首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
ASA提高小麦抗旱性生理效应的研究   总被引:37,自引:0,他引:37  
本文研究了外源ASA对小麦的抗旱生理作用。结果表明:在水分胁迫下,ASA可缓解小麦水分下降趋势,提高叶绿素和蛋白质含量,抑制O-·2的增加,同时提高保护酶的活性,ASA处理还可降低水分胁迫下外渗电导率,对膜起保护作用。  相似文献   

2.
外源精胺对水分胁迫下小麦幼苗保护酶活性的影响   总被引:3,自引:0,他引:3  
通过营养液培养试验,研究了水分胁迫下外源精胺(Spm)对抗旱性不同的小麦品种幼苗叶片质膜相对透性及保护酶活性的影响.结果表明:水分胁迫下,小麦叶片的质膜相对透性、M DA含量增加、SOD、CAT和POD活性上升,外源精胺处理可延缓水分胁迫下小麦叶片质膜相对透性和M DA含量上升,提高了SOD、CAT、POD酶活性的上升幅度;并且对抗旱性弱的品种保护酶活性增幅高于抗旱性强的品种.因此,外源精胺处理对抗旱性弱的品种缓解水分胁迫作用大于抗旱性强的品种.  相似文献   

3.
外源甜菜碱提高小麦幼苗抗盐性的研究   总被引:30,自引:3,他引:27  
以小麦品系山农215953(SN215953)为材料,采用水培的方法,于幼苗期(两叶一心)根灌15mmol·L-1甜菜碱,研究了外源甜菜碱对盐胁迫下小麦幼苗水分状况、脯氨酸和可溶性糖含量及抗氧化酶活性的影响。结果表明:(1)外源甜菜碱可缓解盐渍造成的小麦幼苗叶片的水分损失,改善小麦幼苗的水分状况,并发现甜菜碱的这种作用主要是通过促进脯氨酸和可溶性糖的积累进而提高小麦叶片的渗透调节能力来实现。(2)外源甜菜碱可以维持盐胁迫下小麦幼苗叶片的抗氧化酶(SOD、APX、POD)活性,缓解盐渍造成的盐胁迫伤害,对盐胁迫下小麦幼苗生物膜的稳定性和完整性起到保护作用。  相似文献   

4.
用CO2激光对小麦种子分别辐照0、1、3、5min,待其生长至12d时,用10%(W/V)PEG6000胁迫其幼苗,研究激光预处理对PEG6000水分胁迫下小麦幼苗根部脂质过氧化伤害的防护作用。结果表明,CO2激光预处理3min可使水分胁迫的小麦幼苗根部MDA、H2O2含量和O2.-产生速率显著降低(P0.05),可显著提高(P0.05)小麦幼苗根部SOD、POD、CAT、APX活性和根长、根干重。激光预处理3min可抑制由水分胁迫引起的小麦幼苗根部脂质过氧化作用。  相似文献   

5.
用CO2激光对小麦种子分别辐照0、1、3、5min,待其生长至12d时,用10%(W/V)PEG6000胁迫其幼苗,研究激光预处理对PEG6000水分胁迫下小麦幼苗根部脂质过氧化伤害的防护作用。结果表明,CO2激光预处理3min可使水分胁迫的小麦幼苗根部MDA、H2O2含量和O2.-产生速率显著降低(P〈0.05),可显著提高(P〈0.05)小麦幼苗根部SOD、POD、CAT、APX活性和根长、根干重。激光预处理3min可抑制由水分胁迫引起的小麦幼苗根部脂质过氧化作用。  相似文献   

6.
He-Ne激光对水分胁迫下小麦幼苗生理特性的影响   总被引:3,自引:1,他引:2  
用He-Ne激光(5.23×10-3W.mm-2)处理经不同浓度PEG6000胁迫的小麦幼苗,研究水分胁迫条件下激光辐照对小麦幼苗生理特性的影响。结果表明,He-Ne激光辐照可显著提高水分胁迫下小麦幼苗的根系活力以及抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性(P<0.05),并使其脯氨酸含量显著增加(P<0.05),而对其超氧化物歧化酶(SOD)的活性没有显著影响。可见,He-Ne激光可通过提高根系活力、抗氧化酶活性和脯氨酸含量来显著增强小麦幼苗的抗旱性。  相似文献   

7.
水杨酸对水分胁迫下小麦幼苗叶片膜损伤的保护作用(简报)   总被引:34,自引:0,他引:34  
中度水分胁迫(10%PEG处理48h)导致小麦幼苗叶片膜显著受损伤,表现为SOD活性降低和MDA含量明显升高。在胁迫期间外加水杨酸(SA)并不能阻止叶片膜受损伤,但在小麦种子吸胀和萌发期间用SA处理的小麦幼苗,同样强度的水分胁迫不会对细胞膜造成损伤,在这种情况下SA对水分胁迫导致的膜损伤有保护作用。  相似文献   

8.
在磁环境中,当充分供水和水分胁迫条件下,小麦幼苗叶片延伸生长速度(LER)均大于对照,且有(1)在充分供水条件下对水分敏感型品种的LER较不敏感型大;(2)水分胁迫条件则呈现相反规律;(3)RWC测定值说明磁环境可以改善胁迫小麦的水分状况,因而磁环境对增强小麦旱性有作用。  相似文献   

9.
分别对抗旱小麦8139和干旱敏感小麦甘麦8号的幼苗进行两周的水分胁迫和NaCl胁迫,并对其叶片中一些生理指标的变化进行了研究,结果表明,水分胁迫下8139中O2^-和H2O2的含量及膜脂过氧化程度均低于敏感品种,胁迫后第七天与第十四天其中SOD与CAT活性明显高于甘麦8号,盐胁迫下两种小麦中的H2O2,MDA含量及SOD,POX酶活性在各时期均无明显差别,水分胁迫下,8139中多胺(腐胺Put,亚精胺Spd,精胺Spm)含量显著高于甘麦8号,盐胁迫下,两品种中多胺含量有胁迫7d后才表现出差异,由此可见,水分胁迫下两品种清除自由基的能力明显不同。而在盐胁迫下则差别不大。表现在生长上,水分胁迫下8139地上部分干物质的累积量高于甘麦8号,而在NaCl胁迫下两者之间差别不大,该结果表明植物抗旱与抗盐的生理保护机理是不一样的。  相似文献   

10.
水分胁迫对小麦幼苗叶片多胺含量的影响   总被引:9,自引:0,他引:9  
水分胁迫下小麦幼苗叶片多胺含量变化的研究表明,聚乙二醇(PEG)的渗透胁迫明显提高了抗旱性强的周麦系列幼苗叶片游离态Put、Spd和Spm的含量和抗旱性弱的温麦6号的Put含量。外源Spd显著提高了水分胁迫下温麦6号的Spd的含量,对其抗性也有所改善。外源MGBG(Spd和Spm生物合成抑制剂)可提高水分胁迫下周麦12号Put的含量,但降低了Spd和Spm的含量和幼苗的抗性。  相似文献   

11.
水杨酸和阿斯匹林对小麦幼苗生长过程中盐害的缓解作用   总被引:11,自引:0,他引:11  
以小麦为材料,研究盐分胁迫对小麦幼苗生长的影响以及水杨酸和阿斯匹林对小麦幼苗生长过程中盐害的缓解作用。结果表明,水杨酸和阿斯匹林能够相对提高盐分胁迫条件下小麦幼苗叶片的相对含水量,降低叶片质膜透性和盐害对细胞膜的伤害,提高幼苗体内超氧化物歧化酶、过氧化物酶等细胞保护酶的活性,抑制过氧化作用产物丙二醛的积累;同时发现外源水杨酸和阿斯匹林还能够提高幼苗体内ATP的含量,维持幼苗能量代谢和供应的正常进行,从而提高小麦对盐分胁迫的适应性  相似文献   

12.
本文用甜菜碱溶液浸种,研究了外源甜碱对干旱/盐胁迫下的小麦幼苗的生长状况和叶片光合转能的影响,结果表明,外源甜菜碱能使干旱/盐胁迫下的小麦幼苗地上部和根部的干重和含水量增加,使叶片叶绿素a荧光诱导动力学参数Fv/Vo,Fv/Fm和qP增高,qN降低,说明外源甜菜碱有利于植物对光能的捕获和转换,明显促进植物生长,降低干旱/盐胁迫对植物的抑制作用。  相似文献   

13.
Osmotic stress responses of water content, photosynthetic parameters and biomass production were investigated in wheat-Aegilops biuncialis amphiploids and in wheat genotypes to clarify whether they can use to improve the drought tolerance of bread wheat. A decrease in the osmotic pressure of the medium resulted in considerable water loss, stomatal closure and a decreased CO2 assimilation rate for the wheat genotypes, while the changes in these parameters were moderate for the amphiploids. Maximal assimilation rate was maintained at high level even under severe osmotic stress in the amphiploids, while it decreased substantially in the wheat genotypes. Nevertheless, the effective quantum yield of PS II was higher and the quantum yield of non-photochemical quenching of PS II and PS I was lower for the amphiploids than for the wheat cultivars. Parallel with this, higher cyclic electron flow was detected in wheat than in the amphiploids. The elevated photosynthetic activity of amphiploids under osmotic stress conditions was manifested in higher biomass production by roots and shoots as compared to wheat genotypes. These results indicate that the drought-tolerant traits of Ae. biuncialis can be manifested in the wheat genetic background and these amphiploids are suitable genetic materials for improving drought tolerance of wheat.  相似文献   

14.
本文用甜菜碱溶液浸种,研究了外源甜菜碱对干旱/盐胁迫下的小麦幼苗的生长状况和叶片光合转能的影响。结果表明,外源甜菜碱能使干旱/盐胁迫下的小麦幼苗地上部和根部的干重和含水量增加,使叶片叶绿素a荧光诱导动力学参数Fv/Fo, Fv/Fm和qP增高,qN降低,说明外源甜菜碱有利于植物对光能的捕获和转换,明显促进植物生长,降低干旱/盐胁迫对植物的抑制作用。  相似文献   

15.
Phospholipid changes in wheat and barley leaves under water stress   总被引:1,自引:0,他引:1  
Total phospholipid content of leaves of wheat and barley increased and phospholipid components changed under water stress. Notable among these were the absence of phosphatidyl serine in barley varieties, decrease in phosphatidyl glycerol content in a less drought-tolerant variety of wheat (S-308) and barley (BG-25), and appearance of phosphatidic acid in both crops. The phospholipid content and its components did not return to normal upon release of the stress by subsequent irrigations. Such observations are indicative of water stress effected alterations in membranes.  相似文献   

16.
Water stress restrains plant growth. Expansin is a cell wall protein that is generally accepted to be the key regulator of cell wall extension during plant growth. In this study, we used two different wheat cultivars to study the involvement of expansin in drought tolerance. Wheat coleoptile was used as the material in experiment. Our results indicated that water stress induced an increase in acidic pH-dependant cell wall extension, which is related to expansin activity; however, water stress inhibited coleoptile elongation growth. The increased expansin activity was mainly due to increased expression of expansin protein that was upregulated by water stress, but water stress also resulted in a decrease in cell wall acidity, a negative factor for cell wall extension. Decreased plasma membrane H+-ATPase activity was involved in the alkalinization of the cell wall under water stress. The activity of expansin in HF9703 (a drought-tolerant wheat cultivar) was always higher than that in 921842 (a drought-sensitive wheat cultivar) under both normal and water stress conditions, which may be correlated with the higher expansin protein expression and plasma membrane H+-ATPase activity observed in HF9703 versus 921842. However, water stress did not change the susceptibility of the wheat cell wall to expansin, and no difference in this susceptibility was observed between the drought-tolerant and drought-sensitive wheat cultivars. These results suggest the involvement of expansin in cell elongation and the drought resistance of wheat.  相似文献   

17.
水分胁迫对冬小麦叶片CO2/H2O交换参数的影响   总被引:1,自引:0,他引:1  
Changes of CO2/H2O exchange parameters were continually measuredin winter wheat under different water stress stages.The results showed that photosynthesis rate and transpiration rate of winter wheat in water stress conditions were obviously lower than that in non-stress conditions.After water stress,both of them slowly increased and even overtook that on sufficient irrigation treatment. Responses of winter wheat to water stress in different growth stages were different.To some extent, water stress can improve crop water use efficiency,speed up the process of milking.Under water stress condition,stomatal conductance limited diurnal changes of photosynthesis and transpiration in the morning but not in the afternoon.Transpiration is more sensitive to water stress than photosynthesis.  相似文献   

18.
水分胁迫对冬小麦叶片CO_2/H_2O交换参数的影响   总被引:1,自引:0,他引:1  
水资源严重匮乏已成为华北平原农业可持续发展的主要障碍因素 [1] ,提高有限水资源的利用效率显得十分重要。以前的研究主要注重农田水平作物与水分的关系 [2 ,4 ] ,利用作物生物学进行节水研究不够 [3,4 ] 。Roa等人认为作物适度的水分亏缺可获得高产 [15] ;Jensen等人认为适度水分胁迫甚至能使作物水分利用效率显著提高 [5,6] ,依此发展了调亏灌溉思想 ,对有限水量在作物生育期内时空最优分配制度进行研究 ,目前已为世界各国广泛关注 [6] 。作物 CO2 /H2 O交换参数包括光合速率、蒸腾速率、水分利用效率等 ,这些是确定作物水分高效利用…  相似文献   

19.
The effects of different treatments of salicylic acid (SA) on lipid peroxidation, chlorophyll fluorescence and antioxidant enzyme activity in seedlings of Cucumis sativa L. were studied before heat stress treatment, 36 h after heat stress and 24 h after recovery. Compared with the controls (foliar spray of distilled water), a foliar spray of 1 mM SA (SSA treatment) decreased electrolyte leakage and the concentration of H2O2 and thiobarbituric acid reactive substances (TBARS). SSA treatment also enhanced maximum yield of photosystem II photochemical reactions (Fv/Fm) and the quantum yield of the photosystem II electron transport (ΦPSII) after both heat stress and recovery; however, adding 1 mM SA to the nutrient solution (ASA treatment) or both adding 1 mM SA to the nutrient solution and foliar spray of 1 mM SA as well (SSA + ASA treatment) had the opposite effects. SOD activity was stimulated by all SA treatments. CAT activity was stimulated by SSA treatment and inhibited by ASA and SSA + ASA treatments after heat stress and recovery. This suggest that SSA treatment can efficiently remove H2O2 and decrease heat stress, and CAT plays a key role in removing H2O2 in cucumber seedlings under heat stress, while more H2O2 accumulates in ASA and SSA + ASA treatments and therefore induces serious oxidative stress. GPX, APX and GR showed higher activities in all SA treatments under heat stress, however, it appears that they were not key enzymes in removing H2O2 in cucumber subject to heat stress.  相似文献   

20.
Plant growth promoting rhizobacteria (PGPR) can enhance plant growth by alleviating soil stresses. Although previously investigated, some new interesting details are presented regarding the alleviating affects of Azospirillum sp. on wheat growth under drought stress in this research work. We hypothesized that the isolated strains of Azospirillum sp. may alleviate the adverse effects of drought stress on wheat (Triticum aestivum L.) growth. Three different strains of Azospirillum lipoferum (B1, B2 and B3) were used to inoculate wheat seedlings under drought. During the flowering stage the seedlings were subjected to three drought levels with five different time longevity, including control. Pots were water stressed at 80% (S0), 50% (S1) and 25% (S2) of field capacity moisture in a 25 day-period. Soil and plant water properties including water potential and water content, along with their effects on bacterial inoculum and wheat growth, were completely monitored during the experiment. While stress intensity significantly affected bacterial population and wheat growth, stress longevity only affected wheat water potential and water content. Compared to uninoculated treatments strain B3 (fixing and producing the highest amounts of N and auxin, respectively, with P solubilizing and ACC-deaminase activities) increased wheat yield at S1 and S2 by 43 and 109%, respectively. However, strain B2 (producing siderophore) was the most resistant strain under drought stress. The results of this experiment may elucidate the more efficient strains of Azospirillum sp. for wheat inoculation under drought stress and the mechanisms by which they alleviate the stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号