首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cleavage of vimentin by different retroviral proteases   总被引:7,自引:0,他引:7  
Proteases (PRs) of retroviruses cleave viral polyproteins into their mature structural proteins and replication enzymes. Besides this essential role in the replication cycle of retroviruses, PRs also cleave a variety of host cell proteins. We have analyzed the in vitro cleavage of mouse vimentin by proteases of human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2), bovine leukemia virus (BLV), Mason-Pfizer monkey virus (M-PMV), myeloblastosis-associated virus (MAV), and two active-site mutants of MAV PR. Retroviral proteases display significant differences in specificity requirements. Here, we show a comparison of substrate specificities of several retroviral proteases on vimentin as a substrate. Vimentin was cleaved by all the proteases at different sites and with different rates. The results show that the physiologically important cellular protein vimentin can be degraded by different retroviral proteases.  相似文献   

2.
The poxviral RING protein p28 is a virulence factor whose molecular function is unknown. Many cellular RING-containing proteins act as ubiquitin ligases (RING-E3s) connecting selected substrate proteins to the ubiquitination machinery. Here we demonstrate that vaccinia virus p28 and its homologue in myxoma virus, M143R, can mediate the formation of polyubiquitin conjugates, while RING mutants of both p28 and M143R cannot. Furthermore, p28 is ubiquitinated in vivo and ubiquitin colocalizes with p28 to virus factories independently of an intact RING domain. These results implicate the ubiquitin system in poxviral virulence.  相似文献   

3.
Benetti L  Roizman B 《Journal of virology》2007,81(19):10242-10248
The US3 protein kinase of herpes simplex virus 1 blocks apoptosis induced by replication-incompetent virus mutants, proapoptotic members of the Bcl-2 family of proteins, and by a variety of other agents that act at the premitochondrial level in the proapoptotic cascade. To define the role of US3 in blocking apoptosis at the postmitochondrial level, we investigated the US3 protein kinase in transduced cells that were either transfected with a plasmid encoding procaspase 3 or superinfected with a proapoptotic mutant virus lacking the gene encoding the infected cell protein no. 4. (i) We show that US3 blocks the proteolytic cleavage that generates active caspase 3 from the transfected zymogen procaspase 3, concomitant with inhibition of apoptosis. (ii) Studies based on detection of fluorescence emitted upon cleavage of a synthetic caspase 3 substrate showed that expression of the US3 kinase and appearance of the cleaved substrate were mutually exclusive. (iii) An affinity-purified glutathione S-transferase (GST)-US3 fusion protein, but not the inactive GST-US3(K220N) protein, phosphorylated procaspase 3 in vitro. The studies published earlier on the effect of US3 on the upstream regulatory proteins and current studies suggest that the US3 protein kinase may act on several proteins in the proapoptotic cascade to enable the virus to complete its replication.  相似文献   

4.
Although the type-2 ribosome-inactivating proteins (SNA-I, SNA-V, SNLRP) from elderberry (Sambucus nigra L.) are all devoid of rRNA N-glycosylase activity towards plant ribosomes, some of them clearly show polynucleotide-adenosine glycosylase activity towards tobacco mosaic virus RNA. This particular substrate specificity was exploited to further unravel the mechanism underlying the in planta antiviral activity of ribosome-inactivating proteins. Transgenic tobacco (Nicotiana tabacum L. cv Samsun NN) plants expressing the elderberry ribosome-inactivating proteins were generated and challenged with tobacco mosaic virus in order to analyze their antiviral properties. Although some transgenic plants clearly showed antiviral activity, no clear correlation was observed between in planta antiviral activity of transgenic tobacco lines expressing the different ribosome-inactivating proteins and the in vitro polynucleotide-adenosine glycosylase activity of the respective proteins towards tobacco mosaic virus genomic RNA. However, our results suggest that the in planta antiviral activity of some ribosome-inactivating proteins may rely on a direct mechanism on the virus. In addition, it is evident that the working mechanism proposed for pokeweed antiviral protein cannot be extrapolated to elderberry ribosome-inactivating proteins because the expression of SNA-V is not accompanied by induction of pathogenesis-related proteins.  相似文献   

5.
Comparative evaluation of the sensitivity limit in the detection of antibodies to bovine leukemia virus in the enzyme immunoassay with the use of chemiluminescent and spectrophotometric detection techniques was carried out. In this assay 3-amino-1,4-phthalazinedion was used as chemiluminescent substrate and ortho-phenylenediamine, as chromogenic substrate. The chemiluminescent signal was registered by means of a special luminometer designed at the Institute of Biochemistry (Lithuanian Acad. Sci.). The use of the chemiluminescent substrate permitted the detection of proteins in amounts 2-3 times lower than those detected by the spectrophotometric technique.  相似文献   

6.
P105 and P110, the presumptive transforming proteins of PRCII avian sarcoma virus, have been found to be present in transformed chicken cells in two forms: as monomers and as part of a complex which contains both a 50,000-dalton and a 90,000-dalton cellular phosphoprotein. The 90,000-dalton cellular protein was found to be identical to one of the proteins in chicken cells whose synthesis is induced by stress. The 50,000-dalton protein was found to contain phosphotyrosine when isolated from the complex and therefore may be a substrate for the tyrosine protein kinase activity which is associated with P105 and P110. These same two cellular phosphoproteins have previously been shown to be present in a complex with pp60src, the tyrosine protein kinase which is the transforming protein of Rous sarcoma virus. However, not all avian sarcoma virus transforming proteins with associated tyrosine protein kinase activities form a complex efficiently with these cellular proteins. Little if any of P90, the putative transforming protein of Yamaguchi 73 virus, was found in a complex with the 50,000-dalton and 90,000-dalton cellular phosphoproteins.  相似文献   

7.
Alphavirus nsP2 proteins are multifunctional and essential for viral replication. The protease role of nsP2 is critical for virus replication as only the virus protease activity is used for processing of the viral non-structural polypeptide. Chikungunya virus is an emerging disease problem that is becoming a world-wide health issue. We have generated purified recombinant chikungunya virus nsP2 proteins, both full length and a truncated protease domain from the C-terminus of the nsP2 protein. Enzyme characterization shows that the protease domain alone has different properties compared with the full length nsP2 protease. We also show chikungunya nsP2 protease possesses different substrate specificity to the canonical alphavirus nsP2 polyprotein cleavage specificity. Moreover, the chikungunya nsP2 also appears to differ from other alphavirus nsP2 in its distinctive ability to recognize small peptide substrates.  相似文献   

8.
R A Feldman  T Hanafusa  H Hanafusa 《Cell》1980,22(3):757-765
Fujinami sarcoma virus (FSV), a newly characterized avian sarcoma virus, produces a protein of 140,000 daltons (p140) in infected cells. p140 is the product of a fused gene consisting of a part of the gag gene of avian retrovirus and FSV-unique sequences which are not related to the src sequences of Rous sarcoma virus. In vivo, p140 was found to be phosphorylated at both serine and tyrosine residues. Immunoprecipitates of p140 with antiserum against gag gene-coded proteins had a cyclic nucleotide-independent protein kinase activity which phosphorylated p140 itself, rabbit IgG of the immune complex and alpha-casein, an externally added soluble protein substrate. The phosphorylation was specific to tyrosine of the substrate proteins. p140 was phosphorylated in vitro at the same two tyrosine residues that were phosphorylated in vivo. The phosphate transferred to tyrosine residues of p140 forms a stable bond: it does not turn over during the kinase reaction, and the 32P-phosphate of p140 labeled in vitro or in vivo is not transferred to alpha-casein. FSV-p140 differs from p60src, the transforming protein of Rous sarcoma virus, in its marked preference of Mn2+ to Mg2+ ions, and in its inability to use GTP instead of ATP as the donor of gamma-phosphate.  相似文献   

9.
We have characterized the hemagglutinin-esterase (HE) of puffinosis virus (PV), a coronavirus closely related to mouse hepatitis virus (MHV). Analysis of the cloned gene revealed approximately 85% sequence identity to HE proteins of MHV and approximately 60% identity to the corresponding esterase of bovine coronavirus. The HE protein exhibited acetylesterase activity with synthetic substrates p-nitrophenyl acetate, alpha-naphthyl acetate, and 4-methylumbelliferyl acetate. In contrast to other viral esterases, no activity was detectable with natural substrates containing 9-O-acetylated sialic acids. Furthermore, PV esterase was unable to remove influenza C virus receptors from human erythrocytes, indicating a substrate specificity different from HEs of influenza C virus and bovine coronavirus. Solid-phase binding assays revealed that purified PV was unable to bind to sialic acid-containing glycoconjugates like bovine submaxillary mucin, mouse alpha1 macroglobulin or bovine brain extract. Because of the close relationship to MHV, possible implications on the substrate specificity of MHV esterases are suggested.  相似文献   

10.
On the basis of the conservation of neuraminidase (N) active-site residues in influenza virus N and paramyxovirus hemagglutinin-neuraminidase (HN), it has been suggested that the three-dimensional (3D) structures of the globular heads of the two proteins are broadly similar. In this study, details of this structural similarity are worked out. Detailed multiple sequence alignment of paramyxovirus HN proteins and influenza virus N proteins was based on the schematic representation of the previously proposed structural similarity. This multiple sequence alignment of paramyxovirus HN proteins was used as an intermediate to align the morbillivirus hemagglutinin (H) proteins with neuraminidase. Hypothetical 3D structures were built for paramyxovirus HN and morbillivirus H, based on homology modelling. The locations of insertions and deletions, glycosylation sites, active-site residues, and disulfide bridges agree with the proposed 3D structure of HN and H of the Paramyxoviridae. Moreover, details of the modelled H protein predict previously undescribed enzymatic activity. This prediction was confirmed for rinderpest virus and peste des petits ruminants virus. The enzymatic activity was highly substrate specific, because sialic acid was released only from crude mucins isolated from bovine submaxillary glands. The enzymatic activity may indicate a general infection mechanism for respiratory viruses, and the active site may prove to be a new target for antiviral compounds.  相似文献   

11.
In the cells transformed by Rous sarcoma virus (RSV), two Src proteins are expressed: the ubiquitous tyrosine kinase c-Src and the v-Src, the product of the transforming gene of the virus. Using three synthetic peptide substrates widely used for testing Src kinase activity, we show that they are phosphorylated with different efficiencies by the v-Src and c-Src tyrosine kinases immunoprecipitated from the tumor cell line H19. The v-Src displays higher efficiency (Vmax/Km ratio) toward all three peptides used, but the Vmax of v-Src is much lower than Vmax of c-Src with two peptides out of three. This difference in substrate specificity, if ignored, may cause misestimation of the amounts of active c-Src and v-Src in RSV-transformed cells. On the other hand, the different peptide substrate specificities may also reflect different protein substrate specificities of the v-Src and c-Src kinases in vivo.  相似文献   

12.
We found local sequence-similarity between the non-catalytic region of the Rous sarcoma virus oncogene product, p60v-src, and the core region of cytoskeletal keratin through an extensive similarity search of segments of proteins. The segments showing similarity in p60v-src were in the region that is important for morphological transformation, and corresponded to segments with unique structural features predicted for intermediate filament proteins. We suggest that cellular components related with intermediate filament proteins or the sequence shared by the two proteins may be involved in the regulation of the kinase activity or substrate specificity of p60v-src.  相似文献   

13.
Mutagenesis of the NS3 Protease of Dengue Virus Type 2   总被引:4,自引:3,他引:1       下载免费PDF全文
The flavivirus protease is composed of two viral proteins, NS2B and NS3. The amino-terminal portion of NS3 contains sequence and structural motifs characteristic of bacterial and cellular trypsin-like proteases. We have undertaken a mutational analysis of the region of NS3 which contains the catalytic serine, five putative substrate binding residues, and several residues that are highly conserved among flavivirus proteases and among all serine proteases. In all, 46 single-amino-acid substitutions were created in a cloned NS2B-NS3 cDNA fragment of dengue virus type 2, and the effect of each mutation on the extent of self-cleavage of the NS2B-NS3 precursor at the NS2B-NS3 junction was assayed in vivo. Twelve mutations almost completely or completely inhibited protease activity, 9 significantly reduced it, 14 decreased cleavage, and 11 yielded wild-type levels of activity. Substitution of alanine at ultraconserved residues abolished NS3 protease activity. Cleavage was also inhibited by substituting some residues that are conserved among flavivirus NS3 proteins. Two (Y150 and G153) of the five putative substrate binding residues could not be replaced by alanine, and only Y150 and N152 could be replaced by a conservative change. The two other putative substrate binding residues, D129 and F130, were more freely substitutable. By analogy with the trypsin model, it was proposed that D129 is located at the bottom of the substrate binding pocket so as to directly interact with the basic amino acid at the substrate cleavage site. Interestingly, we found that significant cleavage activity was displayed by mutants in which D129 was replaced by E, S, or A and that low but detectable protease activity was exhibited by mutants in which D129 was replaced by K, R, or L. Contrary to the proposed model, these results indicate that D129 is not a major determinant of substrate binding and that its interaction with the substrate, if it occurs at all, is not essential. This mutagenesis study provided us with an array of mutations that alter the cleavage efficiency of the dengue virus protease. Mutations that decrease protease activity without abolishing it are candidates for introduction into the dengue virus infectious full-length cDNA clone with the aim of creating potentially attenuated virus stocks.  相似文献   

14.
The heterogeneous nuclear ribonucleoprotein C1 and C2 proteins were preferentially cross-linked by treatment with UV light in nuclear extracts to RNAs containing six different polyadenylation signals. The domain required for the interaction was located downstream of the poly(A) cleavage site, since deletion of this segment from several polyadenylation substrate RNAs greatly reduced cross-linking efficiency. In addition, RNAs containing only downstream sequences were efficiently cross-linked to C proteins, while fully processed, polyadenylated RNAs were not. Analysis of mutated variants of the simian virus 40 late polyadenylation signal showed that uridylate-rich sequences located in the region between 30 and 55 nucleotides downstream of the cleavage site were required for efficient cross-linking of C proteins. This downstream domain of the simian virus 40 late poly(A) addition signal has been shown to influence the efficiency of the polyadenylation reaction. However, there was not a strict correlation between cross-linking of C proteins and the efficiency of polyadenylation.  相似文献   

15.
We report here the construction of a triply fluorescent-tagged herpes simplex virus 1 (HSV-1) expressing capsid protein VP26, tegument protein VP22, and envelope protein gB as fusion proteins with monomeric yellow, red, and cyan fluorescent proteins, respectively. The recombinant virus enabled us to monitor the dynamics of these capsid, tegument, and envelope proteins simultaneously in the same live HSV-1-infected cells and to visualize single extracellular virions with three different fluorescent emissions. In Vero cells infected by the triply fluorescent virus, multiple cytoplasmic compartments were found to be induced close to the basal surfaces of the infected cells (the adhesion surfaces of the infected cells on the solid growth substrate). Major capsid, tegument, and envelope proteins accumulated and colocalized in the compartments, as did marker proteins for the trans-Golgi network (TGN) which has been implicated to be the site of HSV-1 secondary envelopment. Moreover, formation of the compartments was correlated with the dynamic redistribution of the TGN proteins induced by HSV-1 infection. These results suggest that HSV-1 infection causes redistribution of TGN membranes to form multiple cytoplasmic compartments, possibly for optimal secondary envelopment. This is the first real evidence for the assembly of all three types of herpesvirus proteins-capsid, tegument, and envelope membrane proteins-in TGN.  相似文献   

16.
We report striking differences in the substrate specificities of two human SR proteins, SF2/ASF and SC35, in constitutive splicing. beta-Globin pre-mRNA (exons 1 and 2) is spliced indiscriminately with either SR protein. Human immunodeficiency virus tat pre-mRNA (exons 2 and 3) and immunoglobulin mu-chain (IgM) pre-mRNA (exons C3 and C4) are preferentially spliced with SF2/ASF and SC35, respectively. Using in vitro splicing with mutated or chimeric derivatives of the tat and IgM pre-mRNAs, we defined specific combinations of segments in the downstream exons, which mediate either positive or negative effects to confer SR protein specificity. A series of recombinant chimeric proteins consisting of domains of SF2/ASF and SC35 in various combinations was used to localize trans-acting domains responsible for substrate specificity. The RS domains of SF2/ASF and SC35 can be exchanged without effect on substrate specificity. The RNA recognition motifs (RRMs) of SF2/ASF are active only in the context of a two-RRM structure, and RRM2 has a dominant role in substrate specificity. In contrast, the single RRM of SC35 can function alone, but its substrate specificity can be influenced by the presence of an additional RRM. The RRMs behave as modules that, when present in different combinations, can have positive, neutral, or negative effects on splicing, depending upon the specific substrate. We conclude that SR protein-specific recognition of specific positive and negative pre-mRNA exonic elements via one or more RRMs is a crucial determinant of the substrate specificity of SR proteins in constitutive splicing.  相似文献   

17.
The K7L gene product of the smallpox virus is a protease implicated in the maturation of viral proteins. K7L belongs to protease Clan CE, which includes distantly related cysteine proteases from eukaryotes, pathogenic bacteria, and viruses. Here, we describe its recombinant high level expression, biochemical mechanism, substrate preference, and regulation. Earlier studies inferred that the orthologous I7L vaccinia protease cleaves at an AG-X motif in six viral proteins. Our data for K7L suggest that the AG-X motif is necessary but not sufficient for optimal cleavage activity. Thus, K7L requires peptides extended into the P7 and P8 positions for efficient substrate cleavage. Catalytic activity of K7L is substantially enhanced by homodimerization, by the substrate protein P25K as well as by glycerol. RNA and DNA also enhance cleavage of the P25K protein but not of synthetic peptides, suggesting that nucleic acids augment the interaction of K7L with its protein substrate. Library-based peptide preference analyses enabled us to design an activity-based probe that covalently and selectively labels K7L in lysates of transfected and infected cells. Our study thus provides proof-of-concept for the design of inhibitors and probes that may contribute both to a better understanding of the role of K7L in the virus life cycle and the design of novel anti-virals.  相似文献   

18.
Protein pB119L of African swine fever virus belongs to the Erv1p/Alrp family of sulfhydryl oxidases and has been described as a late nonstructural protein required for correct virus assembly. To further our knowledge of the function of protein pB119L during the virus life cycle, we have investigated whether this protein possesses sulfhydryl oxidase activity, using a purified recombinant protein. We show that the purified protein contains bound flavin adenine dinucleotide and is capable of catalyzing the formation of disulfide bonds both in a protein substrate and in the small molecule dithiothreitol, the catalytic activity being comparable to that of the Erv1p protein. Furthermore, protein pB119L contains the cysteines of its active-site motif CXXC, predominantly in an oxidized state, and forms noncovalently bound dimers in infected cells. We also show in coimmunoprecipitation experiments that protein pB119L interacts with the viral protein pA151R, which contains a CXXC motif similar to that present in thioredoxins. Protein pA151R, in turn, was found to interact with the viral structural protein pE248R, which contains disulfide bridges and belongs to a class of myristoylated proteins related to vaccinia virus L1R, one of the substrates of the redox pathway encoded by this virus. These results suggest the existence in African swine fever virus of a system for the formation of disulfide bonds constituted at least by proteins pB119L and pA151R and identify protein pE248R as a possible final substrate of this pathway.  相似文献   

19.
The pseudorabies virus protein kinase prefers model substrates containing arginyl residues on the amino-terminal side of a target seryl or threonyl residue. We have defined this substrate specificity more precisely in experiments using a new series of synthetic model peptides. When the number of arginyl residues was varied from two to four in substrates of the type RnASVA it was found that peptides with four arginyl residues constituted the best substrates, although the most marked decrease in Km was seen on increasing the number of arginyl residues from two to three. The effect of varying the number of 'spacer' alanyl residues from zero to three was investigated in peptides of the type R4AmSVA, and the peptide with one alanyl residue was found to be the best substrate, making R4X the optimal amino-terminal environment for this enzyme. A similar substrate specificity was observed with the herpes simplex type 1 protein kinase. Protein kinase C was found to have a quite similar substrate preference to the viral enzyme as far as the number and position of the amino-terminal basic residues was concerned; but, unlike the viral protein kinase, it also requires carboxy-terminal basic residues in optimal peptide substrates, and can tolerate the substitution of lysyl for arginyl residues. The cyclic AMP-dependent protein kinase, like the viral enzyme, had favourable kinetic constants for this series of peptides, but differed from the latter in being able to catalyze the phosphorylation of the peptides with two to four arginyl residues with similar efficiency. Studies with the protein, clupeine Y1, as substrate indicated that the pseudorabies virus protein kinase can tolerate arginyl residues on the carboxyl-terminal side of its target residue when there are suitable amino-terminal arginyl determinants. In this respect the virus protein kinase resembled protein kinase C but differed from the cyclic AMP-dependent protein kinase which cannot tolerate such carboxyl-terminal basic residues. The relationship of substrate specificity with model peptides to the ability of the pseudorabies virus protein kinase to phosphorylate proteins in vitro and in vivo is discussed.  相似文献   

20.
Transformed mammalian cells secrete specific proteins and phosphoproteins.   总被引:31,自引:0,他引:31  
D R Senger  D F Wirth  R O Hynes 《Cell》1979,16(4):885-893
We have examined the proteins secreted into the growth medium by normal and transformed cells. Transformed cell lines from several mammalian species all secrete proteins in the 58,000 dalton molecular weight range. These proteins are all immunologically related and are secreted at low levels or not at all by the parental normal cell lines. Secretion of the 58K proteins occurs with either DNA or RNA virus transformation and with spontaneous transformation. The transformed cells also secrete phosphoproteins in the same size range, but these are immunologically distinct from the 58K proteins mentioned above. The sizes of the phosphoproteins are species-specific and unrelated to the transforming virus. Incubation of conditioned media from transformed cell cultures with gamma-32P-ATP labels phosphoproteins of the same sizes, indicating the presence in the media of both protein kinase and substrate. All three properties (58K protein, phosphoprotein, in vitro phosphorylation) are closely correlated with transformation in cells transformed by temperature-sensitive viruses. The biological implications of these results remain unknown, but the results may be relevant to recent data on the (phospho)proteins and protein kinase encoded by RNA tumor viruses and the molecular basis of the transformed phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号