耐冷性诱导   总被引:2,自引:0,他引:2  
以花榈木组培苗茎段为试材,在低温胁迫条件下进行耐冷性愈伤组织诱导培养。结果表明,5℃是花榈木茎段低温胁迫培养及耐冷性诱导的最适温度。经过5℃低温胁迫培养获得的耐冷性愈伤组织在分化培养基MS+6-BA 2.0 mg/L+NAA 0.25 mg/L上的分化率达70.0%,且再生植株的低温伤害率明显低于对照。  相似文献   

4.
A field experiment was conducted to determine the effects of two commercial strains composed of mulple arbuscular mycorrhizal fungi (AMF) species on plant growth, antioxidant capacity, and medicine quality of Paris polyphylla var. yunnanensis in three subtropical soils from Wanzhou, Anshun and Baoshan in fields. The results showed that AMF inoculation enhanced the fungal colonization rate and activities of both succinate dehydrogenase and alkaline phosphatase, thereby, enhancing the mycorrhizal viability of P. polyphylla var. yunnanensis. The concentrations of photosynthetic pigments (chlorophyll a, b, a+b and carotenoids), soluble sugar, soluble protein and photosynthetic capacity were higher in AMF-inoculated plants than in non-AMF-treated plants in field. AMFtreated plants recorded higher activities of catalase, peroxidase and superoxide dismutase, and caused the reduction in malondialdehyde content, indicating lower oxidative damage, compared with non-AMF plants. Polyphyllin I, Polyphyllin II, Polyphyllin III, Polyphyllin IV and total polyphyllin contents were increased by AMF treatment. In conclusion, AMF improved the plant growth, antioxidant capacity and medicinal quality of P. polyphylla var. yunnanensis seedlings. Hereinto, AMF effects on the soil from Wanzhou was relatively greater than on other soils.  相似文献   

5.
The aim of this study was to assess the impact of the microalgae Chlorella vulgaris on the rice seedlings at physiological conditions and under cadmium (Cd) stress. We examined the effects of C. vulgaris in the nutrient solution on rice seedlings grown hydroponically in the presence and the absence of 150 μM CdCl2, using the low (77 K) temperature and pulse amplitude modulated (PAM) chlorophyll fluorescence, P700 photooxidation measurements, photochemical activities of both photosystems, kinetic parameters of oxygen evolution, oxidative stress markers (MDA, H2O2 and proline), pigment content, growth parameters and Cd accumulation. Data revealed that the application C. vulgaris not only stimulates growth and improves the functions of photosynthetic apparatus under physiological conditions, but also reduces the toxic effect of Cd on rice seedlings. Furthermore, the presence of the green microalgae in the nutrient solution of the rice seedlings during Cd exposure, significantly improved the growth, photochemical activities of both photosystems, the kinetic parameters of the oxygen-evolving reactions, pigment content and decreased lipid peroxidation, H2O2 and proline content. Data showed that the alleviation of Cd-induced effects in rice seedlings is a result of the Cd sorption by microalgae, as well as the reduced Cd accumulation in the roots and its translocation from the roots to the shoots.  相似文献   

6.
Summary A procedure for micropropagation of pitaya using thidiazuron (TDZ) and naphthaleneacetic acid (NAA) is described. Explants were excised from young joints of mature plants and cultured on Murashige and Skoog medium (MS) containing 0.5 μM NAA and 0.5 μM TDZ. Shoots produced from these first explants were cut up to produce secondary explants, either by decapitation or by longitudinal division into three parts. The decapitated and longitudinal explants were cultured on MS supplemented with 0.5 μM NAA and either 0.01, 0.09, 0.5, or 0.9 μM TDZ. Decapitated explants produced more shoots at higher frequency that the longitudinal explants. For both types of secondary explants, most shoots were developed from the distal parts. Shoots produced from secondary explants were rooted in MS and then transferred to soil where they produced normal plants.  相似文献   

7.
Pearl millet (Pennisetum spicatum (L.) Körn.) and maize (Zea mays L.) are C4 grass species grown for feeding humans and animals in Almadinah Almunawwarah, which is in the western part of Saudi Arabia. During the winter, the mean temperature, which drops to 14°C, represents a major problem for the growth of these species in this region. Therefore, the objectives of this research were to investigate the growth response and the photosynthetic performance of P. spicatum and Z. mays under a low temperature stress. The treatments involved daytime and nighttime temperatures of 14/12°C (low temperature) and 24/22°C (optimum temperature). The results indicated that low temperature significantly reduced all growth and physiological parameters, including seed germination, leaf expansion, leaf area, shoot length and root length of the two species compared to those of the control. Additionally, the low temperature significantly decreased the light-saturated assimilation rate (Asat), quantum yield (ϕ), saturated rate of carbon dioxide uptake (Amax) and efficiency of carboxylation on both species compared to those of the control. Moreover, the values of Fv/Fm and the chlorophyll contents of both species were significantly reduced by low temperature compared to those of the control. It can be concluded that both species had little tolerance to low temperatures.  相似文献   

8.
Pakistan is facing the threat of Cotton Leaf Curl Virus (CLCuV) which is transmitted through whitefly to cotton crop. Molecular mechanism of leaf epicuticular wax protects the plants from different pathogens including insect attack and disease transmission. Objective of current study is the isolation and characterization of a wax related gene GaCyPI from Gossypium arboreum under CLCuV infection. A fragment of 475 bp was isolated from the total RNA and 3’ and 5’ RACE-PCR products were arranged by overlapping the extended sequences at both the ends. Deduced protein sequence of GaCyPI showed homology with Cyclophilin cis-trans isomerase gene of Gossypium ramondii and Gossypium barbadanse. Multiple sequence alignment also revealed homology among the coding sequences of same gene. GaCyPI protein comprised of 173 amino acids and ORF finder revealed the 69 bases upstream at 5’ while 350 bp at 3’UTR. InterProScan revealed that it belongs to Cyclophilin-type peptidyl prolyl cis/trans isomerase (PPIase) family. Active sites are visible at specific amino acid positions and 3D structure was stable in Ramachandran plot. Prosa server showed protein residues have average 3D-1D score >= 0.2 and Z-Score was −6.74. Phylogenetic analysis revealed that G. raimondii is the closest species that shares the same sequence. Hence, GaCyPI has strong role in plants’ epicuticular wax and its genetic transformation may protect the cotton from whitefly which transmits CLCuV.  相似文献   

9.
The salinity stress is one of the most relevant abiotic stresses that affects the agricultural production. The present study was performed to study the improvement of the salt tolerance of tomato plants which is known for their susceptibility to salt stress. The present study aimed to assess to what extent strain Azospirillum brasilense (N040) and Saccharomyces cerevisiae improve the salt tolerance to tomato plants treated with different salt concentration. The inoculant strain A. brasilense (N040) was previously adapted to survive up to 7% NaCl in the basal media. A greenhouse experiment was conducted to evaluate the effect of this inoculation on growth parameter such as: plant height, root length, fresh and dry weight, fruits fresh weight, chlorophyll content, proline and total soluble sugar in tomato plants under salt stress condition. The results revealed that co-inoculation of Azospirillum brasilense (N040) and Saccharomyces cerevisiae significantly increased the level of proline (8.63 mg/g FW) and total soluble sugar (120 mg/g FW) of leaves under salinity condition comparing to non-inoculated plants (2.3 mg/g FW and 70 mg/g FW, respectively). Plants co-inoculated with adapted strain of A. brasilense and S. cerevisiae showed the highest significant (p < 0.01) increase in fruit yield (1166.6 g/plant), plant high (115 cm) and roots length (52.6) compared whit un-inoculated control plants (42 g/pant, 43.3 cm and 29.6 cm, respectively). In contrast, Na+ ion content was significantly decreased in the leaves of salt stressed plants treated with the A. brasilense (N040) and S. cerevisiae. Finally, the results showed that dual benefits provided by both A. brasilense (N040) and S. cerevisiae can provide a major way to improve tomato yields in saline soils.  相似文献   

10.
Salt stress is one of the major abiotic stress in plants. However, traditional approaches are not always efficient in conferring salt tolerance. Experiments were conducted to understand the role of Trichoderma spp. (T. harzianum and T. viride) in growth, chlorophyll (Chl) synthesis, and proline accumulation of C. pepo exposed to salinity stress. There were three salt stress (50, 100, and 150 mM NaCl) lavels and three different Trichoderma inoculation viz. T. harzianum, T. viride, and T. harzianum + T. viride. Salt stress significantly declined the growth in terms of the shoot and root lengths; however, it was improved by the inoculation of Trichoderma spp. C. pepo inoculated with Trichoderma exhibited increased synthesis of pigments like chl a, chl b, carotenoids, and anthocyanins under normal conditions. It was interesting to observe that such positive effects were maintained under salt-stressed conditions, as reflected by the amelioration of the salinity-mediated decline in growth, physiology and antioxidant defense. The inoculation of Trichoderma spp. enhanced the synthesis of proline, glutathione, proteins and increased the relative water content. In addition, Trichoderma inoculation increased membrane stability and reduced the generation of hydrogen peroxide. Therefore, Trichoderma spp. can be exploited either individually or in combination to enhance the growth and physiology of C. pepo under saline conditions.  相似文献   

11.
This work aims to determine the phytochemical characterization of the pericarp of Chamaedorea radicalis Mart. fruit as a non-timber product with potential to obtain phytochemicals with potential applications in the industry. Fruit from C. radicalis were grouped in four ripening stages named as S1, S2, S3 and S4, according to maturity; S1 the most unripe stage and S4 the completely ripe stage. Determinations of total phenolic compounds, free radical scavenging activities and total flavonoid contents using spectrophotometric methods were done. Also, the tentative identification of phytochemicals during fruit ripening was done using UPLC-MS-MS. Total phenolic compound (TPC) content ranged from 7.24 to 12.53 mg gallic acid equivalents per gram of fresh weight (mg GAE/ g FW). Total flavonoids (TF) contents ranged from 0.163 to 0.23 mg of quercetin equivalents per g FW (mg QE/g FW). Free radical scavenging activity against DPPH and ABTS radicals varied from 40.80 to 53.68 and from 22.29 to 37.76 mmol Trolox equivalents g FW (mmol TE/g FW), respectively. Antioxidant assay in vitro by FRAP (ferric reducing antioxidant power) method showed that S3 was the highest level with antioxidant power while S4 was the lowest with Red ripeness stage showed the lowest contents for all determinations. Mass spectrometry allowed detection of 26 compounds, including phenolics, alkaloids and saponins. Afzelin, Kaempferol 3-neohesperidoside and the four saponins identified were present in all ripeness stages. Preliminary phytochemical identi- fication and the spectrophotometric determinations showed that the pericarp of C. radicalis presented antioxidants and compounds related to alkaloids, phenolics and saponins. The presence and abundance of each phytochemical regarding each ripeness stage should be considered.  相似文献   

12.
Soil contamination by toxic trace metal elements, like barium (Ba), may stimulate various undesirable changes in the metabolic activity of plants. The plant responses are fast and with, direct or indirect, generation of reactive oxygen species (ROS). To cope with the stress imposed by the ROS production, plants developed a dual cellular system composed of enzymatic and non-enzymatic players that convert ROS, and their by-products, into stable nontoxic molecules. To assess the Ba stress response of two Brassicaceae species (Brassica juncea, a glycophyte, and Cakile maritime, a halophyte), plants were exposure to different Ba concentrations (0, 100, 200, 300 and 500 μM). The plants response was evaluated through their morphology and development, the determination of plant leaves antioxidant enzymatic activities and by the production of plants secondary metabolites. Results indicated that the two Brassicaceae species have the ability to survive in an environment containing Ba (even at 500 μM). The biomass production of C. maritima was slightly affected whereas an increase in biomass B. juncea was noticed. The stress imposed by Ba activated the antioxidant defense system in the two species, noticed by the changes in the leaves activity of catalase (CAT), ascorbate peroxidase (APX) and guaicol peroxidase (GPX), and of the secondary metabolites, through the production of total phenols and flavonoids. The enzymatic response was not similar within the two plant species: CAT and APX seem to have a more important role against the oxidative stress in C. maritima while in B. juncea is GPX. Overall, total phenols and flavonoids production was more significant in the plants aerial part than in the roots, of the both species. Although the two Brassicaceae species response was different, in both plants catalytic and non-catalytic transformation of ROS occurs, and both were able to overcome the Ba toxicity and prevent the cell damage.  相似文献   

13.
Three Hypericum perforatum hairy root lines (HR B, HR F and HR H) along with non-transformed roots were analyzed for phenolic compounds composition and in vitro enzyme inhibitory properties. In silico molecular modeling was performed to predict the interactions of the most representative phenolic compounds in HR clones with enzymes related to depression, neurodegeneration and diabetes. Chromatographic analyses revealed that HR clones represent an efficient source of quinic acid and hydroxybenzoic acids, epicatechin and procyanidin derivatives, quercetin and kaempferol glycosides, as well numerous xanthones. In vitro antidepressant activity of HR extracts through monoamine oxidase A (MAO-A) inhibition was attributed to the production of oxygenated and prenylated xanthones. The neuroprotective potential of HR extracts was related to the accumulation of quercetin 6-C-glucoside, epicatechin, procyanidins and γ-mangostin isomers as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Vanillic acid and prenylated xanthones in HR clones as promising inhibitors of tyrosinase additionally contributed to the neuroprotective activity. Five preeminent xanthones in HR (γ-mangostin, mangiferin, garcinone C, garcinone E and 1,3,7-trihydroxy-6-metoxy-8-prenyl xanthone) along with the flavonol quercetin 6-C-glucoside effectively inhibited α-amylase and α-glucosidase indicating the antidiabetic properties of HR extracts. Transgenic roots of H. perforatum can be exploited for the preparation of novel phytoproducts with multi-biological activities.  相似文献   

14.
Drought stress has become more common in recent years as a result of climate change impacts on the production of banana crops and other fruit trees. The growth and productivity of Musa spp are severely impacted by the gradual degradation of water resources and the erratic distribution pattern of annual precipitation amount. The aim of the work includes increased drought tolerance in light of water scarcity in the world as a result of the bananas’ being gluttonous for water needs. This investigation was carried out from 2019 to 2020 to study the effect of potassium silicate on morphological growth and biochemical parameters of Musa acuminata L under drought stress by PEG. As a result, drought stress reduced the morphological characteristics such as shoots number, shoot length, roots number, and survival percentage and biochemical characteristics such as chlorophyll a, b, carotenoids, stomatal status, and RWC. While proline content increased in the leaf of M. acuminata L. Media complemented with K2SiO3 (2 to 6 mM) either individually or in combination with PEG led to an improvement in all morphological and biochemical characteristics. The activities of CAT, POD, and PPO enzymes increased signifi- cantly compared to control. Furthermore, the lowest PPO, CAT, and POD activity were achieved. Additionally, K2SiO3 treatments under drought stress successfully enhanced the leaf stomatal behavior. Our results suggest that K2SiO3 can help to maintain plant integrity in the tested cultivar under drought stress.  相似文献   

15.

Arsenic (As) contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world. Therefore, the present study was designed to investigate the individual as well as the combined effects of exogenous silicon (Si) and sodium nitroprusside (SNP), a nitric oxide (NO) donor, on plant growth, metabolites, and antioxidant defense systems of radish (Raphanus sativus L.) plants under three different concentrations of As stress, i.e., 0.3, 0.5, and 0.7 mM in a pot experiment. The results showed that As stress reduced the growth parameters of radish plants by increasing the level of oxidative stress markers, i.e., malondialdehyde and hydrogen peroxide. However, foliar application of Si (2 mM) and pretreatment with SNP (100 µM) alone as well as in combination with Si improved the plant growth parameters, i.e., root length, fresh and dry weight of plants under As stress. Furthermore, As stress also reduced protein, and metabolites contents (flavonoids, phenolic and anthocyanin). Activities of antioxidative enzymes such as catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD), and polyphenol oxidase (PPO), as well as the content of non-enzymatic antioxidants (glutathione and ascorbic acid) decreased under As stress. In most of the parameters in radish, As III concentration showed maximum reduction, as compared to As I and II concentrations. However, the individual and combined application of Si and NO significantly alleviated the As-mediated oxidative stress in radish plants by increasing the protein, and metabolites content. Enhancement in the activities of CAT, APX, POD and PPO enzymes were recorded. Contents of glutathione and ascorbic acid were also enhanced in response to co-application of Si and NO under As stress. Results obtained were more pronounced when Si and NO were applied in combination under As stress, as compared to their individual application. In short, the current study highlights that Si and NO synergistically regulate plant growth through lowering the As-mediated oxidative stress by upregulating the metabolites content, activity of antioxidative enzymes and non-enzymatic antioxidants in radish plants.

  相似文献   

16.
Xinru He  Qiong Ding  Bing Sun  Yongjun Fei  Die Hu 《Phyton》2021,90(6):1673-1684
Four different ratios of river sand, ceramic pellets, vermiculite and perlite (1:1), and field soil were selected as the substrates in this experiment, and four gradient levels of root waterlogging, half waterlogging, full waterlogging and normal were set to investigate the effects of different gradients of waterlogging stress on the root morphology of Taxus chinensis var. mairei seedlings under different substrates. In this study, the root anatomical structure of Taxus chinensis var. mairei under different waterlogging stress was observed by the paraffin section method. The roots of T. chinensis var. mairei were diarch, with no pith and resin canals. There was a large number of tannins in the pericycle of the aerial adventitious roots of seedlings adapted to waterlogging. Also, the endodermis has obvious casparian strip thickening, and there were 4-5 layers of large parenchymatous cells in the close to the inner side of the pericycle in the vascular cylinder, which could increase the storage capacity, and transport capacity of the root. Under the treatment of root waterlogging stress, the development of plant roots in the mixed substrate of vermiculite and, perlite was the earliest. Under half waterlogging stress, T. chinensis var. mairei seedlings treated with various substrates all could better adapt to the environment of waterlogging stress. Under the stress of fully waterlogging, the roots of seedlings planted in river sand substrate developed secondary growth.  相似文献   

17.
Appropriate knowledge of the parental cultivars is a pre-requisite for a successful breeding program. This study characterized fruit yield, quality attributes, and molecular variations of ten tomato cultivars during three consecutive generations under greenhouse conditions. Peto 86, Castle Rock, and Red Star cultivars showed the highest fruit yield (kg/plant), total phenolic compounds (TPC), and sap acidity. Principal component analysis categorized the evaluated fruit yield into three groups based on their quality attributes. A robust positive correlation appeared among traits inside each group. A positive correlation was likewise noticed between the first and the second groups. However, a negative correlation was detected between the first, the second and the third group. Molecular profiling, using seven inter-simple sequence repeat (ISSR) primers, produced 60 loci, including 49 polymorphic loci. The molecular analysis also pinpointed the highest genetic similarity (0.92) between P73 and Moneymaker, while the lowest genetic similarity (0.46) was observed between Castle Rock and Moneymaker. The cultivars P73 and Moneymaker showed the lowest genetic distance (2.24), while the highest genetic distance (5.92) was observed between Super Marmand and Peto86, on the one hand, and between Castle Rock and Moneymaker, on the other hand. The chemical analysis of fruit sap indicated the highest levels of TPC, total flavonoids, anthocyanin, ascorbic acid and total soluble solids in Peto 86 and Castle Rock cultivars. Phylogeny analysis of tomato cultivars based on morphological and molecular attributes indicated four distinct clades. Peto 86, Castle Rock, and Red star cultivars can be recommended for the tomato hybridization breeding programs in the future, with other tomato cultivars as potentially high-yielding parents.  相似文献   

18.
Cyclophilin (CYP) plays an important role in plant response to stress, and OsCYP2, one gene of cyclophlilin family, is involved in auxin signal transduction and stress signaling in rice. However, the mechanism that OsCYP2 is involved in rice response to low temperature is still unclear. We identified a new OsCYP2 allelic mutant, lrl3, with fewer lateral roots, and the differences in shoot height, primary root length and adventitious root length increased with the growth process compared to the wild-type plant. Auxin signaling pathway was also affected and became insensitive to gravity. The transgenic rice plants with over-expression of OsCYP2 were more tolerant to low temperature than the wild-type plants, suggesting that OsCYP2 was involved in the low temperature response in rice. In addition, OsCYP2 negatively regulated the expression of OsTPS38, a terpene synthase gene, and was dependent on the OsCDPK7-mediated pathway in response to low temperature stress. OsTPS38- overexpressed transgenic line ox-2 was more sensitive to low temperature. Therefore, OsCYP2 may negatively regulate OsTPS38 through an OsCDPK7-dependent pathway to mediate the response to low temperature in rice. These results provide a new basis for auxin signaling genes to regulate rice response to low temperature stress.  相似文献   

19.
In the Ecuadorian coast one of the most destructive diseases of the pachaco is vascular wilt or stem rot caused by Ceratocystis complex, so the aim of this study was to determine the factors that affect the efficiency of the reaction of bark pachaco to this disease. This research was conducted under laboratory conditions, using trees pachaco S38, S41, S98, AE-1, AE-2 and AE-3, and pathogenic species Ceratocystis paradoxa and C. moniliformis. The method utilized was tissue stem bark,with bark sections with 4.5 cm2, and a suspension of 3x104 units infection and remained in a humid chamber for 96 hours at 25 ± 5 °C. Were determined grades of resistance/ susceptibility using a scale from 0 to 4, depending on the amount of mycelia and peritecio in each plant sample. Three factors were used: four colonies obtained by several transfers from each fungal specie, four ages of colonies of each fungal specie and four volumes of inoculum applied (units of infection), using for each experiment separately Completely Randomized Design with 4 replications factorial arrangement. For comparison between treatment means was used Tukey test at 5% probability of error. For future trials using this technique, you could use 30-day colonies for C. paradoxa and 40 days for C. moniliformis, and an application volume of 100 μL/cm2, it would improve the level of response for the formation of perithecium and mycelia in samples cortex.  相似文献   

20.
The agricultural sector, and particularly the horticultural production, has a singular importance in agriculture, considering that it ranks second on agricultural products, nationally and worldwide. Fungal diseases are one of the major causes of vegetable loss during storage, reducing their nutritional value, quality and sale price. Vegetables are usually exposed to diverse treatments with chemical products before storage; as a result, fungal populations develop an increased resistance over time becoming more difficult to control. Because of this, research efforts toward finding more suitable chemicals to control fungal diseases are needed. Natural extracts may be an alternative solve this problem. In the present investigation the fungicidal activity of aqueous and ethanol extracts of Agave scabra was evaluated on the growth of Botrytis cinerea, Mucor sp., Aspergillus niger, Fusarium sp. and Penicillium sp., whose strains were isolated from potato and tomato. To assess their effects, the agar-dilution and agar-well techniques were performed. The ethanol extract was more effective against Botrytis cinerea and Mucor sp. when the agar-well method was used. However, when using the agar-dilution method the ethanol extract of Agave scabra inhibited the growth of Botrytis cinerea, Mucor sp. and Penicillium sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号