首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mRNA modification N6-methyladenosine(m6A)plays vital roles in plant development and biotic and abiotic stress responses.The RNA m6A demethylase ALKBH9 B can remove m6A in alfalfa mosaic virus RNA and plays roles in alfalfa mosaic virus infection in Arabidopsis.However,it is unknown whether ALKBH9 B also exhibits demethylation activity and has a biological role in endogenous plant mRNA.We demonstrated here that mRNA m6A modification is in...  相似文献   

2.
真核生物mRNA转录后修饰可调控许多基因的遗传信息,植物m6A甲基化研究正成为关注的新热点。m6A结合蛋白 (m6A readers) 调节m6A修饰的特异性,通常具有YTH (YT521-B homology) 结构域,在拟南芥中被命名为ECT结构域 (evolutionarily conserved C-terminal region ECT domain) 。目前ECT基因已在拟南芥和水稻等植物中检测到,但该基因家族在水稻中的成员及生物学功能还缺乏研究。本研究通过水稻ECT基因家族的全基因组分析,鉴定出12个OsECT基因,具有1个保守的基序,多位于蛋白质氨基酸序列C-端。共线性分析表明,在水稻基因组内OsECT-c与OsECT-e发生了重复事件,在物种间ECT同源基因对可能是在双子叶和单子叶植物分化后形成。同源基因对OsECT的Ka/Ks < 1,表明OsECT基因家族在进化过程中可能经历了较强的纯化选择压力。表达模式分析显示,OsECT-b、OsECT-c、OsECT-e和OsECT-j在水稻生长初期各个组织均保持较高的表达水平,OsECT-g在干旱处理后表达量显著下调。因此,OsECT基因在水稻生长发育和逆境胁迫中可能发挥着重要作用。本研究为今后OsECT基因在水稻的节水抗旱机制研究和相关抗逆育种提供了重要的理论基础。  相似文献   

3.
4.
Chlorella virus SC-1A encodes at least six DNA methyltransferases (MTases): four N6-methyldeoxyadenine (m6A) MTases, M- CviSI (TGCmA), M· CviSII CmATG), M· CviSIII (TCGmA) and MmCviSIV (GmATC), one 5-methyldeoxycytosine (m5C) MTase, M· CviSV (RCmCG), and one nonfunctional m5C MTase, M· CviSVI, which is homologous to the MTase M· CviJI [RGmC(T/C/G)] produced by another chlorella virus IL-3A. Genes encoding three of the SC-1A m6A MTases (M·CviSI, M· CviSII, and M· CviSIII) and the nonfunctional m5C MTase were cloned and sequenced. Neither M· CviSI nor M· CviSIII genes hybridized to genes for their respective isomethylomers, M· CviRI and M· CviBIII, from other chlorella viruses. However, the M· CviSII gene hybridized strongly to its M· CviAII isomethylomer gene from virus PBCV-1. Like the prototype chlorella virus PBCV-1, the SC-1A genome contains inverted terminal repeats, one of which is adjacent to the nonfunctional m5C MTase. The three cloned m6A MTase genes are distributed throughout the approx. 345 kb SC-1A genome.  相似文献   

5.
中枢神经系统控制高级神经活动,例如知觉、运动、语言和认知等。作为人体神经系统最重要的部分,其正常的发育及功能活动在人体发育过程中至关重要。更好地了解调节神经系统发育的基本分子途径以及对大脑的基本生物学理解,可以帮助诊断和治疗各种神经疾病。RNA分子m6A修饰状态的动态变化及其功能主要由m6A甲基转移酶、m6A去甲基化酶和m6A阅读蛋白等蛋白质复合物共同调控。本文对此进行了详细介绍,并详细概述m6A修饰对神经发育的影响,重点介绍表观转录组学在基因调控中的作用。此外,还强调m6A修饰在神经发育过程中的生物学意义,包括神经发生、神经分化、轴突导向、突触形成及突触可塑性等。根据不同的实验原理和实验技术,本文详细介绍了最近发展的几种检测m6A位点的技术,每种方法都有各自的优点,据此将能够更广泛和更深入地研究这一修饰,并选择合适的方法去研究课题。RNA m6A甲基化是神经科学领域的一个新前沿。近年来,随着m6A检测技术的发展,m6A甲基化在神经系统发育过程中及神经疾病发生中的作用研究逐渐成为热点,具有很大潜力,为神经发育和神经疾病的研究提供了新视角。  相似文献   

6.
李语丽于军  宋述慧 《遗传》2013,35(12):1340-1351
RNA酶促共价修饰研究, 尤其是m6A(6-甲基腺嘌呤), 是RNA生物学研究的一个新兴领域。m6A是真核生物mRNA内部序列中最常见的一种转录后修饰形式, 由包含3个独立组分的复合物mRNA: m6A甲基转移酶催化生成。最新研究发现肥胖相关蛋白FTO可以脱掉m6A上的甲基, 表明该甲基化过程是可逆的。抑制或敲除m6A甲基转移酶会引起重要的表型变化, 但是由于过去的检测方法受限, m6A确切的作用机制目前为止还不甚清楚。二代测序技术结合免疫沉淀方法为大规模检测m6A修饰并研究其作用机制提供了可能。文章主要综述了m6A的发现史、生成机制、组织和基因组分布、检测方法、生物学功能等及其最新研究进展, 并通过比较3种IP-seq技术和数据分析的异同及优缺点, 对m6A这种RNA表观修饰研究中尚未解决的问题进行了讨论。  相似文献   

7.
8.
Copper(II), nickel(II), zinc(II), manganese(II), and magnesium(II) complexes of t6A (N-[9-β-D-ribofuranosylpurin-6-yl)carbamoyl] threonine and t6Ade (N6(threoninocarbonyl)adenine) were studied by potentiometric and spectroscopic methods. It was found that t6Ade has three dissociable protons in the accessible pH range (N1 and N9 of purine and carboxylate), while only two pK values are characteristic of t6A. Magnesium(II) and manganese(II) do not interact effectively with these ligands, but copper(II) and nickel(II) ions form very stable complexes with the coordination of purine N1, deprotonated amide nitrogen, and carboxy late oxygen donors.  相似文献   

9.
10.
11.
To understand the molecular mechanism of male reproductive development in the model crop rice,we isolated a complete male sterile mutant post-meiotic deficient anther1 (pda1) from a γ-ray-treated rice mutant library.Genetic analysis revealed that the pda1 mutant was controlled by a recessive nucleus gene.The pda1 mutant anther seemed smaller with white appearance.Histological analysis demonstrated that the pda1 mutant anther undergoes normal early tapetum development without obvious altered meiosis.However,the pda1 mutant displayed obvious defects in postmeiotic tapetal development,abnormal degeneration occurred in the tapetal cells at stage 9 of anther development.Also we observed abnormal lipidic Ubisch bodies from the tapetal layer of the pda1 mutant,causing no obvious pollen exine formation.RT-PCR analysis indicated that the expression of genes involved in anther development including GAMYB,OsC4 and Wax-deficient anther1 (WDA1) was greatly reduced in the pda1 mutant anther.Using map-based cloning approach,the PDA1 gene was finely mapped between two markers HLF610 and HLF627 on chromosome 6 using 3,883 individuals of F2 population.The physical distance between HLF610 and HLF627 was about 194 kb.This work suggests that PDA1 is required for post-meiotic tapetal development and pollen/microspore formation in rice.  相似文献   

12.
自稳态平衡是机体生命活动的重要基础,在维持机体的正常生理功能中发挥重要作用。血管疾病中的稳态失衡受物理、化学、生物等内外环境改变及致病因素的影响,其中氧稳态、血流稳态、糖脂代谢稳态在内环境的影响中较为突出,由此引起的一系列表观遗传修饰将导致血管结构和功能的异常。表观遗传学中的DNA甲基化与血管疾病的发生发展密不可分。此外,5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5hmC)及N6-甲基腺嘌呤(N6-methyladenine, m6A)作为新的修饰碱基,将为表观遗传学研究提供新的思路。文章主要对DNA甲基化修饰变异在血管疾病稳态失衡方面的研究进展进行了阐述。  相似文献   

13.
In higher plants, timely degradation of tapetal cells, the innermost sporophytic cells of the anther wall layer, is a prerequisite for the development of viable pollen grains. However, relatively little is known about the mechanism underlying programmed tapetal cell development and degradation. Here, we report a key regulator in monocot rice (Oryza sativa), PERSISTANT TAPETAL CELL1 (PTC1), which controls programmed tapetal development and functional pollen formation. The evolutionary significance of PTC1 was revealed by partial genetic complementation of the homologous mutation MALE STERILITY1 (MS1) in the dicot Arabidopsis (Arabidopsis thaliana). PTC1 encodes a PHD-finger (for plant homeodomain) protein, which is expressed specifically in tapetal cells and microspores during anther development in stages 8 and 9, when the wild-type tapetal cells initiate a typical apoptosis-like cell death. Even though ptc1 mutants show phenotypic similarity to ms1 in a lack of tapetal DNA fragmentation, delayed tapetal degeneration, as well as abnormal pollen wall formation and aborted microspore development, the ptc1 mutant displays a previously unreported phenotype of uncontrolled tapetal proliferation and subsequent commencement of necrosis-like tapetal death. Microarray analysis indicated that 2,417 tapetum- and microspore-expressed genes, which are principally associated with tapetal development, degeneration, and pollen wall formation, had changed expression in ptc1 anthers. Moreover, the regulatory role of PTC1 in anther development was revealed by comparison with MS1 and other rice anther developmental regulators. These findings suggest a diversified and conserved switch of PTC1/MS1 in regulating programmed male reproductive development in both dicots and monocots, which provides new insights in plant anther development.  相似文献   

14.
Ku S  Yoon H  Suh HS  Chung YY 《Planta》2003,217(4):559-565
The tapetum plays a crucial role in pollen development. This secretory tissue produces numerous nutritive proteins necessary for pollen maturation. The tapetum, whose cells undergo programmed cell death (PCD), is completely diminished by the time the pollen is fully mature. Our previous studies on a thermosensitive genic male-sterile (TGMS) rice (Oryza sativa L.) suggested that male-sterility was due to failure in pollen development. In this paper we describe how further analysis of the TGMS rice revealed that male-sterility is associated with premature PCD of the tapetum. Cytological observations of TGMS rice anthers at various developmental stages indicated that PCD initiates at an early stage of pollen development and continues until the tapetal cells are completely degraded, resulting in pollen collapse. Transmission electron microscopy showed the morphologically distinct hallmarks of apoptosis, including cytoplasmic shrinkage, membrane blebbing, and vacuolation. Identification of DNA fragmentation using the TUNEL assay supports the hypothesis that premature PCD is associated with male-sterility in the rice. The tissue-specific feature of the thermosensitive genic male-sterile phenotype is discussed with regard to PCD during anther development.  相似文献   

15.
16.
17.
Anther infertility under high temperature (HT) conditions is a critical factor contributing to yield loss in cotton (Gossypium hirsutum). Using large‐scale expression profile sequencing, we studied the effect of HT on cotton anther development. Our analysis revealed that altered carbohydrate metabolism or disrupted tapetal programmed cell death (PCD) underlie anther sterility. Expression of the Gossypium hirsutum casein kinase I (GhCKI) gene, which encodes a homolog of casein kinase I (CKI), was induced in an HT‐sensitive cotton line after exposure to HT. As mammalian homologs of GhCKI are involved in inactivation of glycogen synthase and the regulation of apoptosis, GhCKI may be considered a target gene for improving anther fertility under HT conditions. Our studies suggest that GhCKI exhibits starch synthase kinase activity, increases glucose content in early‐stage buds and activates the accumulation of abscisic acid, thereby disturbing the balance of reactive oxygen species and eventually disrupting tapetal PCD, leading to anther abortion or indehiscence. These results indicate that GhCKI may be a key regulator of tapetal PCD and anther dehiscence, with the potential to facilitate regulation of HT tolerance in crops.  相似文献   

18.
Yang SL  Jiang L  Puah CS  Xie LF  Zhang XQ  Chen LQ  Yang WC  Ye D 《Plant physiology》2005,139(1):186-191
Previously, we reported that the TAPETUM DETERMINANT1 (TPD1) gene is required for specialization of tapetal cells in the Arabidopsis (Arabidopsis thaliana) anther. The tpd1 mutant is phenotypically identical to the excess microsporocytes1 (ems1)/extra sporogenous cells (exs) mutant. The TPD1 and EMS1/EXS genes may function in the same developmental pathway in the Arabidopsis anther. Here, we further report that overexpression of TPD1 alters the cell fates in the Arabidopsis carpel and tapetum. When TPD1 was expressed ectopically in the wild-type Arabidopsis carpel, the number of cells in the carpel increased significantly, showing that the ectopic expression of TPD1 protein could activate the cell division in the carpel. Furthermore, the genetic analysis showed that the activation of cell division in the transgenic carpel by TPD1 was dependent on EMS1/EXS, as it did not happen in the ems1/exs mutant. This result further suggests that TPD1 regulates cell fates in coordination with EMS1/EXS. Moreover, overexpression of TPD1 in tapetal cells also delayed the degeneration of tapetum. The TPD1 may function not only in the specialization of tapetal cells but also in the maintenance of tapetal cell fate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号