首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of local adaptation is rendered difficult by many evolutionary confounding phenomena (for example, genetic drift and demographic history). When complex traits are involved in local adaptation, phenomena such as phenotypic plasticity further hamper evolutionary biologists to study the complex relationships between phenotype, genotype and environment. In this perspective paper, we suggest that the common garden experiment, specifically designed to deal with phenotypic plasticity, has a clear role to play in the study of local adaptation, even (if not specifically) in the genomic era. After a quick review of some high-throughput genotyping protocols relevant in the context of a common garden, we explore how to improve common garden analyses with dense marker panel data and recent statistical methods. We then show how combining approaches from population genomics and genome-wide association studies with the settings of a common garden can yield to a very efficient, thorough and integrative study of local adaptation. Especially, evidence from genomic (for example, genome scan) and phenotypic origins constitute independent insights into the possibility of local adaptation scenarios, and genome-wide association studies in the context of a common garden experiment allow to decipher the genetic bases of adaptive traits.  相似文献   

2.
Understanding local adaptation in forest trees is currently a key research and societal priority. Geographically and ecologically marginal populations provide ideal case studies, because environmental stress along with reduced gene flow can facilitate the establishment of locally adapted populations. We sampled European silver fir (Abies alba Mill.) trees in the French Mediterranean Alps, along the margin of its distribution range, from pairs of high‐ and low‐elevation plots on four different mountains situated along a 170‐km east–west transect. The analysis of 267 SNP loci from 175 candidate genes suggested a neutral pattern of east–west isolation by distance among mountain sites. FST outlier tests revealed 16 SNPs that showed patterns of divergent selection. Plot climate was characterized using both in situ measurements and gridded data that revealed marked differences between and within mountains with different trends depending on the season. Association between allelic frequencies and bioclimatic variables revealed eight genes that contained candidate SNPs, of which two were also detected using FST outlier methods. All SNPs were associated with winter drought, and one of them showed strong evidence of selection with respect to elevation. QSTFST tests for fitness‐related traits measured in a common garden suggested adaptive divergence for the date of bud flush and for growth rate. Overall, our results suggest a complex adaptive picture for A. alba in the southern French Alps where, during the east‐to‐west Holocene recolonization, locally advantageous genetic variants established at both the landscape and local scales.  相似文献   

3.
Usually, adaptive phenotypic differentiation is paralleled by genetic divergence between locally adapted populations. However, adaptation can also happen in a scenario of nonsignificant genetic divergence due to intense gene flow and/or recent differentiation. While this phenomenon is rarely published, findings on incipient ecologically driven divergence or isolation by adaptation are relatively common, which could confound our understanding about the frequency at which they actually occur in nature. Here, we explore genome‐wide traces of divergence between two populations of the lacertid lizard Psammodromus algirus separated by a 600 m elevational gradient. These populations seem to be differentially adapted to their environments despite showing low levels of genetic differentiation (according to previously studies of mtDNA and microsatellite data). We performed a search for outliers (i.e., loci subject to selection) trying to identify specific loci with FST statistics significantly higher than those expected on the basis of overall, genome‐wide estimates of genetic divergence. We find that local phenotypic adaptation (in terms of a wide diversity of characters) was not accompanied by genome‐wide differentiation, even when we maximized the chances of unveiling such differentiation at particular loci with FST‐based outlier detection tests. Instead, our analyses confirmed the lack of genome‐wide differentiation on the basis of more than 70,000 SNPs, which is concordant with a scenario of local adaptation without isolation by environment. Our results add evidence to previous studies in which local adaptation does not lead to any kind of isolation (or early stages of ecological speciation), but maintains phenotypic divergence despite the lack of a differentiated genomic background.  相似文献   

4.
Adaptive ecological differentiation among sympatric populations is promoted by environmental heterogeneity, strong local selection and restricted gene flow. High gene flow, on the other hand, is expected to homogenize genetic variation among populations and therefore prevent local adaptation. Understanding how local adaptation can persist at the spatial scale at which gene flow occurs has remained an elusive goal, especially for wild vertebrate populations. Here, we explore the roles of natural selection and nonrandom gene flow (isolation by breeding time and habitat choice) in restricting effective migration among local populations and promoting generalized genetic barriers to neutral gene flow. We examined these processes in a network of 17 breeding ponds of the moor frog Rana arvalis, by combining environmental field data, a common garden experiment and data on variation in neutral microsatellite loci and in a thyroid hormone receptor (TRβ) gene putatively under selection. We illustrate the connection between genotype, phenotype and habitat variation and demonstrate that the strong differences in larval life history traits observed in the common garden experiment can result from adaptation to local pond characteristics. Remarkably, we found that haplotype variation in the TRβ gene contributes to variation in larval development time and growth rate, indicating that polymorphism in the TRβ gene is linked with the phenotypic variation among the environments. Genetic distance in neutral markers was correlated with differences in breeding time and environmental differences among the ponds, but not with geographical distance. These results demonstrate that while our study area did not exceed the scale of gene flow, ecological barriers constrained gene flow among contrasting habitats. Our results highlight the roles of strong selection and nonrandom gene flow created by phenological variation and, possibly, habitat preferences, which together maintain genetic and phenotypic divergence at a fine‐grained spatial scale.  相似文献   

5.
Adaptation can occur with or without genome‐wide differentiation. If adaptive loci are linked to traits involved in reproductive isolation, genome‐wide divergence is likely, and speciation is possible. However, adaptation can also lead to phenotypic differentiation without genome‐wide divergence if levels of ongoing gene flow are high. Here, we use the replicated occurrence of melanism in lava flow lizards to assess the relationship between local adaptation and genome‐wide differentiation. We compare patterns of phenotypic and genomic divergence among lava flow and nonlava populations for three lizard species and three lava flows in the Chihuahuan Desert. We find that local phenotypic adaptation (melanism) is not typically accompanied by genome‐wide differentiation. Specifically, lava populations do not generally exhibit greater divergence from nonlava populations than expected by geography alone, regardless of whether the lava formation is 5,000 or 760,000 years old. We also infer that gene flow between lava and nonlava populations is ongoing in all lava populations surveyed. Recent work in the isolation by environment and ecological speciation literature suggests that environmentally driven genome‐wide differentiation is common in nature. However, local adaptation may often simply be local adaptation rather than an early stage of ecological speciation.  相似文献   

6.
During the process of ecological speciation, reproductive isolation results from divergent natural selection and leads to a positive correlation between genetic divergence and adaptive phenotypic divergence, that is, isolation by adaptation (IBA). In natural populations, phenotypic differentiation is often autocorrelated with geographic distance, making IBA difficult to distinguish from the neutral expectation of isolation by distance (IBD). We examined these two alternatives in a dramatic case of clinal phenotypic variation in an Andean songbird, the Line‐cheeked Spinetail (Cranioleuca antisiensis). At its geographic extremes, this species shows a near threefold difference in body mass (11.5 to 31.0 g) with marked plumage differences. We analysed phenotypic, environmental and genetic data (5,154 SNPs) from 172 individuals and 19 populations sampled along its linear distribution in the Andes. We found that body mass was tightly correlated with environmental temperature, consistent with local adaptation as per Bergmann's rule. Using a PSTFST analysis, we found additional support for natural selection driving body mass differentiation, but these results could also be explained by environment‐mediated phenotypic plasticity. When we assessed the relative support for patterns of IBA and IBD using variance partitioning, we found that IBD was the best explanation for genetic differentiation along the cline. Adaptive phenotypic or environmental divergence can reduce gene flow, a pattern interpreted as evidence of ecological speciation's role in diversification. Our results provide a counterexample to this interpretation. Despite conditions conducive to ecological speciation, our results suggest that dramatic size and environmental differentiation within C. antisiensis are not limiting gene flow.  相似文献   

7.
Identifying the genetic basis of phenotypic variation and its relationship with the environment is key to understanding how local adaptations evolve. Such patterns are especially interesting among populations distributed across habitat gradients, where genetic structure can be driven by isolation by distance (IBD) and/or isolation by environment (IBE). Here, we used variation in ~1,600 high‐quality SNPs derived from paired‐end sequencing of double‐digest restriction site‐associated DNA (ddRAD‐Seq) to test hypotheses related to IBD and IBE in the Yucatan jay (Cyanocorax yucatanicus), a tropical bird endemic to the Yucatán Peninsula. This peninsula is characterized by a precipitation and vegetation gradient—from dry to evergreen tropical forests—that is associated with morphological variation in this species. We found a moderate level of nucleotide diversity (π = .008) and little evidence for genetic differentiation among vegetation types. Analyses of neutral and putatively adaptive SNPs (identified by complementary genome‐scan approaches) indicate that IBD is the most reliable explanation to account for frequency distribution of the former, while IBE has to be invoked to explain those of the later. These results suggest that selective factors acting along a vegetation gradient can promote local adaptation in the presence of gene flow in a vagile, nonmigratory and geographically restricted species. The putative candidate SNPs identified here are located within or linked to a variety of genes that represent ideal targets for future genomic surveys.  相似文献   

8.
Accurately detecting signatures of local adaptation using genetic‐environment associations (GEAs) requires controlling for neutral patterns of population structure to reduce the risk of false positives. However, a high degree of collinearity between climatic gradients and neutral population structure can greatly reduce power, and the performance of GEA methods in such case is rarely evaluated in empirical studies. In this study, we attempted to disentangle the effects of local adaptation and isolation by environment (IBE) from those of isolation by distance (IBD) and isolation by colonization from glacial refugia (IBC) using range‐wide samples in two white pine species. For this, SNPs from 168 genes, including 52 candidate genes for growth and phenology, were genotyped in 133 and 61 populations of Pinus strobus and P. monticola, respectively. For P. strobus and using all 153 SNPs, climate (IBE) did not significantly explained among‐population variation when controlling for IBD and IBC in redundancy analyses (RDAs). However, 26 SNPs were significantly associated with climate in single‐locus GEA analyses (Bayenv2 and LFMM), suggesting that local adaptation took place in the presence of high gene flow. For P. monticola, we found no evidence of IBE using RDAs and weaker signatures of local adaptation using GEA and FST outlier tests, consistent with adaptation via phenotypic plasticity. In both species, the majority of the explained among‐population variation (69 to 96%) could not be partitioned between the effects of IBE, IBD, and IBC. GEA methods can account differently for this confounded variation, and this could explain the small overlap of SNPs detected between Bayenv2 and LFMM. Our study illustrates the inherent difficulty of taking into account neutral structure in natural populations and the importance of sampling designs that maximize climatic variation, while minimizing collinearity between climatic gradients and neutral structure.  相似文献   

9.
A major goal of molecular ecology is to identify the causes of genetic and phenotypic differentiation among populations. Population genomics is suitably poised to tackle these key questions by diagnosing the evolutionary mechanisms driving divergence in nature. Here, we set out to investigate the evolutionary processes underlying population differentiation in the Gulf pipefish, Syngnathus scovelli. We sampled approximately 50 fish from each of 12 populations distributed from the Gulf coast of Texas to the Atlantic coast of Florida and performed restriction‐site‐associated DNA sequencing to identify SNPs throughout the genome. After imposing quality and stringency filters, we selected a panel of 6348 SNPs present in all 12 populations, 1753 of which were not physically linked. We identified a genome‐wide pattern of isolation by distance, in addition to a more substantial genetic break separating populations in the Gulf of Mexico from those in the Atlantic. We also used several divergence outlier approaches and tests for genotype–environment correlations to identify 400 SNPs putatively involved in local adaptation. Patterns of phenotypic differentiation and variation diverged from the overall genomic pattern, suggesting that selection, phenotypic plasticity or demographic factors may be shaping phenotypes in distinct populations. Overall, our results suggest that population divergence is driven by a variety of factors in S. scovelli, including neutral processes and selection on multiple traits.  相似文献   

10.
Taxonomy is being increasingly informed by genomics. Traditionally, taxonomy has relied extensively on phenotypic traits for the identification and delimitation of species, though with a growing influence from molecular phylogenetics in recent decades. Now, genomics opens up new and more powerful tools for analysing the evolutionary history and relatedness among species, as well as understanding the genetic basis for phenotypic traits and their role in reproductive isolation. New insights gained from genomics will therefore have major effects on taxonomic classifications and species delimitation. How a genomics approach can inform a flawed taxonomy is nicely exemplified by Mason & Taylor ( 2015 ) in this issue of Molecular Ecology. They studied redpolls, which comprise a genus (Acanthis) of fringillid finches with a wide distribution in the Holarctic region, and whose species taxonomy has been a matter of much controversy for decades (Fig.  1 ). Current authoritative checklists classify them into one, two or three species, and five or six subspecies, based largely on geographical differences in phenotypic traits. Previous studies, including a recent one of the subspecies on Iceland (Amouret et al. 2015 ), have found no evidence of differentiation between these taxa in conventional molecular markers. The lack of genetic structure has been interpreted as incomplete lineage sorting among rapidly evolving lineages. Now Mason & Taylor ( 2015 ), using a large data set of genomewide SNPs, verify that they all belong to a single gene pool with a common evolutionary history, and with little or no geographical structuring. They also show that phenotypic traits used in taxonomic classifications (plumage and bill morphology) are closely associated with polygenic patterns of gene expression, presumably driven by ecological selection on a few regulatory genes. Several lessons can be learned from this study. Perhaps the most important one for taxonomy is the risk of taxonomic inflation resulting from overemphasizing phenotypic traits under local adaptation and ignoring a lack of phylogenetic signal in molecular markers.  相似文献   

11.
Numerous widespread Alpine plant species show molecular differentiation among populations from distinct regions. This has been explained as the result of genetic drift during glacial survival in isolated refugia along the border of the European Alps. Since genetic drift may affect molecular markers and phenotypic traits alike, we asked whether phenotypic differentiation mirrors molecular patterns among Alpine plant populations from different regions. Phenotypic traits can be under selection, so we additionally investigated whether part of the phenotypic differentiation can be explained by past selection and/or current adaptation. Using the monocarpic Campanula thyrsoides as our study species, a common garden experiment with plants from 21 populations from four phylogeographic groups located in regions across the Alps and the Jura Mountains was performed to test for differentiation in morphological and phenological traits. Past selection was investigated by comparing phenotypic differentiation among and within regions with molecular differentiation among and within regions. The common garden results indicated regional differentiation among populations for all investigated phenotypic traits, particularly in phenology. Delayed flowering in plants from the South-eastern Alps suggested adaptation to long sub-mediterranean summers and contrasted with earlier flowering of plants experiencing shorter growing seasons in regions with higher elevation to the West. Comparisons between molecular and phenotypic differentiation revealed diversifying selection among regions in height and biomass, which is consistent with adaptation to environmental conditions in glacial refugia. Within regions, past selection acted against strong diversification for most phenotypic traits, causing restricted postglacial adaptation. Evidence consistent with post-glacial adaptation was also given by negative correlation coefficients between several phenotypic traits and elevation of the population''s origin. In conclusion, our study suggests that, irrespective of adaptation of plants to their current environment, glacial history can have a strong and long-lasting influence on the phenotypic evolution of Alpine plants.  相似文献   

12.
Climatic variation is a key driver of genetic differentiation and phenotypic traits evolution, and local adaptation to temperature is expected in widespread species. We investigated phenotypic and genomic changes in the native range of the Asian tiger mosquito, Aedes albopictus. We first refine the phylogeographic structure based on genome-wide regions (1,901 double-digest restriction-site associated DNA single nucleotide polymophisms [ddRAD SNPs]) from 41 populations. We then explore the patterns of cold adaptation using phenotypic traits measured in common garden (wing size and cold tolerance) and genotype–temperature associations at targeted candidate regions (51,706 exon-capture SNPs) from nine populations. We confirm the existence of three evolutionary lineages including clades A (Malaysia, Thailand, Cambodia, and Laos), B (China and Okinawa), and C (South Korea and Japan). We identified temperature-associated differentiation in 15 out of 221 candidate regions but none in ddRAD regions, supporting the role of directional selection in detected genes. These include genes involved in lipid metabolism and a circadian clock gene. Most outlier SNPs are differently fixed between clades A and C, whereas clade B has an intermediate pattern. Females are larger at higher latitude yet produce no more eggs, which might favor the storage of energetic reserves in colder climate. Nondiapausing eggs from temperate populations survive better to cold exposure than those from tropical populations, suggesting they are protected from freezing damages but this cold tolerance has a fitness cost in terms of egg viability. Altogether, our results provide strong evidence for the thermal adaptation of A. albopictus across its wide temperature range.  相似文献   

13.
The distribution, spatial pattern and population dynamics of a species can be influenced by differences in the environment across its range. Spatial variation in climatic conditions can cause local populations to undergo disruptive selection and ultimately result in local adaptation. However, local adaptation can be constrained by gene flow and may favour resident individuals over migrants—both are factors critical to the assessment of invasion potential. The Natal fruit fly (Ceratitis rosa) is a major agricultural pest in Africa with a history of island invasions, although its range is largely restricted to south east Africa. Across Africa, C. rosa is genetically structured into two clusters (R1 and R2), with these clusters occurring sympatrically in the north of South Africa. The spatial distribution of these genotypic clusters remains unexamined despite their importance for understanding the pest's invasion potential. Here, C. rosa, sampled from 22 South African locations, were genotyped at 11 polymorphic microsatellite loci and assessed morphologically using geometric morphometric wing shape analyses to investigate patterns of population structure and determine connectedness of pest‐occupied sites. Our results show little to no intraspecific (population) differentiation, high population connectivity, high effective population sizes and only one morphological type (R2) within South Africa. The absence of the R1 morphotype at sites where it was previously found may be a consequence of differences in thermal niches of the two morphotypes. Overall, our results suggest high invasion potential of this species, that area‐wide pest management should be undertaken on a country‐wide scale, and that border control is critical to preventing further invasions.  相似文献   

14.
Geographic patterns of genetic differentiation have long been used to understand population history and to learn about the biological mechanisms of adaptation. Here we present an examination of genomic patterns of differentiation between northern and southern populations of Australian and North American Drosophila simulans, with an emphasis on characterizing signals of parallel differentiation. We report on the genomic scale of differentiation and functional enrichment of outlier SNPs. While, overall, signals of shared differentiation are modest, we find the strongest support for parallel differentiation in genomic regions that are associated with regulation. Comparisons to Drosophila melanogaster yield potential candidate genes involved in local adaptation in both species, providing insight into common selective pressures and responses. In contrast to D. melanogaster, in D. simulans we observe patterns of variation that are inconsistent with a model of temperate adaptation out of a tropical ancestral range, highlighting potential differences in demographic and colonization histories of this cosmopolitan species pair.  相似文献   

15.
Biotrophic fungal pathogens are expected to have adapted to their host plants for phenological synchrony, to optimize the possibility of contacts leading to infections. We investigated the patterns and causes of variation in phenological synchrony in the oak‐powdery mildew pathosystem, a major disease in natural ecosystems. The study was carried out along an altitudinal gradient, representing a wide temperature range, in mature oak stands. Both sporulation (pathogen infective stage) and oak flushing (host susceptible stage) were delayed with increasing elevation, but with a significantly different sensitivity for the two species. This resulted in a variable host–pathogen synchrony along the gradient. A common garden experiment did not give evidence of among‐population genetic differentiation (past adaptation) for fungal phenology. This could be explained by the high phenotypic variation in phenology within host populations, precluding selection on fungal phenology at the population scale, but possibly favouring adaptation at the within‐population scale. Phenotypic plasticity was the major cause of the observed variation in the phenology of the fungal populations.  相似文献   

16.
Subtropical forests in China constitute the major expanse of evergreen broad-leaved forest in East Asia. The significant genetic divergence of the keystone tree species should be expected due to the huge geomorphological and environmental changes from west to east in subtropical China. In this study, a total of 652 individuals from 27 populations of Castanopsis fargesii throughout its natural range in mainland China were genotyped with eight chloroplast microsatellite markers to investigate genetic diversity, population differentiation, and demographic history of C. fargesii. Phylogeographic structure among populations of C. fargesii was evidenced by the permutation test, revealing that NST was significantly higher than GST . The strong genetic differentiation found among populations was well in accordance with isolation-by-distance model. In addition, significant isolation by elevation was detected among populations. Significant genetic differentiations were revealed among the west, center, and east regions by approximate Bayesian computations (ABC). The genetic divergence might reflect the regional responses to the fast and dramatic uplift of Yunnan-Guizhou Plateau and Wuyi mountain range in the Pleistocene. In the present study, contraction-expansion process was detected in the west, center, and east regions, indicating that geomorphological remodeling together with climatic changes in the Pleistocene had strong impact on genetic structure of C. fargesii.  相似文献   

17.
叶俊伟  田斌 《生物多样性》2021,29(12):1629-E3451
扁核木(Prinsepia utilis)为中国西南地区温带森林重要的木本油料植物, 但对其野生资源种群遗传结构及成因的了解严重不足。我们采用核微卫星分子标记, 对32个扁核木自然种群共377个个体的群体演化历史进行了探讨, 并评估其遗传资源。研究发现扁核木种群自西向东可划分4个遗传群组, 即喜马拉雅、横断山以及云贵高原西部和东部群组。其中, 最大的遗传分化存在于喜马拉雅和其他区域种群间。与喜马拉雅和云贵高原东部群组相比, 横断山和云贵高原西部群组混合了其他群组的遗传成分。种群动态历史分析显示中部2个群组在喜马拉雅和云贵高原东部群组形成后形成, 不同群组间的分化均发生在更新世晚期。地理隔离和环境隔离分析表明扁核木种群间的遗传分化主要由环境差异导致。环境差异分析显示不同群组间的气候存在不同程度的差异, 其中喜马拉雅和云贵高原东部群组与中部2个群组间的差异显著。此外, 结合该物种不同时期的生态位模拟数据, 我们认为喜马拉雅和云贵高原地区的遗传资源在未来需要优先保护。  相似文献   

18.
The level of gene flow is an important factor influencing genetic differentiation between populations. Typically, geographic distance is considered to be the major factor limiting dispersal and should thus only influence the degree of genetic divergence at larger spatial scales. However, recent studies have revealed the possibility for small-scale genetic differentiation, suggesting that the spatial scale considered is pivotal for finding patterns of isolation by distance. To address this question, genetic and morphological differentiation were studied at two spatial scales (range 2–13 km and range 300 m to 2 km) in the perch ( Perca fluviatilis L.) from the east coast archipelago of Sweden, using seven microsatellite loci and geometric morphometrics. We found highly significant genetic differentiation between sampled locations at both scales. At the larger spatial scale, the distance per se was not affecting the level of divergence. At the small scale, however, we found subtle patterns of isolation by distance. In addition, we also found morphological divergence between locations, congruent with a spatial separation at a microgeographic scale, most likely due to phenotypic plasticity. The present study highlights the importance of geographical scale and indicates that there might be a disparity between the dispersal capacity of a species and the actual movement of genes. Thus, how we view the environment and possible barriers to dispersal might have great implications for our ability to fully understand the evolution of genetic differentiation, local adaptation, and, in the end, speciation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 746–758.  相似文献   

19.
Phenotypic differentiation in size and fecundity between native and invasive populations of a species has been suggested as a causal driver of invasion in plants. Local adaptation to novel environmental conditions through a micro‐evolutionary response to natural selection may lead to phenotypic differentiation and fitness advantages in the invaded range. Local adaptation may occur along a stress tolerance trade‐off, favoring individuals that, in benign conditions, shift resource allocation from stress tolerance to increased vigor and fecundity and, therefore, invasiveness. Alternately, the typically disturbed invaded range may select for a plastic, generalist strategy, making phenotypic plasticity the main driver of invasion success. To distinguish between these hypotheses, we performed a field common garden and tested for genetically based phenotypic differentiation, resource allocation shifts in response to water limitation, and local adaptation to the environmental gradient which describes the source locations for native and invasive populations of diffuse knapweed (Centaurea diffusa). Plants were grown in an experimental field in France (naturalized range) under water addition and limitation conditions. After accounting for phenotypic variation arising from environmental differences among collection locations, we found evidence of genetic variation between the invasive and native populations for most morphological and life‐history traits under study. Invasive C. diffusa populations produced larger, later maturing, and therefore potentially fitter individuals than native populations. Evidence for local adaptation along a resource allocation trade‐off for water limitation tolerance is equivocal. However, native populations do show evidence of local adaptation to an environmental gradient, a relationship which is typically not observed in the invaded range. Broader analysis of the climatic niche inhabited by the species in both ranges suggests that the physiological tolerances of C. diffusa may have expanded in the invaded range. This observation could be due to selection for plastic, “general‐purpose” genotypes with broad environmental tolerances.  相似文献   

20.
The adaptive potential of tree species to cope with climate change has important ecological and economic implications. Many temperate tree species experience a wide range of environmental conditions, suggesting high adaptability to new environmental conditions. We investigated adaptation to regional climate in the drought‐sensitive tree species Alnus glutinosa (Black alder), using a complementary approach that integrates genomic, phenotypic and landscape data. A total of 24 European populations were studied in a common garden and through landscape genomic approaches. Genotyping‐by‐sequencing was used to identify SNPs across the genome, resulting in 1990 SNPs. Although a relatively low percentage of putative adaptive SNPs was detected (2.86% outlier SNPs), we observed clear associations among outlier allele frequencies, temperature and plant traits. In line with the typical drought avoiding nature of A. glutinosa, leaf size varied according to a temperature gradient and significant associations with multiple outlier loci were observed, corroborating the ecological relevance of the observed outlier SNPs. Moreover, the lack of isolation by distance, the very low genetic differentiation among populations and the high intrapopulation genetic variation all support the notion that high gene exchange combined with strong environmental selection promotes adaptation to environmental cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号