首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes of cross-correlation histograms (CCH) of impulse trains and of mean interspike intervals (ISI) of monosynaptically connected neurones under changes of interneuronal connection efficiency, neuronal excitability and action on these neurones of independent irregular afferent synaptic inflows, were studied by methods of mathematical and biomathematical modelling of synaptic neuronal interaction (computer-controlled experiment on mollusc neurones). It was shown that statistical of increase of efficiency of monosynaptic excitatory or inhibitory interneuronal connection (amplitude enhancement of corresponding postsynaptic potential) is an increase of the main peak or trough of normalized CCH of impulse trains accompanied by a decrease of mean ISIs of both neurones.  相似文献   

2.
Depolarization of the presynaptic terminal by current produced a postsynaptic potential (PSP) which increased with increasing presynaptic polarization and then reached a plateau. Iontophoretic injection of tetraethylammonium ions (TEA) into the presynaptic axon near the terminal produced a prolonged presynaptic spike. The resulting PSP is increased in size and its time course closely followed that of the presynaptic spike. The presynaptic fiber no longer exhibited rectification and strong depolarizations revealed that the PSP reached a maximum with about 110 mv depolarization. Further depolarization produced a decrease in PSP amplitude and finally transmission was blocked. However, a PSP then always appeared on withdrawal of the depolarizing current. Under the conditions of these experiments, the PSP could be considered a direct measure of transmitter release. Bathing the TEA-injected synapse with concentrations of tetrodotoxin (TTX) sufficient to block spike activity in both pre- and postsynaptic axons did not greatly modify postsynaptic electrogenesis. However, doubling TTX concentration reversibly blocked PSP. Thus the permeability changes to Na and K accompanying the spike do not appear necessary for transmitter release. Some other processes related to the level of presynaptic polarization must be involved to explain the data. The inhibition of transmitter release by strong depolarizations appears to be related to Ca action. A membrane Ca current may also be necessary for normal transmitter release.  相似文献   

3.
By mathematical and biomathematical methods of neuronal interaction modelling, changes were studied of cross-correlation histograms (CCH) of impulse flows and of average interimpulse intervals of monosynaptically interconnected neurones, at changes of efficiency of forward and backward connections, of excitability of neurones and of summate action on them of independent random afferent synaptic inflows. It is shown, that a single sign of efficiency increase of monosynaptic excitatory or inhibitory connection between neurones (amplitude increase of the corresponding postsynaptic potential) consists in amplitude increase of the main peak or trough the rated CCH of their impulse flows, followed by a decrease of average interspike intervals of both neurones.  相似文献   

4.
The minimal presynaptic depolarization (MPD) for producing a detectable postsynaptic potential (PSP) was lower than 25 mv in normal or tetrodotoxin (TTX)-containing seawater. The MPD was about 10 mv when a small amount of tetraethylammonium ions (TEA) was injected into the presynaptic terminal. Application of linearly increasing depolarizing current to the normal presynaptic terminal at times produced a PSP before a presynaptic spike was evoked; the rate of rise of the resulting PSP was much slower than that of a PSP triggered by the normal presynaptic spike. A brief depolarizing pulse that preceded the presynaptic spike in normal seawater or the initial transient presynaptic depolarization in TTX decreased the PSP. It increased the PSP when it was applied during the spike or initial transient depolarization. Hyperpolarizing pulses had the reverse effect. The Off-PSP was also modified by inserting pulses at an initial part of the recovery phase of the strong presynaptic depolarization. These results indicate further that increases in Na+ and K+ conductance during presynaptic spike activity are not a requirement for transmitter release; the rate of release of transmitter can be controlled by electrical manipulation of the presynaptic terminal; there is a superficial correspondence between the time courses of presynaptic depolarization and the resulting PSP. Thus presynaptic depolarization appears to be only the first step in the series of events constituting excitation-transmitter release coupling. It may not be a necessary step for the release mechanism.  相似文献   

5.
A mechanism of the long-term potentiation of transmitter release induced by adrenaline (ALTP) was studied by recording intracellularly the fast excitatory postsynaptic potentials (fast EPSPs). The ALTP was produced during the blockade of K+ channels at the presynaptic terminals by tetraethylammonium (TEA). The synaptic delay, possibly reflecting a relative change in the duration of an action potential at the presynaptic terminal, was not changed during the course of the ALTP. By contrast, it was significantly lengthened by TEA and other K+ channel inhibitors (4-aminopyridine and Cs+) that markedly enhanced the evoked release of transmitter. The magnitude of facilitation of the fast EPSP, induced by a conditional stimulus to the preganglionic nerve, was decreased during the generation of the ALTP, but was unchanged during the potentiation of transmitter release caused by TEA. These results, together with theoretical considerations applying the residual Ca2+ hypothesis to the facilitation, suggest that the enhancement of transmitter release during the ALTP is not caused by an increased Ca2+ influx during a presynaptic impulse owing to the blockade of K+ channel or the modulation of Ca2+ channel, but presumably is induced by a rise in the basal level of free Ca2+ in the presynaptic terminal.  相似文献   

6.
Dopamine application in concentration of 10(-5)-10(-6) M into saline around the snail CNS leads to decrease of excitability of LPa7 neurone which is presynaptic in relation to defensive behaviour command neurones, and to decrease of amplitude of monosynaptic excitatory postsynaptic potential (EPSP) in the command neurones elicited by intracellular stimulation of LPa7 neurone. Besides, the dopamine causes a decrease of summated EPSP amplitude in the studied neurones in response to intestinal nerve stimulation (70% in average), a change of rest potential towards hyperpolarization for 6-8 mV, a reduction of the command neurones input resistance (20% in average). The described influences can lead to a general increase of the threshold of defensive system reaction to stimulation. Dopamine action on the defensive behaviour command neurones is significantly weakened in serotonine presence. Against the dopamine background, the efficiency of serotonine influence on the value of EPSP in command neurones in response to testing stimulus is reduced. According to the obtained data, a conclusion is made that interrelation of dopamine and serotonine concentrations can be a base for formation of behaviour choice in snail.  相似文献   

7.
1. Recording with glass micropipette electrodes inserted close to the synaptic region, in the presynaptic and in the postsynaptic fibers of the giant synapse in the stellate ganglion of the squid, has been accomplished. 2. The forms of the spike and of the synaptic potential are very much like those reported earlier (Bullock, 1948) from macroelectrodes. The crest time and the rate of fall are labile and depend on the state of fatigue, though the time of initiation of the postsynaptic potential does not. 3. It is concluded after examination of both intra- and extracellular recordings that there is a real synaptic delay of the order of 1 or 2 milliseconds at 15–20°C. 4. There is sometimes a very small and sometimes no visible deflection in the intracellular postsynaptic record attributable to the presynaptic spike. It is concluded that transmission cannot be electrical. 5. The amplitude of the postsynaptic potential can be controlled over some range by the amplitude of the presynaptic potential. 6. Hyperpolarization of the postsynaptic membrane results in increase in amplitude of spikes up to 200 millivolts, in increase in the membrane potential level at which the spike flares up, but in no considerable change in the amplitude in postsynaptic potential. 7. The postsynaptic potential can add to the late falling phase and the undershoot of an antidromic spike in the postfiber but cannot add to the crest or early part of the falling phase. The earliest part of the antidromic spike during which the postsynaptic potential can add is probably a period of refractoriness to electrical shock by analogy with the properties of the axon.  相似文献   

8.
There is a change in the synaptic connections between motor neurones that underlie locust kicking and jumping during maturation following the adult moult. The fast extensor tibiae (FETi) motor neurone makes monosynaptic excitatory connections with flexor tibiae motor neurones that have previously been implicated in maintaining flexor activity during the co-contraction phase of jumping, in which energy generated by the muscles of a hind leg is stored. The amplitude of the FETi spike decreases when repetitively activated, and this decrement is larger in locusts immediately following the adult moult than in mature locusts. The decrement in␣the FETi spike is correlated with a greater decrease in the amplitude of the flexor excitatory postsynaptic potential (EPSP) in newly moulted locusts and in turn with the failure of these locusts to kick or jump. The results presented here indicate that the developmental change in the connections between the motor neurones contributes to the change in behaviour following the moult. Accepted: 28 April 1997  相似文献   

9.
In cortical neurones, analogue dendritic potentials are thought to be encoded into patterns of digital spikes. According to this view, neuronal codes and computations are based on the temporal patterns of spikes: spike times, bursts or spike rates. Recently, we proposed an 'action potential waveform code' for cortical pyramidal neurones in which the spike shape carries information. Broader somatic action potentials are reliably produced in response to higher conductance input, allowing for four times more information transfer than spike times alone. This information is preserved during synaptic integration in a single neurone, as back-propagating action potentials of diverse shapes differentially shunt incoming postsynaptic potentials and so participate in the next round of spike generation. An open question has been whether the information in action potential waveforms can also survive axonal conduction and directly influence synaptic transmission to neighbouring neurones. Several new findings have now brought new light to this subject, showing cortical information processing that transcends the classical models.  相似文献   

10.
1. The connexions between stretch receptors of the wings and motoneurones innervating flight muscles have been studied anatomically and physiologically. 2. Filling with cobaltous chloride shows that the single neurone of a forewing stretch receptor has a complex pattern of branches within the mesothoracic ganglion and branches which extend into the pro- and meta-thoracic ganglia. The single neurone of a hindwing stretch receptor has extensive branches in the metathoracic ganglion and branches in themesothoracic ganglion. The branches of both receptors are confined to the ipsilateral halves of the ganglia. 3. A stretch receptor gives information about the velocity and extent of elevation of a wing. 4. Each spike of a forewing stretch receptor casuses an EPSP in ipsilateral mesothoracic depressor motoneurones and an IPSP in elevators. The connexions are thought to be monosynaptic for the following reasons. The EPSPs in the first basalar (depressor) motoneurone follow each spike of the stretch receptor at a frequency of 125 Hz and with a constant latency of about 1 msec. In a Ringer solution containing 20 mM-Mg2+ the amplitude EPSP declines gradually. The IPSP'S upon elevators have similar properties but occur with a latency of 4-6 msec. 5. The connexions therefore comprise a monosynaptic negative feed-back loop; elevation of the wing excites the stretch receptor which then inhibits the elevator motoneurones and excites the depressors. 6. A hindwing stretch receptor synapses upon metathoracic flight motoneurones in the same way, causing EPSPs in depressor and IPSPs in elevator motoneurones. 7. No connexions of either fore- or hindwing stretch receptors have been found with contralateral flight motoneurones. 8. Interganglionic connexions are made by both receptors. For example, both fore- and hindwing stretch receptors cause EPSPs upon the meso- and metathoracic first basalar motoneurones. 9. Stimulation of the axon of a stretch receptor with groups of three stimuli repeated every 50-100 msec thus simulating the pattern which it shows during flight, causes subthreshold waves of depolarization in depressor motoneurones. When summed with an unpatterned input, the stretch receptor is able to influence the production of spikes in motoneurones on each cycle. During flight, it is expected that the stretch receptor will influence the time at which a motoneurone will spike and hence have an effect on the amplitude of the upstroke and upon the phase relationship between spikes of motoneurones.  相似文献   

11.
Changes of cross-correlation histograms (CCH) of impulse trains and of mean interspike intervals (ISI) of neurones N1 and N2 with a common monosynaptic excitatory or inhibitory-excitatory input from N3, at changes of efficiency of interneuronal connections, neurone excitability and summate action on them of independent random afferent synaptic inflows were studied by methods of mathematical and biomathematical modelling of neuronal interaction. It was shown that the increase of amplitude of the central peak (trough) of a normalized CCH of N1-N2 accompanied by reduction of mean ISI of N1 and N2, is either a sign of an increase of the amplitude of postsynaptic potentials of N1 and N2 elicited by impulses of the nonrecorded N3 or a sign of an increase of mean ISI of N3.  相似文献   

12.
Prominent monosynaptic and disynaptic reflex discharges characterize ipsilateral reflex transmission in the third sacral segment. Convergence upon the motoneurons from the two sides of the body is inhibitory, that through disynaptic paths excitatory. The relative latencies of excitation and inhibition of reflex responses, of excitatory and inhibitory synaptic potentials, and of various aspects of impulse discharge in motoneurons are considered. It is concluded: (1) that a direct (i.e. monosynaptic) action of primary afferent collaterals upon motoneurons is responsible for inhibition of monosynaptic reflex discharge of antagonist motoneurons within a myotatic unit; (2) that the inhibitory postsynaptic potential as described is not the primary agency for monosynaptic reflex inhibition of monosynaptic reflex discharge; (3) that, however, a common causal agent may be responsible for inhibition of reflex discharge and for generation of an inhibitory postsynaptic potential; and (4) that the inhibitory post-synaptic potential may be linked with, or be the agent for, inhibition of soma response.  相似文献   

13.
Caillard O 《PloS one》2011,6(7):e22322
Frequency and timing of action potential discharge are key elements for coding and transfer of information between neurons. The nature and location of the synaptic contacts, the biophysical parameters of the receptor-operated channels and their kinetics of activation are major determinants of the firing behaviour of each individual neuron. Ultimately the intrinsic excitability of each neuron determines the input-output function. Here we evaluate the influence of spontaneous GABAergic synaptic activity on the timing of action potentials in Layer 2/3 pyramidal neurones in acute brain slices from the somatosensory cortex of young rats. Somatic dynamic current injection to mimic synaptic input events was employed, together with a simple computational model that reproduce subthreshold membrane properties. Besides the well-documented control of neuronal excitability, spontaneous background GABAergic activity has a major detrimental effect on spike timing. In fact, GABA(A) receptors tune the relationship between the excitability and fidelity of pyramidal neurons via a postsynaptic (the reversal potential for GABA(A) activity) and a presynaptic (the frequency of spontaneous activity) mechanism. GABAergic activity can decrease or increase the excitability of pyramidal neurones, depending on the difference between the reversal potential for GABA(A) receptors and the threshold for action potential. In contrast, spike time jitter can only be increased proportionally to the difference between these two membrane potentials. Changes in excitability by background GABAergic activity can therefore only be associated with deterioration of the reliability of spike timing.  相似文献   

14.
Firing pattern of neuronal activity evoked by regular stimulation of monosynaptic inputs to the neurons is described with simple stochastic neuron model. The model gives definite possibilities for an indirect evaluation of transformation in the real neurons which have to fit the following demands: 1) background activity was absent; 2) evoked activity was stationary within the wide range of stimulation frequencies; 3) spike occurrence times were within narrow limits in relation to the nearest stimuli. Experimental data obtained on three types of monosynaptic connections with different intensity of excitatory postsynaptic effects are compared with the model.  相似文献   

15.
O'Kane EM  Stone TW 《Neuro-Signals》2004,13(6):318-324
Activation of adenosine A1 receptors raised spike thresholds and induced a dissociation of excitatory postsynaptic potential (EPSP) spike coupling in hippocampal pyramidal neurones. This effect could be prevented by activation of A2A adenosine receptors. The A1 receptor agonist N6-cyclopentyladenosine caused a dissociation of the EPSP spike coupling recorded extracellularly and increased the threshold for spike generation measured intracellularly. These effects were prevented by the A2A receptor agonist CGS21680. A series of agents interfering with adenylate cyclase activity, protein kinase A or C, or nitric oxide synthase had no effect on these responses to N6-cyclopentyladenosine. Superfusion with barium or glibenclamide prevented both the dissociation of EPSP spike coupling and the increase of spike threshold. It is concluded that a barium- and glibenclamide-sensitive potassium current may be involved in the postsynaptic effects of A1 receptors on spike threshold, and it is suggested that a similar suppression of a potassium current by A2A receptors could underlie the inhibition of A1 receptor responses.  相似文献   

16.
Intracellular responses of neurons of the suprasylvian fissure to intracortical stimulation before and during topical cortical strychnine application was studied in experiments on immobilized, unanesthetized cats (a local anesthetic was used). Untreated cortical neurons responded to intracortical stimulation with a monosynaptic excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). Application of strychnine evoked epileptiform population activity and paroxysmal depolarizations of neuronal membrane potentials (MPs), followed by hyperpolarization. Increased hyperpolarizations, and the prolonged duration of their summation were responsible for an increased MP and reduced or abolished tonic spike activity. Intracellular application (as a result of diffusion from the microelectrode) of ethyleneglycoltetraacetate (EGTA) that blocked the calcium-dependent potassium membrane conductance (gK(Ca)) abolished the hyperpolarization. The development of epileptiform activity was accompanied by reduction of the IPSP, and an increase in the monosynaptic EPSP. The role of gK(Ca) and postsynaptic inhibition in epileptogenesis is discussed.I. I. Mechnikov State University, Odessa. Translated from Neirofiziologiya, Vol. 24, No. 6, pp. 684–691, November–December, 1992.  相似文献   

17.
1. The influence of electrical stimulation of the nucleus raphes magnus (RM) on spinal segmental systems were examined. 2. RM stimulation produced an initial increase and a subsequent suppression of the amplitude of both fiextor and extensor lumbar monosynaptic reflex potentials (MSRs). 3. Intracellular recordings were made from alpha-motoneurons of the common peroneal nerve (flexor) and the tibial nerve (extensor). RM stimulation evoked postsynaptic potentials with a time course similar to that of MSR facilitation. 4. RM stimulation inhibited the aggregate excitatory synaptic potential (EPSP) evoked by stimulation of group I afferent fibers without apparent changes in the motoneuronal membrane potential. 5. These data suggest that the RM-evoked biphasic effect on MSR consists of early facilitation due to EPSP, and late inhibition possibly due to presynaptic inhibition of group I afferent fibers.  相似文献   

18.
By the method of mathematical modelling, stationary irregular exogenous impulse activity of two monosynaptically connected neurones (N1 and N2; excitatory connection) was reproduced. The degree of impulse flows N1 and N2 dependence was estimated by the value P12, proportional to the height of crosscorrelation histogram peak, and by Cox's coefficient beta 12. The dynamics was studied of P12, beta 12 and of values P1* and P2*, proportional to mean interpulse intervals of N1 and N2, at changes of connection efficiency, neurones excitability and of influence of afferent synaptic bombardment on them. The following signs of modification of existing between N1 and N2 monosynaptic excitatory connection were established: 1) change of P12 in direction opposite to that of P1* and P2* change; 2) differently directed changes of beta 12 and P2* of postsynaptic N2.  相似文献   

19.
郑谦  东英穗 《生理学报》1989,41(6):543-554
用大鼠脑干脑片,给三叉神经中脑核79个神经元作了细胞内记录,测算了20个神经元膜的电学特性:静息电位-60.3±5.6mV;输入阻抗为10.5±5.4MΩ;时间常数1.3±0.5ms。电刺激可诱发动作电位,测算32个神经元的有关参数:阈电位-50—-55mV;波幅69.5±6.1mV;超射11.9±3.6mV;波宽0.8±0.2ms。TTX(0.3μmol/L)或无钠使之消失。通以长时程矩形波电流可引起200—250Hz的2—15个重复放电,但在通电停止前终止,TEA或4-AP可延长放电。膜电位-60—-55mV时在动作电位之后可看到阈下电位波动,它不受TTX的影响,无钙时消失,TEA或4-AP使波幅增大。静息电位去极化可使45个神经元中的40个发生外向整流作用,并被TEA,4-AP或无钙抑制,超极化则发生内向整流作用,Cs或无钠抑制之。灌流液中加入各种钾通道阻断药时神经元的稳态I-V曲线发生相应变化,提示I_(DR),l_A,I_(K(Ca))及I_Q可能都与静息时的膜电导有关。  相似文献   

20.
 Several formulations of correlation-based Hebbian learning are reviewed. On the presynaptic side, activity is described either by a firing rate or by presynaptic spike arrival. The state of the postsynaptic neuron can be described by its membrane potential, its firing rate, or the timing of backpropagating action potentials (BPAPs). It is shown that all of the above formulations can be derived from the point of view of an expansion. In the absence of BPAPs, it is natural to correlate presynaptic spikes with the postsynaptic membrane potential. Time windows of spike-time-dependent plasticity arise naturally if the timing of postsynaptic spikes is available at the site of the synapse, as is the case in the presence of BPAPs. With an appropriate choice of parameters, Hebbian synaptic plasticity has intrinsic normalization properties that stabilizes postsynaptic firing rates and leads to subtractive weight normalization. Received: 1 February 2002 / Accepted: 28 March 2002 Correspondence to: W. Gerstner (e-mail: wulfram.gerstner@epfl.ch, Tel.: +41-21-6936713, Fax: +41-21-6935263)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号