首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chromosomal deficiencies are a useful genetic tool in fine-scale genetic mapping and the integration of physical and visible marker genetic maps. Viable overlapping deficiencies may permit gene cloning by subtractive procedures and provide a means of analyzing the functional importance of different chromosomal regions. A method is described for isolation of deficiencies in the Arabidopsis genome which encompass specific loci and other extended chromosomal regions. The technique employs pollen mutagenized by γ-irradiation to pollinate marker lines homozygous for recessive mutations. Deficiencies at specific loci were detected by screening for marker phenotypes in the F(1). Screening for lethal mutations in the F(1)/F(2) confirmed specific deficiencies and revealed other deficiencies that did not overlap the marker loci. Further evidence for such mutations was provided by distorted F(2) segregation of the chromosomal markers linked to putative deficiencies. Maintainable (transmissible) and non-transmissible deficiencies were demonstrated by their pattern of inheritance in subsequent generations.  相似文献   

2.
3.
4.
5.
6.
A new dimension to the regulation of energy balance has come from the identification of the ob (obese) gene and its protein product, leptin. Leptin is produced primarily in white adipose tissue, but synthesis also occurs in brown fat and the placenta. Several physiological functions have been described for leptin‐the inhibition of food intake, the stimulation/maintenance of energy expenditure, as a signal of energy reserves to the reproductive system, and as a factor in haematopoiesis. The production of leptin by white fat is influenced by a number of factors, including insulin and glucocorticoids (which are stimulatory), and fasting, cold exposure and ß‐adrenoceptor agonists (which are inhibitory). A key role in the regulation of leptin production is envisaged for the sympathetic nervous system, operating through ß3‐adreno‐ceptors. The leptin receptor gene is expressed in a wide range of tissues, and several splice variants are evident. A long form variant (Ob‐Rb) with an intracellular signalling domain is found particularly in the hypothalamus. Leptin exerts its central effects through neuropeptide Y, and through the glucagon‐like peptide‐1 and melanocortin systems, but it may also interact with other neuroendocrine pathways. The role and function of the leptin system in agricultural animals has not been established, but it offers a potential new target for the manipulation of body fat.  相似文献   

7.
8.
Light is the energy source for plant photosynthesis and influences plant growth and development. Through multiple photoreceptors, plant interprets light signals through various downstream phytohormones such as auxin. Recently, Chen et al. (2020) uncover a new layer of regulation in IPyA pathway of auxin biosynthesis by light. Here we highlight recent studies about how light controls plant growth through regulating auxin biosynthesis and signaling.  相似文献   

9.
Lucy I. Crouch  Michael R. Jones 《BBA》2012,1817(2):336-352
In well-characterised species of the Rhodobacter (Rba.) genus of purple photosynthetic bacteria it is known that the photochemical reaction centre (RC) is intimately-associated with an encircling LH1 antenna pigment protein, and this LH1 antenna is prevented from completely surrounding the RC by a single copy of the PufX protein. In Rba. veldkampii only monomeric RC–LH1 complexes are assembled in the photosynthetic membrane, whereas in Rba. sphaeroides and Rba. blasticus a dimeric form is also assembled in which two RCs are surrounded by an S-shaped LH1 antenna. The present work established that dimeric RC–LH1 complexes can also be isolated from Rba. azotoformans and Rba. changlensis, but not from Rba. capsulatus or Rba. vinaykumarii. The compositions of the monomers and dimers isolated from these four species of Rhodobacter were similar to those of the well-characterised RC–LH1 complexes present in Rba. sphaeroides. Pigment proteins were also isolated from strains of Rba. sphaeroides expressing chimeric RC–LH1 complexes. Replacement of either the Rba. sphaeroides LH1 antenna or PufX with its counterpart from Rba. capsulatus led to a loss of the dimeric form of the RC–LH1 complex, but the monomeric form had a largely unaltered composition, even in strains in which the expression level of LH1 relative to the RC was reduced. The chimeric RC–LH1 complexes were also functional, supporting bacterial growth under photosynthetic conditions. The findings help to tease apart the different functions of PufX in different species of Rhodobacter, and a specific protein structural arrangement that allows PufX to fulfil these three functions is proposed.  相似文献   

10.
Faithful DNA replication maintains genome stability in dividing cells and from one generation to the next. This is particularly important in plants because the whole plant body and reproductive cells originate from meristematic cells that retain their proliferative capacity throughout the life cycle of the organism. DNA replication involves large sets of proteins whose activity is strictly regulated, and is tightly linked to the DNA damage response to detect and respond to replication errors or defects. Central to this interconnection is the replicative polymerase DNA Polymerase ϵ (Pol ϵ) which participates in DNA replication per se, as well as replication stress response in animals and in yeast. Surprisingly, its function has to date been little explored in plants, and notably its relationship with DNA Damage Response (DDR) has not been investigated. Here, we have studied the role of the largest regulatory sub-unit of Arabidopsis DNA Pol ϵ: DPB2, using an over-expression strategy. We demonstrate that excess accumulation of the protein impairs DNA replication and causes endogenous DNA stress. Furthermore, we show that Pol ϵ dysfunction has contrasting outcomes in vegetative and reproductive cells and leads to the activation of distinct DDR pathways in the two cell types.  相似文献   

11.
12.
Here we demonstrate that the presence of the L-domain in calpastatins induces biphasic interaction with calpain. Competition experiments revealed that the L-domain is involved in positioning the first inhibitory unit in close and correct proximity to the calpain active site cleft, both in the closed and in the open conformation. At high concentrations of calpastatin, the multiple EF-hand structures in domains IV and VI of calpain can bind calpastatin, maintaining the active site accessible to substrate. Based on these observations, we hypothesize that two distinct calpain–calpastatin complexes may occur in which calpain can be either fully inhibited (I) or fully active (II). In complex II the accessible calpain active site can be occupied by an additional calpastatin molecule, now a cleavable substrate. The consequent proteolysis promotes the accumulation of calpastatin free inhibitory units which are able of improving the capacity of the cell to inhibit calpain. This process operates under conditions of prolonged [Ca2 +] alteration, as seen for instance in Familial Amyotrophic Lateral Sclerosis (FALS) in which calpastatin levels are increased. Our findings show that the L-domain of calpastatin plays a crucial role in determining the formation of complexes with calpain in which calpain can be either inhibited or still active. Moreover, the presence of multiple inhibitory domains in native full-length calpastatin molecules provides a reservoir of potential inhibitory units to be used to counteract aberrant calpain activity.  相似文献   

13.
14.
15.
Literature and own data on central effects of regulatory peptides (155 substances from 32 families) have been analyzed. Peptides produced by peripheral tissues affect the brain through the almost impermeable for them blood–brain barrier and evoke numerous central effects. The mechanisms of this impact are as follows: peptides bind to specific receptors located on vagal afferent terminals and in the circumventricular organs as well as (to a lesser extent) penetrate into the brain with the aid of specific transport systems or by simple diffusion. The number of these trans-barrier communications depends on the evolutionary age of the regulated physiological function: the more ancient the function is, the greater number of peripheral peptides are involved in such trans-barrier communications.  相似文献   

16.
17.
18.
19.
The chloroplast ATP synthase synthesizes ATP from ADP and free phosphate coupled by the electrochemical potential across the thylakoid membrane in the light. The light-dependent regulation of ATP synthase activity is carried out in part through redox modulation of a cysteine disulfide bridge in CF1 gamma-subunit. In order to investigate the function of the redox regulatory domain and the physiological significance of redox modulation for higher plants, we designed four mutations in the redox regulatory domain of the gamma-subunit to create functional mimics of the permanently reduced form of the gamma-subunit. While the inability to reduce the regulatory disulfide results in lower photosynthesis and growth, unexpectedly, the results reported here show that inability to reoxidize the dithiol may not be of any direct detriment to plant photosynthetic performance or growth.  相似文献   

20.
Understanding the mechanisms that determine the development of a bilaterally symmetrical trait is crucial to the interpretation of patterns of fluctuating asymmetry (FA). Experimental and theoretical studies have indicated that feedback mechanisms both within and between developing traits, may participate in the developmental control of asymmetry. This study provides evidence that naturally occurring patterns of FA are affected by interactions between different traits. We found positive between‐trait correlations in signed FA values for tibia lengths on different legs, but not between wing and tibia FA in two moth species. Further research should investigate if trait functionality is related to this presumed correlated development. An extension of the Rashevsky–Turing model of morphogenesis further showed that correlations between the signed FA values can be generated by feedback mechanisms that regulate growth patterns between traits. We argue that such feedback mechanisms can be expected to be widespread and show that between‐trait correlations in the unsigned FA then become confounded with correlations in the signed FA. In addition, correlated development appeared to invalidate the use of the hypothetical repeatability to translate correlations between the unsigned FA values into correlations in the presumed underlying developmental instability. In conclusion, the presence of an organism‐wide asymmetry, which are most frequently found in morphologically integrated traits, may be even less common than previously thought. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号