共查询到20条相似文献,搜索用时 0 毫秒
1.
Ren-Zhi Huang Chao-Hua Jia Shi-Meng Jiang 《International journal of phytoremediation》2018,20(5):448-453
Morus alba L. (mulberry) is a perennial woody tree and a species with great potential for Cd phyremediation owing to its large biomass and extensive root system. The mechanisms involved in Cd detoxification were investigated by analyzing the subcellular distribution and chemical forms of Cd in mulberry in the present study. These results indicated that 53.27–70.17% of Cd mulberry accumulated was stored in the root and only about 10% were in the leaves. Lots of the Cd was located in the cell wall of the mulberry root and in soluble fraction of the mulberry leaf. Moreover, in roots, the largest amount of Cd was in the form of undissolved Cd-phosphate. While in mulberry leaves and stems, most of the Cd was extracted by 2% Acetic acid and 0.6 M HCl, representing Cd-phosphate and Cd-oxalate. It could be concluded that the Cd combination with peptides and organo-ligands in vacuole of leaf or complexed with proteins or cellulose in the cell wall of root might be contributed to the tolerance of mulberry to Cd stress. The mulberry could be used to remediate the Cd polluted farmland soils. 相似文献
2.
Impatiens walleriana plants accumulate sufficiently high concentrations of cadmium (Cd) for this species to be considered a potential Cd hyperaccumulator. Rooted cuttings were grown hydroponically for 25 and 50 days in solutions spiked with various Cd concentrations. The subcellular distribution and chemical forms of Cd in different organs were analyzed, and its upward translocation was also assessed. The plants accumulated large amounts of Cd; the Cd concentration in the roots and shoots reached 120–1900 and 60–1600 mg/kg, respectively. Regardless of the growth period, the Cd accumulated in the roots was primarily compartmentalized in the soluble fraction or ethanol and deionized water extractable chemical forms with high migration abilities. Translocation to the shoots was followed by an association of Cd mainly in the cell wall or with pectate and protein. The roots’ Cd showed a high migration capacity for predicting the shoots’ Cd concentrations. Different exposure periods significantly affected the subcellular distribution of Cd in the stems, and thus the upward translocation. 相似文献
3.
Arbuscular mycorrhizal fungi alleviating the adverse Aluminium effects on growth and antioxidant activity was tested in Gmelina plants. Under greenhouse and aluminium stress condition, the mycorrhizal Gmelina plants showed good growth as compared to non mycorrhizal Gmelina plants. Mycorrhizal colonization in Gmelina was found not to be significantly influenced by aluminium concentrations. Results also indicate that symbiotic association was successfully established between Glomus intraradices and Gmelina plants and mycorrhizal colonization consequently increased the biomass of Gmelina. The root proline accumulation was found to increase in mycorrhizal Gmelina plants for osmotic adjustment of stress tissues under first and second level of Aluminium stress. It was observed that Mycorrhizal colonization increased the shoot root Peroxidase and Superoxide dismutase activities in mycorrhizal Gmelina under second level of Aluminium stress. Mycorrhizal fungi play a major role in phytostabilization by secreting one of the glycoprotein, i.e., Glomalin, which stabilizes the Aluminium in soil as well as in the roots of Gmelina plants. 相似文献
4.
采用差速离心技术,比较研究了Cd在矿山生态型东南景天(Sedum alfredii Hance)根、茎、叶中的亚细胞分布.结果表明:矿山生态型东南景天对Cd具有很好的忍受耐和累积能力,非矿山生态型东南景天则不具有这种能力.Cd在矿山生态型东南景天根、茎、叶各部分的亚细胞分配满足F1(细胞壁部分)>F3(可溶部分)>F2(细胞器及膜)规律,且Cd在细胞壁部分的分配占绝对优势;同时矿山生态型东南景天地上部有很好的Cd累积能力.与众多超累积植物相似的Cd亚细胞分配规律和地上部的良好的Cd累积能力.对此植物的Cd亚细胞分布完全不同于非矿山生态型东南景天的情况作了比较分析,结果显示矿山生态型东南景天很可能是一种新的镉超累积种质资源. 相似文献
5.
采用分室培养法,在同一宿主植物生长的土壤中设含有0、5、25、50mg/kg4个不同浓度重金属镉的菌丝生长室(用30μm尼龙网与根系隔开)以期建立在宿主植物生长状况完全相同的条件下研究环境因素对AM真菌直接影响的新方法,并在此基础上探讨不同浓度的重金属镉对丛枝菌根真菌Glomus mosseae(BEG167)生长的直接影响。结果表明,与不施加镉的处理相比,土壤中施加低浓度镉(5mg/kg)刺激了G.mosseae的生长,其菌丝总长度最大;高浓度镉(大于25mg/kg)抑制了G.mosseae的生长,其菌丝总长度较小。AM真菌的代谢活性与土壤镉浓度的关系也表现出与菌丝生物量相同的规律。以上结果表明:G.mosseae在镉污染环境中有应激反应的特征,即:当G.mosseae受到轻微毒害时,为了适应其生存条件的改变而不断增加其代谢活性和生长量来降低镉的毒害。此外,本方法用于研究宿主植物生长状况相同的条件下,重金属毒害或其他环境因素对AM真菌生长代谢的直接影响是可行的。 相似文献
6.
镉在东南景天中的亚细胞分配 总被引:21,自引:0,他引:21
采用差速离心技术,比较研究了Cd在矿山生态型东南景天(Sedum alfredii Hance)根、茎、叶中的亚细胞分布。结果表明:矿山生态型东南景天对Cd具有很好的忍受耐和累积能力,非矿山生态型东南景天则不具有这种能力。Cd在矿山生态型东南景天根、茎、叶各部分的亚细胞分配满足F1(细胞壁部分)>F3(可溶部分)>F2(细胞器及膜)规律,且Cd在细胞壁部分的分配占绝对优势;同时矿山生态型东南景天地上部有很好的Cd累积能力。与众多超累积植物相似的Cd亚细胞分配规律和地上部的良好的Cd累积能力。对此植物的Cd亚细胞分布完全不同于非矿山生态型东南景天的情况作了比较分析,结果显示矿山生态型东南景天很可能是一种新的镉超累积种质资源。 相似文献
7.
Shanshan Wu Chuang Shen Biyun Lin Jiangang Yuan 《International journal of phytoremediation》2016,18(11):1148-1154
Response of castor (Ricinus communis L.) to cadmium (Cd) was assessed by a seed-suspending seedbed approach. Length of total radicle was the most sensitive indicator of Cd tolerance among the tested germination and growth characters. The ED50 value for Cd was 11.87 mg L?1, indicating high Cd tolerance in castor. A pot experiment was conducted by growing 46 varieties of castor under CK (without Cd) and Cd1 (10 mg kg?1 of Cd) and Cd2 (50 mg kg?1 of Cd) treatments to investigate genotype variations in growth response and Cd accumulation of castor under different Cd exposures. Castor possessed high Cd accumulation ability; average shoot and root Cd concentrations of the 46 tested varieties were 21.83 and 185.43 mg kg?1, and 174.99 and 1181.96 mg kg?1 under Cd1 and Cd2, respectively. Great variation in Cd accumulation was observed among varieties, and Cd concentration of castor was genotype dependent. The correlation between biomass and Cd accumulation was significantly positive, while no significant correlation was observed between Cd concentration and Cd accumulation, which indicated that biomass performance is the dominant factor in determining Cd accumulation ability. 相似文献
8.
Eleven strains of ectomycorrhizal fungi belonging to seven species have been cultured on a cadmium-contaminated growth medium
in order to determine their in vitro cadmium tolerance. Four strains were collected from a zinc and cadmium-polluted soil.
Radial growth rate was a sensitive parameter to detect Cd toxicity. A wide differential response to Cd was obtained between
the individual species. A clear relation between Cd tolerance and site origin of the isolates did not exist, although such
a relationship was found when strains are compared within one species. Cd-sensitive and Cd-tolerant strains of Suillus bovinus were studied in more detail. Two isolates were grown on media with combinations of two non-toxic zinc concentrations and
three cadmium levels. Adding a higher Zn concentration to the medium resulted in a reduction of the toxic effect of Cd. This
antagonistic effect also resulted in a lowered Cd concentration in the mycelium. 相似文献
9.
霞多丽苗木中镉的积累、亚细胞分布及化学存在形态 总被引:2,自引:0,他引:2
以一年生盆栽葡萄品种霞多丽(Vitis vinifera L.cv.Chardonnay)自根苗及SO4砧嫁接苗为试材,采用CdCl2和CaCl2根部灌入的方法,研究了镉在霞多丽植株内的亚细胞分布和存在形态,以及外源添加氯化钙对植株镉吸收的影响.结果表明:大部分镉积累在霞多丽自根苗及嫁接苗的地下部器官;4 mmol·L-1浓度的CdCl2处理下,镉在自根苗根及根颈部分的积累量占77.1%,在叶片中的积累量占1.4%,而嫁接苗中镉在嫁接口以下部分的积累量高达93.9%,叶片中的积累量仅占0.1%;5 mmol·L-1外源钙缓解了植株对镉的吸收积累,而10mmol ·L-1外源钙则显著增加了植株对镉的吸收积累.镉在根系和叶片中的亚细胞分布规律为细胞壁>可溶性部分>细胞器,且在细胞壁中积累50%以上;镉在根系中主要以氯化钠提取态存在,其次为乙酸提取态,去离子水提取态含量最少.随着镉处理浓度的增加,各提取态含量有所变化. 相似文献
10.
以2个旱柳无性系幼苗为材料,通过营养液培养并结合差速离心与化学试剂提取法,分析了不同浓度Cd2+胁迫下旱柳叶和根中Cd的亚细胞分布及其存在的化学形态.结果显示,(1)随着培养介质Cd2+浓度升高,旱柳无性系幼苗叶和根中各亚细胞组分Cd含量随之增加.叶片的Cd主要富集于细胞壁、叶绿体和可溶性部分,它们的含量分别占65%~69%、14%~22%、6.8%~7.7%,仅少量Cd发现于膜部分;而根中Cd主要积累于细胞壁和可溶性部分,其中含量分别占59%~66%和14%~25%,Cd在根亚细胞组分中积累量依次为细胞壁>可溶性部分>质体>膜部分.(2)旱柳体内Cd以不同的化学形态存在,大部分为HCl(FHCl)、NaCl(FNaCl)、醋酸(HAC,FHAC)提取态,极少部分为乙醇(EtOH,FEtOH)和水提取态(Fwater),叶和根中5种Cd提取态含量依次为FHCl>FNaCl>FHAC>Fwater>FEtOH,而叶和根中HCl和NaCl提取态Cd占有比例大于30%以上.研究表明,旱柳无性系中Cd主要与蛋白质和有机酸螯合或以金属磷酸盐沉淀的形态存在,其根、叶的细胞壁和液泡在Cd忍耐与解毒中起到重要作用. 相似文献
11.
本研究采用温室盆栽试验,利用丛枝菌根(AM)真菌摩西管柄囊霉Funneliformis mosseae进行接种试验,研究了在Cd胁迫下(0、5、15和30mg/kg)接种AM真菌对高羊茅Festuca elata ‘Crossfire II’的生物量、防御酶活性、磷和镉(Cd)含量的影响。结果表明,随着Cd浓度的增加,高羊茅的菌根侵染率和菌根相对依赖性有所增加。接种AM真菌改善了磷从植株根系向地上部的转运,有助于植株在地上部积累更多的磷。此外,AM真菌和Cd胁迫对高羊茅植株抗氧化酶活性都有显著影响,在镉胁迫下,与未接种植株相比,接种AM真菌显著提高了植株的过氧化氢酶活性,而显著降低了植株的丙二醛含量。与未接种植株相比,接种摩西管柄囊霉显著提高了寄主植物对Cd的富集能力,有利于重金属在根部的积累,同时降低了地上部的Cd含量。本研究表明,高羊茅-丛枝菌根共生体在Cd污染土壤的修复中具有潜在应用价值。 相似文献
12.
Cadmium (Cd) is an inorganic mineral in the earth's crust. Cadmium entry into the environment occurs through geogenic and anthropogenic sources. Industrial activities including mining, electroplating, iron and steel plants, and battery production employ Cd during their processes and often release Cd into the environment. When disseminated into soil, Cd can be detrimental to agro-ecosystems because it is relatively mobile and phytotoxic even at low concentrations. Cadmium's phytotoxicity is due to reductions in the rate of transpiration and photosynthesis and chlorophyll concentration resulting in retardation of plant growth, and an alteration in the nutrient concentration in roots and leaves. In response to Cd toxicity, plants have developed protective cellular mechanisms such as synthesis of phytochelatins and metallothioneins, metal compartmentalization in vacuoles, and the increased activity of antioxidant enzymes to neutralize Cd-induced toxicity. While these direct protective mechanisms can help alleviate Cd toxicity, other indirect mechanisms such as microelements (zinc, iron, manganese, and selenium) interfering with Cd uptake may decrease Cd concentration in plants. This comprehensive review encompasses the significance of Cd, portals of contamination and toxicity to plants, and implications for crop production. Various mitigation strategies with the beneficial effects of zinc, iron, manganese, and selenium in activating defence mechanisms against Cd stress are discussed. Furthermore, this review systematically identifies and summarises suitable strategies for mitigating Cd-induced toxicity in plants. 相似文献
13.
Reda E. Abdelhameed 《International journal of phytoremediation》2019,21(7):663-671
AbstractOwing to the realization of the harmful effect of cadmium on the environment and plants and as the plants are sessile organisms, they need to increase the protective mechanisms to cope with Cd stress. Inoculation the plant with soil microbes at the place of their growing is an important strategy to support the plants against stresses. In this study, trigonella plants were inoculated with arbuscular mycorrhizal (AM) fungi under different CdCl2 concentrations (0, 2.25, and 6.25?mM). AM inoculation increased growth parameters, chlorophyll, and protein contents. Root colonization was significantly increased at low Cd concentration (2.25?mM) and decreased at high one (6.25?mM). Also, with AM fungal inoculation, the translocation factor of trigonella plants significantly decreased as compared to non-AM ones at both low and high Cd concentrations. In addition, it was clearly that malondialdehyde content of trigonella plants increased significantly at both Cd concentrations and with AM fungal inoculation its content decreased compared to those of non-AM ones. AM inoculation significantly increased antioxidant enzymes activities compared to non-AM ones. Consequently, this study showed a tolerance strategy of AM trigonella plants against Cd stress, thus mycorrhizal symbiosis becomes a promising and suitable as phytostabilizers of Cd stressed soil. 相似文献
14.
Lisheng Xu Shoubiao Zhou Longhua Wu Na Li Liqiang Cui Yongming Luo 《International journal of phytoremediation》2009,11(3):283-295
Field survey, hydroponic culture, and pot experiments were carried out to examine and characterize cadmium (Cd) and zinc (Zn) uptake and accumulation by Sedum jinianum, a plant species native to China. Shoot Cd and Zn concentrations in S. jinianum growing on a lead/Zn mine area reached 103–478 and 4165–8349 mg kg?1 (DM), respectively. The shoot Cd concentration increased with the increasing Cd supply, peaking at 5083 mg kg?1 (DM) when grown in nutrient at a concentration of 100 μmol L?1 for 32 d, and decreased as the solution concentration increased from 200 to 400 μmol L?1. The shoot-to-root ratio of plant Cd concentrations was > 1 when grown in solution Cd concentrations ≤ 200 μmol L?1. Foliar, stem, and root Zn concentrations increased linearly with the increasing Zn level from 1 to 9600 μmol L?1. The Zn concentrations in various plant parts decreased in the order roots > stem > leaves, with maximum concentrations of 19.3, 33.8, and 46.1 g kg?1 (DM), respectively, when plants were grown at 9600 μmol Zn L?1 for 32 d. Shoot Cd concentrations reached 16.4 and 79.8 mg kg?1 (DM) when plants were grown in the pots of soil with Cd levels of 2.4 mg kg?1 and 9.2 mg kg?1, respectively. At soil Zn levels of 619 and 4082 mg kg?1, shoot Zn concentrations reached 1560 and 15,558 mg kg?1 (DM), respectively. The results indicate that S. jinianum is a Cd hyperaccumulator with a high capacity to accumulate Zn in the shoots. 相似文献
15.
Cd、Zn及其交互作用对互花米草中重金属的积累、亚细胞分布及化学形态的影响 总被引:2,自引:0,他引:2
潘秀;石福臣;刘立民;柴民伟;刘福春 《植物研究》2012,32(6):717-723
通过盆栽试验,研究了Cd、Zn及其交互作用下互花米草中Cd、Zn的含量及积累量,并分析了Cd、Zn在互花米草中的亚细胞分布及化学形态。结果表明:Cd-Zn处理组互花米草地上部及根部Cd含量显著高于Cd处理组;Cd-Zn处理组根部Zn含量显著低于Zn处理组,但地上部差异不显著,说明Zn促进Cd的吸收,Cd抑制Zn的吸收。Cd-Zn处理组互花米草地上部Cd积累量显著高于Cd处理组,但是根部Cd积累量却显著低于Cd处理组;Zn处理组地上部及根部Zn积累量均显著高于对照组及Cd-Zn处理组。Cd单因素胁迫下,Cd主要分布在细胞壁,Cd-Zn交互作用下,Cd在胞液中的分配比例高于其他细胞组分;Zn单因素及Cd-Zn交互作用下,Zn在胞液中的分配比例均较高,总的分配比例呈现以下趋势:胞液>细胞壁>细胞器,说明Zn的添加影响了Cd的亚细胞分布,Cd的出现对Zn在互花米草细胞中的分布影响不明显。Cd和Zn在互花米草叶中主要以氯化钠提取态存在,表明互花米草中Cd和Zn多以果胶酸盐结合态或蛋白质结合态存在。 相似文献
16.
Mohammed M. Gharieb 《Biometals》2001,14(2):143-151
The present study evaluates the growth response of two strains of filamentous fungi; a Fusarium sp. and Alternaria tenuis, grown on both solid and liquid Czapek Dox medium amended with different concentrations of CdCl2. Colony extension and the mycelial dry weight of both fungi were significantly inhibited by high concentrations of cadmium. Extended lag phases and low growth rates resulted from cadmium administration. Cadmium drastically affected fungal morphogenesis by the production of stunted sterile thick mycelial filaments of the Fusarium sp. and chains of uncharacterized swellings instead of conidia in A. tenuis. Experiments showed that cadmium accumulation by the Fusarium sp. grown in liquid medium was a concentration dependent, and over the incubation time it displayed a plateau pattern. The cells grown on medium containing 0.25 mmol l–1 CdCl2 accumulated up to 89 ± 12 mol Cd (gm dw)–1 after two days, falling to 29 ± 10 mol Cd (gm dw)–1 after five days. At 0.5 mmol l–1 CdCl2 treatment the maximum cellular cadmium content was 132 ± 14 mol (gm dw)–1, attained after 3 days, and decreased to 98 ± 9 mol (gm dw)–1 at the end of the incubation time. There was a simultaneous marked drop in cadmium content and pH of the growth medium during the first few days. The presence of cadmium markedly altered the cellular essential cations; K+ and Mg2+ being decreased while Na+ increased during the growth period. Such findings resulted a reverse pattern of cellular Na+/K+ ratio for cells grown on cadmium-containing medium in respect to the control treatment. The results are discussed in relation to a further dimension of cadmium effects that might reflect its toxicity, as well as the implication of cadmium extrusion for tolerance during fungal growth. 相似文献
17.
18.
The accumulation and excretion of lead (Pb) and cadmium (Cd) by salt cedar (Tamarix smyrnensis Bunge) were investigated in this study. Tamarix smyrnensis plants were exposed to the mixtures of Pb and Cd and high salinity for 10 wk. Subsequently, Pb and Cd uptake was quantified in the shoots and roots of the plants by ICP-AES. In addition, physiological parameters such as biomass production, shoot length, plant appearance, and chlorophyll content were examined. The roots accumulated the highest amount of Pb. Salinity was found to not have an important effect on Pb translocation to the leaves. Cd was translocated into the aerial part in a higher portion than Pb. Cd content in leaves of T. smyrnensis increased with the increasing salinity. The visible toxicity symptoms, if present, were connected only to the high salinity. The excretion of Pb and Cd by salt glands was observed and quantified. T. smyrnensis excreted a significant amount of metals on the leaf surface. This characteristic of salt cedar plants can be viewed as a novel phytoremediation process for the remediation of sites contaminated with heavy metals that we have termed "phyto-excretion." 相似文献
19.
20.
The present investigation reports the results of the Cd accumulated by five Populus at six Cd supply levels (0, 0.5, 2, 6, 25, 60 mg/kg) in soils. For all tested Populus species, Cd accumulated by the leaves, stems, and roots linearly increased with increasing Cd supply levels, the higher concentration Cd treatments significantly promoted the Cd accumulation. P. hopeiensis, and P. tomentosa always performed the stronger ability of Cd accumulation than other three Populus species under different Cd supply treatments, and P. nira var. thevestina and P. leucoides had the poorer accumulation ability. Cd in soil was more intensively absorbed in the leaves and stems for all 5 Populus species, was not retained in roots and was transferred to aboveground plant tissues. 相似文献