首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In buffer suspensions of UV-irradiated Escherichia coli B/r WP2 Hcr+ (auxotrophic for tryptophan) acriflavine binds to DNA, but this treatment has little effect on killing and results in the appearance of fewer prototrophs on tryptophan-supplemented minimal agar. If plates contain a broth supplement, however, the buffer-acriflavine treatment greatly increases the yield of UV-induced prototrophs; but this increase does not depend on complete binding of acriflavine to the DNA as a whole, since it is observed with contact times too short for this to occur (as short as 20 seconds). The incorporation of acriflavine in both kinds of plating medium increases the yields of prototrophs. The maximum yield is observed when irradiated bacteria are exposed to acriflavine in buffer before they are plated on medium containing both acriflavine and a broth supplement. Thus post-irradiation effects of acriflavine cannot be accounted for in terms of a single mechanism of action. Our results support the suggestion that phenomena classed together as mutation frequency decline may not represent a single specific repair system.  相似文献   

2.
An easily performed, specific, sensitive, rapid, reliable and inexpensive procedure for the spectrofluorometric quantitation of ascorbic acid was proposed using acriflavine as a fluorescence quenching reagent. The procedure was based on the determined quenching effect of ascorbic acid on the natural fluorescence signal of acriflavine and the reaction between ascorbic acid and acriflavine in Britton–Robinson buffer solution (pH 6) to produce an ion‐associated complex. The reduction in acriflavine fluorescence intensity was detected at 505 nm, while excitation occurred at 265 nm. The relationship between quenching fluorescence intensity (?F) and concentration of ascorbic acid was linear (R2 = 0.9967) within the range 2–10 μg/ml and with a detection limit of 0.08 μg/ml. No significant interference was detected from other materials often found in pharmaceutical nutritional tablets. The obtained results were compared with those from high‐performance liquid chromatography and appeared in good agreement, with no important differences in precision or accuracy. The proposed spectrofluorimetric method was used to determine the amount of ascorbic acid in a number of commercial pharmaceutical nutritional supplement tablets with a 95% confidence performance.  相似文献   

3.
An increased sensitivity to inactivation was observed when ultraviolet light-irradiated Acholeplasma laidlawiiAn increase sensitivity to inactivation was observed when ultraviolet light-irradiated Acholeplasma laidlawii cells were plated on medium containing either acriflavine or chloramphenicol. Chloramphenicol reduced liquid holding recovery (dark repair) to about 10 percent of that in untreated irradiated cells. In acriflavine treated cells no dark repair could be observed and there was a progressive degradation of cell DNA during holding. While the primary effect of acriflavine may be to inhibit excision repair, since ultraviolet-irradiated Mycoplasma gallisepticum (cells which lack an excision repair mechanism) show a slight increase in inactivation when plated on medium containing acriflavine, the dye must also have some other effects on ultraviolet repair processes. Acriflavine treatment of A. laidlawii cells before ultraviolet irradiation has a protective effect, as seen by an increased cell survival.  相似文献   

4.
The effects of acriflavine on two species of Trypanosomatidae, Crithidia luciliae and Trypanosoma mega, have been investigated. It has been observed that kinetoplastic (i.e. mitochondrial) DNA is lost in a high percentage of acriflavine-treated cells. Resting flagellates, from stationary-phase or hemin-deficient cultures, are considerably more resistant to the acridine than are flagellates from a log-phase culture. When the kinetoplast has retained some DNA and still remains visible in stained smears, it appears reduced in size, and its ultrastructure is extremely abnormal: the DNA fibrils, clearly visible in normal kinetoplasts, are condensed; they appear as an electron-opaque, apparently homogeneous mass, separated from the membranes by a space of low electron-opacity. Analyses of DNA extracts, with high speed centrifugation in CsCl density gradients, revealed that the satellite band, presumably kinetoplastic DNA, is lost by trypanosomes grown for 5 days in the presence of acriflavine. Radioautography was used to study the effects of acriflavine on thymidine-3H incorporation in C. luciliae. At the concentration which affects the kinetoplast specifically, the dye produces an 87% inhibition of thymidine incorporation in this organelle. The kinetics of this inhibition suggest a direct effect on replication. No decrease in incorporation occurs in the nucleus. These results lead to the conclusion that loss of kinetoplastic DNA is due to continued growth and cell division in the absence of kinetoplastic DNA replication. Several hypotheses are discussed concerning the specificity of the dye's action upon the replication of extrachromosomal DNA.  相似文献   

5.
We report a series of synthetic, nucleic acid mimics with highly customizable thermodynamic binding to DNA. Incorporation of helix-promoting cyclopentanes into peptide nucleic acids (PNAs) increases the melting temperatures (Tm) of PNA+DNA duplexes by approximately +5°C per cyclopentane. Sequential addition of cyclopentanes allows the Tm of PNA + DNA duplexes to be systematically fine-tuned from +5 to +50°C compared with the unmodified PNA. Containing only nine nucleobases and an equal number of cyclopentanes, cpPNA-9 binds to complementary DNA with a Tm around 90°C. Additional experiments reveal that the cpPNA-9 sequence specifically binds to DNA duplexes containing its complementary sequence and functions as a PCR clamp. An X-ray crystal structure of the cpPNA-9–DNA duplex revealed that cyclopentanes likely induce a right-handed helix in the PNA with conformations that promote DNA binding.  相似文献   

6.
The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV–Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid–DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54?×?104 M?1. FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations.  相似文献   

7.
Mutagenesis in cyanophage LPP-1 was investigated with physical and chemical mutagens. Rapid lysis (r), host range (h) and temperature sensitivity (ts) were studied. Mutations induced by ultraviolet irradiation in free phages were photoreactivable by visible light. The h and ts markers were efficiently induced by ultraviolet, N-methyl-N′-nitro-N-nitrosoguanidine, 2-aminogpurine and acriflavine under intracellular conditions, and r mutants by ultraviolet and photodynamic action of acriflavine. The conditions required for induction are described.  相似文献   

8.
The fission yeast (Schizosaccharomyces pombe) taz1 gene encodes a telomere-associated protein. It contains a single copy of a Myb-like motif termed the telobox that is also found in the human telomere binding proteins TRF1 and TRF2, and Tbf1p, a protein that binds to sequences found within the sub-telomeric regions of budding yeast (Saccharomyces cerevisiae) chromosomes. Taz1p was synthesised in vitro and shown to bind to a fission yeast telomeric DNA fragment in a sequence specific manner that required the telobox motif. Like the mammalian TRF proteins, Taz1p bound to DNA as a preformed homodimer. The isolated Myb-like domain was also capable of sequence specific DNA binding, although with less specificity than the full-length dimer. Surprisingly, a protein extract produced from a taz1–fission yeast strain still contained the major telomere binding activity (complex I) we have characterised previously, suggesting that there could be other abundant telomere binding proteins in fission yeast. One candidate, SpX, was also synthesised in vitro, but despite the presence of two telobox domains, no sequence specific binding to telomeric DNA was detected.  相似文献   

9.
A single-stranded DNA (ssDNA)-binding protein (SSB) that binds to specific upstream sequences of alcohol oxidase (AOX1) promoter of the methylotrophic yeast Pichia pastoris has been isolated and identified as zeta crystallin (ZTA1). The cDNA encoding P.pastoris ZTA1 (PpZTA1) was cloned into an Escherichia coli expression vector, the recombinant PpZTA1 was expressed and purified from E.coli cell lysates. The DNA-binding properties of recombinant PpZTA1 are identical to those of the SSB present in P.pastoris cell lysates. PpZTA1 binds to ssDNA sequences >24 nt and its DNA-binding activity is abolished by NADPH. This is the first report on the characterization of DNA-binding properties of a yeast ZTA1.  相似文献   

10.
The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.  相似文献   

11.
The use of lignocellulosic residues for ethanol production is limited by toxic compounds in fermenting yeasts present in diluted acid hydrolysates like acetic acid and 2-furaldehyde. The respiratory deficient phenotype gives the cell the ability to resist several toxic compounds. So the aim of this work was to evaluate the tolerance to toxic compounds present in lignocellulosic hydrolysates like acetic acid and 2-furaldehyde in Pichia stipitis and its respiratory deficient strains. The respiratory deficient phenotype was induced by exposure to chemical agents such as acriflavine, acrylamide and rhodamine; 23 strains were obtained. The selection criterion was based on increasing specific ethanol yield (g ethanol g?1 biomass) with acetic acid and furaldehyde tolerance. The screening showed that P. stipitis NRRL Y-7124 ACL 2-1RD (lacking cytochrome c), obtained using acrylamide, presented the highest specific ethanol production rate (1.82 g g?1 h?1). Meanwhile, the ACF8-3RD strain showed the highest acetic acid tolerance (7.80 g L?1) and the RHO2-3RD strain was able to tolerate up to 1.5 g L?1 2-furaldehyde with a growth and ethanol production inhibition of 23 and 22 %, respectively. The use of respiratory deficient yeast phenotype is a strategy for ethanol production improvement in a medium with toxic compounds such as hydrolysed sugarcane bagasse amongst others.  相似文献   

12.
A variety of methods are available to analyze protein–DNA interactions in vivo. Two of the most prominent of these methods are chromatin immunoprecipitation (ChIP) and in vivo footprinting. Both of these procedures have specific limitations. For example, the ChIP assay fails to document where exactly a protein binds in vivo. The precipitation of a specific segment of DNA with antibodies directed against DNA-binding proteins does not necessarily indicate that the protein directly interacts with a sequence in the precipitate but could rather reflect protein–protein interactions. Furthermore, the results of in vivo footprinting studies are inconclusive if a DNA sequence is analyzed that is bound by a specific protein in only a certain fraction of cells. Finally, in vivo footprinting does not indicate which protein is bound at a specific site. We have developed a new procedure that combines the ChIP assay and DMS footprinting techniques. Using this method we show here that antibodies specific for USF1 and NF-E2 precipitate the murine β-globin promoter in MEL cells. DMS footprinting analysis of the DNA precipitated with NF-E2 antibodies revealed a protection over a partial NF-E2-binding site in the β-globin downstream promoter region. We believe that this novel method will generally benefit investigators interested in analyzing protein–DNA interactions in vivo.  相似文献   

13.
The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ΔihfA and ΔihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHFαβ. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.  相似文献   

14.
(?)-Dehydroxymethylepoxyquinomicin ((?)-DHMEQ, 1) is a specific inhibitor of NF-κB. It binds to SH group in the specific cysteine residue of NF-κB components with its epoxide moiety to inhibit DNA binding. In the present research, we have designed and synthesized an epoxide-free analog called (S)-β-salicyloylamino-α-exo-methylene-?-butyrolactone (SEMBL, 3). SEMBL inhibited DNA binding of NF-κB component p65 in vitro. It inhibited LPS-induced NF-κB activation, iNOS expression, and inflammatory cytokine secretions. It also inhibited NF-κB and cellular invasion in ovarian carcinoma ES-2 cells. Moreover, its stability in aqueous solution was greatly enhanced compared with (?)-DHMEQ. Thus, SEMBL has a potential to be a candidate for a new anti-inflammatory and anticancer agent.  相似文献   

15.
16.
The effects of acriflavine on the fine structure and function of the mitochondria and the kinetoplast in Crithidia fasciculata have been investigated. A mitochondrial fraction was prepared by differential centrifugation of cells broken by grinding with neutral alumina. Isolated mitochondria or intact cells revealed by spectrophotometric measurements the presence of cytochromes a + a 3, b, c 555 and o. After cells were grown in acriflavine for 3–4 days, the fine structure of the mitochondria and their cytochrome content were affected. Cells grown in 5.0 µM acriflavine had a threefold decrease in cytochrome a + a 3 and decreased respiratory activity. The mitochondrial preparation from these cells had a fivefold decrease in cytochrome a + a 3 and a less but significant decrease of other cytochromes present. There was also a decrease in the mitochondrial enzyme activities of NADH, succinic and L-α-glycerophosphate oxidases, and succinic and L-α-glycerophosphate dehydrogenases. Dyskinetoplastic cells could be demonstrated after growth in 1.0 µM acriflavine. At 5 µM, 80–90% of the cells were dyskinetoplastic. The kinetoplastic DNA was condensed, nonfibrillar, and did not incorporate thymidine-3H. The mitochondria in these cells had few cristae and were shorter and more swollen than the controls. Acriflavine may induce the fine structure effects we have observed and may affect the formation of the mitochondria in C. fasciculata.  相似文献   

17.
18.
The arginine repressor (ArgR) from Mycobacterium tuberculosis (Mtb) is a gene product encoded by the open reading frame Rv1657. It regulates the l-arginine concentration in cells by interacting with ARG boxes in the promoter regions of the arginine biosynthesis and catabolism operons. Here we present a 2.5-Å structure of MtbArgR in complex with a 16-bp DNA operator in the absence of arginine. A biological trimer of the protein-DNA complex is formed via the crystallographic 3-fold symmetry axis. The N-terminal domain of MtbArgR has a winged helix-turn-helix motif that binds to the major groove of the DNA. This structure shows that, in the absence of arginine, the ArgR trimer can bind three ARG box half-sites. It also reveals the structure of the whole MtbArgR molecule itself containing both N-terminal and C-terminal domains.  相似文献   

19.
The ultraviolet (UV)-induced formation of cyclobutyl pyrimidine dimers in Escherichia coli deoxyribonucleic acid (DNA) in vitro has been investigated in terms of the mechanism of inhibition by acridine dyes, the effect on dimer yield of specific singlet and triplet quenchers, and the mechanism of dimer formation. Our results indicate that (a) energy transfer is important in dimer reduction by acridines, (b) this transfer occurs from the singlet (S1) of DNA, and (c) at room temperature triplet quenchers do not reduce dimer yield in DNA.  相似文献   

20.
Serine integrases catalyze the site-specific insertion of viral DNA into a host's genome. The minimal requirements and irreversible nature of this integration reaction have led to the use of serine integrases in applications ranging from bacterial memory storage devices to gene therapy. Our understanding of how the integrase proteins recognize the viral (attP) and host (attB) attachment sites is limited, with structural data available for only a Listeria integrase C-terminal domain (CTD) bound to an attP half-site. Here we report quantitative binding and saturation mutagenesis analyses for the Listeria innocua prophage attP site and a new 2.8-Å crystal structure of the CTD?attP half site. We find that Int binds with high affinity to attP (6.9?nM), but the Int CTD binds to attP half-sites with only 7- to 10-fold lower affinity, supporting the idea that free energy is expended to open an Int dimer for attP binding. Despite the 50-bp Int–attP interaction surface, only 20 residues are sensitive to mutagenesis, and of these, only 6 require a specific residue for efficient Int binding and integration activity. One of the integrase DNA-binding domains, the recombinase domain, appears to be primarily non-specific. Several substitutions result in an improved attP site, indicating that higher-efficiency attachment sites can be obtained through site engineering. These findings advance our understanding of serine integrase function and provide important data for efforts towards engineering this family of enzymes for a variety of biotechnology applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号