首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whittaker MM  Whittaker JW 《Biochemistry》2008,47(44):11625-11636
Metal uptake by apomanganese superoxide dismutase in vitro is a complex process exhibiting multiphase "gated" reaction kinetics and a striking sigmoidal temperature profile that has led to a model of conformationally gated metal binding, requiring conversion between "closed" and "open" forms. This work systematically explores the structural determinants of metal binding in both wild-type (WT) apoprotein and mutational variants as a test of mechanistic models. The pH dependence of metalation under physiological conditions (37 degrees C) shows it is linked to ionization of a single proton with a p K a of 7.7. Size exclusion chromatography demonstrates that the apoprotein is dimeric even when it is fully converted to the open form. The role of molecular motions in metal binding has been probed by using disulfide engineering to introduce covalent constraints into the protein. While restricting motion at domain interfaces has no effect, constraining the subunit interface significantly perturbs metal uptake but does not prevent the process. Mutagenesis of residues in the active site environment results in a dramatic shift in the transition temperature by as much as 20 degrees C or a loss of pH sensitivity. On the basis of these results, a mechanism for metal uptake by manganese superoxide dismutase involving reorientation of active site residues to form a metal entry channel is proposed.  相似文献   

2.
Manganese superoxide dismutase from the extremely thermophilic eubacterium Thermus thermophilus has been cloned and expressed at high levels in a mesophilic host (Escherichia coli) as a soluble tetrameric protein mainly present as the metal-free apo-enzyme. Incubation of the purified apo-enzyme with manganese salts at ambient temperature did not restore superoxide dismutase activity, but reactivation could be achieved by heating the protein with Mn(II) at higher temperatures, approaching the physiological growth temperature for T. thermophilus. Heat annealing followed by incubation with manganese at lower temperature fails to reactivate the enzyme, demonstrating that a simple misfolding of the protein is not responsible for the observed behavior. The in vitro metal uptake is nonspecific, and manganese, iron, and vanadium all bind, but only manganese restores catalytic activity. Bound metal ions do not exchange during heat treatment, indicating that the formation of the metal complex is effectively irreversible under these conditions. The metallation process is strongly temperature-dependent, suggesting that substantial activation barriers to metal uptake at ambient temperature are overcome by a thermal transition in the apo-protein structure. A mechanism for SOD metallation is proposed, focusing on interactions at the domain interface.  相似文献   

3.
The concept of the Circe effect, according to which an enzyme's substrate-binding energy is utilized to destabilize the substrate towards the reaction transition state, has been shown to be a relevant catalytic strategy for naturally occurring protein enzymes and for two ribozymes that use nucleotide-based substrates and metal ion cofactors. We wished to investigate whether such a catalytic strategy extends even to divergent and unevolved catalysts constructed from biopolymers. We examined the properties of a small, in vitro selected, and cofactor-independent DNA enzyme, PS5.M, which catalyzes porphyrin metallation. The metallation reaction is unique, in that the energies for binding and for metallation of both the substrate and of a transition-state analogue (TSA) can be measured. We report that PS5.M, originally selected for binding to the TSA, displays the Circe effect in channeling a significant component of entropy-rich "intrinsic" binding energy to distort and to alter the basicity of the bound substrate. The study demonstrates that nucleic acids are, by themselves, capable of creating active sites for the catalysis of chemical reactions involving non-nucleotide substrates. Furthermore, the study of the metallation of the TSA provides a quantitative estimate of the effectiveness of such a compound in mimicking the true transition state for porphyrin metallation.  相似文献   

4.
Escherichia coli apomanganese superoxide dismutase, prepared by removing the native metal ion under denaturing conditions, exhibits thermally triggered metal uptake behavior previously observed for thermophilic and hyperthermophilic superoxide dismutases but over a lower temperature range. Differential scanning calorimetry of aposuperoxide dismutase and metalated superoxide dismutase unfolding transitions has provided quantitative estimates of the metal binding affinities for manganese superoxide dismutase. The binding constant for Mn(II) (K(Mn(II)) = 3.2 x 10(8) m(-1)) is surprisingly low in light of the essentially irreversible metal binding characteristic of this family of proteins and indicates that metal binding and release processes are dominated by kinetic, rather than thermodynamic, constraints. The kinetic stability of the metalloprotein complex can be traced to stabilization by elements of the protein that are independent of the presence or absence of the metal ion reflected in the thermally triggered metalation characteristic of these proteins. Binding constants for Mn(III), Fe(II), and Fe(III) complexes were estimated using quasireversible values for the unfolding enthalpy and DeltaC(p) for apo-Mn superoxide dismutase and the observed T(m) values for unfolding the metalated species in the absence of denaturants. For manganese and iron complexes, an oxidation state-dependent binding affinity reflects the protein perturbation of the metal redox potential.  相似文献   

5.
6.
Mechanisms of metal ion incorporation into metalloproteins   总被引:4,自引:0,他引:4  
Although the structure and function of protein metallocenters have been extensively characterized, much less is known about their assembly. Here, I describe several general strategies for metallocenter biosynthesis and provide literature precedents for each mechanism. The simplest mechanism involves reversible metal ion binding to amino acid ligands of the apo-protein. In a variation of this mechanism, the apo-protein first must be phosphorylated, carboxylated or otherwise covalently modified in order to create the metal ion binding site. Alternatively, passive metal ion binding may require the presence of an associated compound, such as a nucleotide, carbonate or inorganic sulfide, which is co-incorporated into the protein along with the metal ion. In addition, reversible binding may occur using a pre-formed organometallic cofactor such as a metal-tetrapyrrole. Electron transfer reactions are coupled to biosynthesis of certain metallocenters, i.e. oxidation or reduction of the metallocenter or apo-protein may be required prior to binding, or once bound the metallocenter may be oxidatively trapped in the protein. An effector molecule may bind to apo-protein to open up or stabilize the metallocenter binding site, then after the metallocenter is incorporated the effector molecule dissociates. A transferase or insertase protein first may bind the metallocenter and then incorporate it into the appropriate apo-protein. Finally, metal cofactors may be covalently attached to proteins. Regardless of the metallocenter biosynthetic mechanism, intracellular metal ion concentrations must be sufficient; hence, metal ion transport systems also are briefly discussed.  相似文献   

7.
The "magic numbers" of metallothionein   总被引:2,自引:0,他引:2  
Metallothioneins (MT) are a family of small cysteine rich proteins, which since their discovery in 1957, have been implicated in a range of roles including toxic metal detoxification, protection against oxidative stress, and as a metallochaperone involved in the homeostasis of both zinc and copper. The most well studied member of the family is the mammalian metallothionein, which consists of two domains: a β-domain with 9 cysteine residues, which sequesters 3 Cd(2+) or Zn(2+) or 6 Cu(+) ions, and an α-domain with 11 cysteine residues and, which sequesters 4 Cd(2+) or Zn(2+) or 6 Cu(+) ions. Despite over half a century of research, the exact functions of MT are still unknown. Much of current research aims to elucidate the mechanism of metal binding, as well as to isolate intermediates in metal exchange reactions; reactions necessary to maintain homeostatic equilibrium. These studies further our understanding of the role(s) of this remarkable and ubiquitous protein. Recently, supermetallated forms of the protein, where supermetallation describes metallation in excess of traditional levels, have been reported. These species may potentially be the metal exchange intermediates necessary to maintain homeostatic equilibrium. This review focuses on recent advances in the understanding of the mechanistic properties of metal binding, the implications for the metal induced protein folding reactions proposed for metallothionein metallation, the value of "magic numbers", which we informally define as the commonly determined metal-to-protein stoichiometric ratios and the significance of the new supermetallated states of the protein and the possible interpretation of the structural properties of this new metallation status. Together we provide a commentary on current experimental and theoretical advances and frame our consideration in terms of the possible functions of MT.  相似文献   

8.
Insertion of metals into various tetrapyrroles is catalysed by a group of enzymes called chelatases, e.g. nickel, cobalt, magnesium and ferro-chelatase. It has been proposed that catalytic metallation includes distorting the porphyrin substrate by the enzyme towards a transition state-like geometry in which at least one of the pyrrole rings will be available for metal chelation. Here, we present a study of metal insertion into the transition-state inhibitor of protoporphyrin IX ferrochelatase, N-methyl mesoporphyrin (N-MeMP), by time-resolved crystallography and mass spectrometry with and without the presence of ferrochelatase. The results show that metallation of N-MeMP has a very limited effect on the conformation of the residues that participate in porphyrin and metal binding. These findings support theoretical data, which indicate that product release is controlled largely by the strain created by metal insertion into the distorted porphyrin. The results suggest that, similar to non-catalytic metallation of N-MeMP, the ferrochelatase-assisted metallation depends on the ligand exchange rate for the respective metal. Moreover, ferrochelatase catalyses insertion of Cu(II) and Zn(II) into N-MeMP with a rate that is about 20 times faster than non-enzymatic metallation in solution, suggesting that the catalytic strategy of ferrochelatase includes a stage of acceleration of the rate of ligand exchange for the metal substrate. The greater efficiency of N-MeMP metallation by Cu(II), as compared to Zn(II), contrasts with the K(m) values for Zn(II) (17 microM) and Cu(II) (170 microM) obtained for metallation of protoporphyrin IX. We suggest that this difference in metal specificity depends on the type of distortion imposed by the enzyme on protoporphyrin IX, which is different from the intrinsic non-planar distortion of N-MeMP. A mechanism of control of metal specificity by porphyrin distortion may be general for different chelatases, and may have common features with the mechanism of metal specificity in crown ethers.  相似文献   

9.
Toke O  Monsey JD  Cistola DP 《Biochemistry》2007,46(18):5427-5436
Cooperative ligand binding to human ileal bile acid binding protein (I-BABP) was studied using the stopped-flow fluorescence technique. The kinetic data obtained for wild-type protein are in agreement with a four-step mechanism where after a fast conformational change on the millisecond time scale, the ligands bind in a sequential manner, followed by another, slow conformational change on the time scale of seconds. This last step is more pronounced in the case of glycocholate (GCA), the bile salt that binds with high positive cooperativity and is absent in mutant I-BABP proteins that lack positive cooperativity in their bile salt binding. These results suggest that positive cooperativity in human I-BABP is related to a slow conformational change of the protein, which occurs after the second binding step. Analogous to that in the intestinal fatty acid binding protein (I-FABP), we hypothesize that ligand binding in I-BABP is linked to a disorder-order transition between an open and a closed form of the protein.  相似文献   

10.
The two-domain (βα) mammalian metallothionein binds seven divalent metals, however, the binding mechanism is not well characterized and recent reports require the presence of the partially metallated protein. In this paper, step-wise metallation of the metal-free, two-domain βα-rhMT and the isolated β-rhMT using Cd(II) is shown to proceed in a noncooperative manner by analysis of electrospray ionization mass spectrometric data. Under limiting amounts of Cd(II), all intermediate metallation states up to the fully metallated Cd3-β-rhMT and Cd7-βα-rhMT were observed. Addition of excess Cd(II), resulted in formation of the supermetallated (metallation in excess of normal levels) Cd4-β- and Cd8-βα-metallothionein species. These data establish that noncooperative cadmium metallation is a property of each isolated domain and the complete two-domain protein. Our data now also establish that supermetallation is a property that may provide information about the mechanism of metal transfer to other proteins.  相似文献   

11.
The specific insertion of a divalent metal ion into tetrapyrrole macrocycles is catalyzed by a group of enzymes called chelatases. Distortion of the tetrapyrrole has been proposed to be an important component of the mechanism of metallation. We present the structures of two different inhibitor complexes: (1) N-methylmesoporphyrin (N-MeMP) with the His183Ala variant of Bacillus subtilis ferrochelatase; (2) the wild-type form of the same enzyme with deuteroporphyrin IX 2,4-disulfonic acid dihydrochloride (dSDP). Analysis of the structures showed that only one N-MeMP isomer out of the eight possible was bound to the protein and it was different from the isomer that was earlier found to bind to the wild-type enzyme. A comparison of the distortion of this porphyrin with other porphyrin complexes of ferrochelatase and a catalytic antibody with ferrochelatase activity using normal-coordinate structural decomposition reveals that certain types of distortion are predominant in all these complexes. On the other hand, dSDP, which binds closer to the protein surface compared to N-MeMP, does not undergo any distortion upon binding to the protein, underscoring that the position of the porphyrin within the active site pocket is crucial for generating the distortion required for metal insertion. In addition, in contrast to the wild-type enzyme, Cu2+-soaking of the His183Ala variant complex did not show any traces of porphyrin metallation. Collectively, these results provide new insights into the role of the active site residues of ferrochelatase in controlling stereospecificity, distortion and metallation.  相似文献   

12.
The metabotropic glutamate receptors (mGluRs) belong to family C of the G-protein-coupled receptor (GPCR) superfamily. The receptors are characterized by having unusually long amino-terminal domains (ATDs), to which agonist binding has been shown to take place. Previously, we have constructed a molecular model of the ATD of mGluR1 based on a weak amino acid sequence similarity with a bacterial periplasmic binding protein. The ATD consists of two globular lobes, which are speculated to contract from an "open" to a "closed" conformation following agonist binding. In the present study, we have created a Zn(2+) binding site in mGluR1b by mutating the residue Lys(260) to a histidine. Zinc acts as a noncompetitive antagonist of agonist-induced IP accumulation on the K260H mutant with an IC(50) value of 2 microm. Alanine mutations of three potential "zinc coligands" in proximity to the introduced histidine in K260H knock out the ability of Zn(2+) to antagonize the agonist-induced response. Zn(2+) binding to K260H does not appear to affect the dimerization of the receptor. Instead, we propose that binding of zinc has introduced a structural constraint in the ATD lobe, preventing the formation of a "closed" conformation, and thus stabilizing a more or less inactive "open" form of the ATD. This study presents the first metal ion site constructed in a family C GPCR. Furthermore, it is the first time a metal ion site has been created in a region outside of the seven transmembrane regions of a GPCR and the loops connecting these. The findings offer valuable insight into the mechanism of ATD closure and family C receptor activation. Furthermore, the findings demonstrate that ATD regions other than those participating in agonist binding could be potential targets for new generations of ligands for this family of receptors.  相似文献   

13.
The three-dimensional structure of the manganese-dependent superoxide dismutase (MnSOD) from Escherichia coli has been determined by X-ray crystallography at 2.1?Å resolution. The protein crystallizes with two homodimers in the asymmetric unit, and a model comprising 6528 protein atoms (residues 1–205 of all four monomers), four manganese ions and 415 water molecules has been refined to an R factor of 0.188 (R free 0.218). The structure shows a high degree of similarity with other MnSOD and FeSOD enzymes. The Mn centres are 5-coordinate, trigonal bipyramidal, with His26 and a solvent molecule, probably a hydroxide ion, as apical ligands, and His81, Asp167 and His171 as equatorial ligands. The coordinated solvent molecule is linked to a network of hydrogen bonds involving the non-coordinated carboxylate oxygen of Asp167 and a conserved glutamine residue, Gln146. The MnSOD dimer is notable for the way in which the two active sites are interconnected and a "bridge" comprising His171 of one monomer and Glu170 of the other offers a route for inter-site communication. Comparison of E. coli MnSOD and FeSOD (a) reveals some differences in the dimer interface, (b) yields no obvious explanation for their metal specificities, and (c) provides a structural basis for differences in DNA binding, where for MnSOD the groove formed by dimerization is complementary in charge and surface contour to B-DNA.  相似文献   

14.
C K Vance  A F Miller 《Biochemistry》2001,40(43):13079-13087
Fe and Mn are both entrained to the same chemical reaction in apparently superimposable superoxide dismutase (SOD) proteins. However, neither Fe-substituted MnSOD nor Mn-substituted FeSOD is active. We have proposed that the two SOD proteins must apply very different redox tuning to their respective metal ions and that tuning appropriate for one metal ion results in a reduction potential (E(m)) for the other metal ion that is either too low (Fe) or too high (Mn) [Vance and Miller (1998) J. Am. Chem. Soc. 120, 461-467]. We have demonstrated that this is true for Fe-substituted MnSOD from Escherichia coli and that this metal ion-protein combination retains the ability to reduce but not oxidize superoxide. We now demonstrate that the corollary is also true: Mn-substituted FeSOD [Mn(Fe)SOD] has a very high E(m). Specifically, we have measured the E(m) of E. coli MnSOD to be 290 mV vs NHE. We have generated Mn(Fe)SOD and find that Mn is bound in an environment similar to that of the native (Mn)SOD protein. However, the E(m) is greater than 960 mV vs NHE and much higher than MnSOD's E(m) of 290 mV. We propose that the different tuning stems from different hydrogen bonding between the proteins and a molecule of solvent that is coordinated to the metal ion in both cases. Because a proton is taken up by SOD upon reduction, the protein can exert very strong control over the E(m), by modulating the degree to which coordinated solvent is protonated, in both oxidation states. Thus, coordinated solvent molecules may have widespread significance as "adapters" by which proteins can control the reactivity of bound metal ions.  相似文献   

15.
Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by peptide and protein misfolding and aggregation, in part due to the presence of excess metal ions such as copper(II) [Cu(II)]. Recently, the brain levels of Cu(II) complexes in vivo were linked to the oxidative stress in neurodegenerative disorders, including AD. Amyloid β-peptide (Aβ), found outside neuronal cells, has been investigated extensively in connection with Cu(II) ion toxicity; however, the effects of metallation on tau are less known. Normal tau protein binds and stabilizes the microtubules in neurons, but in diseased cells tau hyperphosphorylation and aggregation are evident and compromise tau function. There is increasing evidence that the Cu(II) ion may play an important role in tau biochemistry. Here, we present an electrochemical study of the interactions between full-length tau-410 and Cu(II) ions. The coordination of Cu(II) ions to tau immobilized on gold surfaces induces an electrochemical signal at approximately 140 ± 5 mV versus Ag/AgCl due to the Cu(II)/Cu(I) redox couple. Redox potentials and current intensities of Cu(II)-containing nonphosphorylated tau (nTau) and phosphorylated tau (pTau) films were determined at different pH conditions. Greater Cu(II) uptake by pTau over nTau films was observed at low pH. Competitive zinc(II) [Zn(II)] ion binding studies revealed significant Cu(II) ion displacement in pTau films. X-ray photoelectron spectroscopy analysis indicated the presence of Cu 2p and Zn 2p binding energies in protein samples, further supporting metal ion coordination to protein films. The surface-based electrochemical technique requires a minimal protein amount (a few microliters) and allows monitoring the bound Cu(II) ions and the redox activities of the resulting metalloprotein films.  相似文献   

16.
R R Poyner  W W Cleland  G H Reed 《Biochemistry》2001,40(27):8009-8017
Spectroscopic and kinetic methods have been used to explore the roles of divalent metal ions in the enolase-catalyzed dehydration of 2-phosphoglycerate (2-PGA). Enolase requires 2 equiv of metal ion per active site for maximal activity. Previous crystallographic studies [Larsen, T. M., Wedekind, J. E., Rayment, I., and Reed, G. H. (1996) Biochemistry 35, 4349-4358] showed that both magnesium ions coordinated to the carboxylate group of the substrate/product-a scheme consistent with metal ion assistance in formation of the enolate intermediate. Electron paramagnetic resonance (EPR) data with 17O-labeled forms of phosphoenolpyruvate show that Mn(2+), bound at the lower affinity site, coordinates to one carboxylate oxygen and one phosphate oxygen of the substrate. These observations are fully consistent with the crystallographic data. Plots of activity versus log [metal ion] are bell-shaped, and the inhibitory phases of the profiles have been previously attributed to binding of metal ions at ancillary sites on the enzyme. However, the activation profiles and measurements of 2H kinetic isotope effects support an ordered kinetic mechanism wherein binding of 2-PGA precedes binding of the second metal ion, and release of the second metal ion occurs prior to departure of phosphoenolpyruvate. High concentrations of metal ion lead to inhibition in the ordered mechanism by interfering with product release. The 2H kinetic isotope effect is diminished in the inhibitory phases of the metal ion activation profiles in a manner that is consistent with the predominantly ordered mechanism. Zn(2+) gives lower maximal activity than Mg(2+), apparently due to slow release of Zn(2+) from the product complex. Addition of imidazole increases the maximal rate apparently by accelerating the release of Zn(2+) from the enzyme.  相似文献   

17.
Jin JP  Root DD 《Biochemistry》2000,39(38):11702-11713
Troponin T (TnT) plays an allosteric signal transduction role in the actin thin-filament-based Ca(2+)-regulation of striated muscle contraction. Developmentally regulated alternative RNA splicing produces TnT isoforms differing in their NH(2)-terminal structure. Physical property variations of the NH(2)-terminal hypervariable region of TnT may have a role in tuning the Ca(2+)-sensitivity and overall cooperativity of the muscle. We have previously demonstrated that metal ion or monoclonal antibody binding to the NH(2)-terminal region can modulate the epitopic conformation and troponin I and tropomyosin binding affinity of TnT. To further establish the molecular basis of this conformational and functional modulation, we have characterized the NH(2)-terminal variable region-originated secondary conformational effect in TnT using fluorescence spectral analysis. The chicken fast skeletal muscle TnT isoform, TnT8e16, containing a cluster of transition-metal ion binding sites (Tx) in the NH(2)-terminal variable region was used in this study. TnT8e16 was titrated for Cu(II) binding-induced changes in fluorescence intensity and anisotropy of the COOH-domain Trp residues (W234, W236, and W285), which demonstrated considerable environmental sensitivity in TnT denaturation studies. Nonlinear Stern-Volmer plots of Trp quenching indicated a metal ion binding-induced conformational change in TnT. Fluorescence anisotropy changes upon metal ion binding indicated a decrease in the mobility of the Trp residues and an increase in the flexibility of fluorescein-labeled Cys263 in the COOH domain. These data support a model that the alternatively spliced NH(2)-terminal variable region of TnT modulates conformation and flexibility of other domains of the protein.  相似文献   

18.
Rhizoferrin-mediated iron uptake was studied in two different classes of organisms: a rhizoferrin producing fungus, Absidia spinosa (Zygomycetes), and a ferric rhizoferrin utilizing bacterium, Morganella morganii (Enterobacteriaceae). The uptake of iron rhizoferrin and some of its metal analogs (chromium, rhodium, gallium), was followed and kinetic parameters measured in A. spinosa. These metal ion complexes were taken up in a concentration- and energy-dependent manner indicative of an active transport system. The uptake of the kinetically inert chromium and rhodium and reductively inert gallium complexes suggests a variation of the so called shuttle mechanism may be operative. The recognition of one geometrical isomer of chromium-rhizoferrin but not another argues for a degree of stereospecificity in the uptake process. A growth promotion plate assay was used to examine metal-rhizoferrin uptake in M. morganii. The results indicate that a number of factors including the nature of the chelating agent (e.g. bipyridyl or EDDHA) used to induce iron deficiency need to be considered before these simple plate assays can be reliably used to indicate the presence or absence of a particular siderophore uptake system.  相似文献   

19.
Among manganese superoxide dismutases, residues His30 and Tyr174 are highly conserved, forming part of the substrate access funnel in the active site. These two residues are structurally linked by a strong hydrogen bond between His30 NE2 from one subunit and Tyr174 OH from the other subunit of the dimer, forming an important element that bridges the dimer interface. Mutation of either His30 or Tyr174 in Escherichia coli MnSOD reduces the superoxide dismutase activity to 30--40% of that of the wt enzyme, which is surprising, since Y174 is quite remote from the active site metal center. The 2.2 A resolution X-ray structure of H30A-MnSOD shows that removing the Tyr174-->His30 hydrogen bond from the acceptor side results in a significant displacement of the main-chain segment containing the Y174 residue, with local rearrangement of the protein. The 1.35 A resolution structure of Y174F-MnSOD shows that disruption of the same hydrogen bond from the donor side has much greater consequences, with reorientation of F174 having a domino effect on the neighboring residues, resulting in a major rearrangement of the dimer interface and flipping of the His30 ring. Spectroscopic studies on H30A, H30N, and Y174F mutants show that (like the previously characterized Y34F mutant of E. coli MnSOD) all lack the high pH transition of the wt enzyme. This observation supports assignment of the pH sensitivity of MnSOD to coordination of hydroxide ion at high pH rather than to ionization of the phenolic group of Y34. Thus, mutations near the active site, as in the Y34F mutant, as well as at remote positions, as in Y174F, similarly affect the metal reactivity and alter the effective pK(a) for hydroxide ion binding. These results imply that hydrogen bonding of the H30 imidazole N--H group plays a key role in substrate binding and catalysis.  相似文献   

20.
Structural dynamics and functional domains of the fur protein   总被引:28,自引:0,他引:28  
M Coy  J B Neilands 《Biochemistry》1991,30(33):8201-8210
Proteolytic enzymes were used to detect metal-induced conformational changes in the ferric uptake regulation (Fur) protein of Escherichia coli K12. Metal binding results in enhanced cleavage of the N-terminal region of Fur by trypsin and chymotrypsin. Activation of both trypsinolysis sensitivity and DNA binding have similar metal ion specificity and concentration dependencies, suggesting that the conformational change detected is required for operator DNA binding. Isolation and characterization of biochemically generated fragments of Fur as well as other data indicate that the N-terminal region is necessary for the interaction of the repressor with DNA and that a C-terminal domain is sufficient for binding to metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号