首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The oxygen dependence of cholesterol side chain cleavage to form pregnenolone was measured, using both purified phospholipid vesicle-reconstituted cytochrome P-450scc and rat adrenal mitochondria. At saturating cholesterol and nonlimiting electron supply (via NADPH-adrenodoxin reductase and adrenodoxin) the Km(O2) is low (4 microM). Limitations in the availability of both cholesterol and reductant caused elevations in the observed Km(O2). Pregnenolone synthesis was measured in mitochondria from variously pretreated rats, using a phospholipid-cholesterol dispersion as the source of exogenous substrate. In mitochondria obtained from ether-stressed rats (which elevates adrenocorticotropic hormone) two phases of malate-supported pregnenolone production are seen, a rapid (first 2 min) highly oxygen-dependent phase (Km = 150 microM) and a slow (2-10 min) relatively oxygen-independent phase (Km less than 10 microM). Comparison of side chain cleavage rates with mitochondrial 11 beta-hydroxylation rates at various oxygen concentrations suggests that the rapid phase is limited by the availability of reducing equivalents. In cycloheximide-pretreated ether-stressed rats, only a linear slow rate of pregnenolone production was seen (about 25% of the rate of the slow phase in the ether-stressed group), while in mitoplasts from both groups only a linear rapid rate was seen. Data are consistent with the proposal (Privalle, C. T., Crivello, J. F., and Jefcoate, C. R. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 702-706) that the adrenocorticotropic hormone-regulated cycloheximide-inhibitable rate of cholesterol side chain cleavage is limited by the rate of cholesterol transfer from outer to inner mitochondrial membranes.  相似文献   

5.
6.
Several groups of compounds were tested for their ability to inhibit cholesterol side chain cleavage and induce spectral change in cytochrome P-450 from bovine corpus luteum, bovine adrenal cortex, and human placental mitochondria. The substances tested include: steroids, pyridines, glutarimides, anilines and imidazoles. Good correlation was found between spectral change and enzymatic inhibition, especially in the corpus luteum which has only a single P-450-linked steroid hydroxylase. The cholesterol side chain cleavage enzyme systems from each of the three sources appear to have similar affinities for the inhibitors, which adds further support to the concept that these cytochrome P-450s are functionally identical.  相似文献   

7.
8.
A highly purified (12 nmol of P-450-heme per milligram of protein) bovine adrenal cortex mitochondrial cytochrome P-450, termed P-450sce, which cleaves the side chain of cholesterol to yield pregnenolone, is obtained in the substrate-bound ferric form with observed absorption maxima at 393 nm and 645 nm and a shoulder around 540 nm. The absorption spectra of the P-450scc, whether in the substrate-bound ferric form or in the CO-complexed ferrous form, are subject to environmental perturbation. The addition of adrenal ferredoxin readily restores full ferric high spin type spectrum of the substrate-bound P-450scc or, together with cholesterol and Tween 20, restores the CO-spectrum of the P-450scc, exhibiting stable and typical spectra of cytochrome P-450. Tween 20, at concentration of 0.3%, remarkably increases the P-450scc-catalyzed cholesterol side chain cleavage activity. Based on these findings, a highly reactive and reliable assay has been developed for the conversion of cholesterol to pregnenolone. The specific activity of the P-450scc, thus determined in the presence of NADPH, NADPH:adrenal ferredoxin oxidoreductase (EC 1.6.7.1), adrenal ferredoxin, cholesterol, and molecular oxygen, is 16 mol of pregnenolone formed per minute per mole of P-450-heme and V of enzyme catalyzed reaction was 30 mol/min/mol of P-450-heme. Apparent Km values are 120 μm for cholesterol and 1.5 μm for adrenal ferredoxin. The P-450scc has a pH optimum at pH 7.2 and is most active at ionic strength of 0.1.  相似文献   

9.
Rat adrenal mitochondria have an active rotenone-insensitive outer mitochondrial membrane NADH-semidehydroascorbate (NADH-SDA) reductase which supports cholesterol side chain cleavage at a rate equal to that supported by malate. Side chain cleavage activity supported by both of these electron donor systems is equally inhibited by cycloheximide. Catalase or butylated hydroxyanisole are required for the NADH-SDA reductase-supported cholesterol side chain cleavage. This requirement can be removed by briefly subjecting the mitochondrial preparations to -20 degrees C. Ascorbic acid alone or with malate is either inhibitory or has no effect on side chain cleavage activity. These observations demonstrate that outer mitochondrial membrane NADH-SDA reductase in rat adrenal functions to provide cytoplasmic reducing equivalents to intramitochondrial cytochrome P-450scc and provides a new explanation for the function of ascorbic acid in corticosteroidogenesis.  相似文献   

10.
Cytochrome P-450 was purified from bovine adrenal cortex mitochondria by affinity chromatography using an octylamine-substituted Sepharose column. The resulting optically clear preparation was stable at -20 degrees for months. The specific concentration of cytochrome P-450 in the preparation was about 5 nmol of heme per mg of protein. The preparations were free of adrenodoxin, adrenodoxin reductase, phospholipids, and other heme contaminations. Polyacrylamide gel electrophoresis of the purified cytochrome P-450 preparation treated with sodium dodecyl sulfate and mercaptoethanol showed a single major band with a molecular weight of about 60,000. The optical absorption spectra of the preparation exhibited Soret maxima at 416, 416, and 448 nm for the Fe3+, Fe2+ and the C.Fe2+ complex, respectively. The EPR spectrum showed the characteristic features of the low spin form of ferric cytochrome P-450 with principal components 1.914, 2.241, and 2.415 of the g-tensor. The circular dichroism spectrum revealed two large negative ellipticities at 412 and 350 nm. Fluorescence spectra showed an excitation maximum at 285 nm and an emission maximum at 305 nm with a shoulder at 330 nm as the cytochrome P-450 molecule is excited at 285 nm, or an emission maximum at 335 nm when the cytochrome molecule is excited at 305 nm. After reconstitution with adrenodoxin and its reductase, this cytochrome P-450 was highly active for cholesterol desmolase with an NADPH-generating system as electron donor but was not active for steroid 11beta-hydroxylase.  相似文献   

11.
Summary Adrenocortical mitochondrial cholesterol side chain cleavage reactions are regulated by the influence of pituitary ACTH. The mechanism of the stimulation involves adenyl cyclase, cAMP-dependent protein kinase, cholesterol esterase, and ribosomal labile protein synthesis. Through these reactions the stimulus reaches the mitochondrial side chain cleavage enzyme system. In this review article, the current implications on the stimulus transfer from the plasma membrane to the mitochondrial inner membrane are summarized. In particular the availability of cholesterol to P-450scc was discussed in terms of the distribution of cholesterol molecules in the membranes.  相似文献   

12.
We have isolated various phospholipids from adrenal mitochondria of adrenocorticotropic hormone (ACTH)-treated (stimulated) and cycloheximide/ACTH-treated (unstimulated) rats. When the effects of these phospholipids were examined on the formation of pregnenolone from endogenous cholesterol by adrenal mitochondria of unstimulated rats, phosphatidylethanolamine and phosphatidylserine from stimulated mitochondria were effective in enhancing the cleavage reaction in unstimulated mitochondria, whereas these phospholipids from unstimulated mitochondria were all ineffective. Cardiolipins from both stimulated and unstimulated mitochondria were effective. When the compositional changes in fatty acid moiety of phospholipids were examined, a significant increase in C22:4 (adrenic) acid was observed only for phosphatidylethanolamine under the influence of ACTH. A linear relationship between the contents of C22:4 acid in various phospholipids and respective steroidogenic activities was obtained (r = 0.880), suggesting an important role of this fatty acid moiety. The separation of active phosphatidylethanolamine by high performance liquid chromatography revealed that a fraction containing 25% C22:4 acid was most effective in the activation. Based on these results, it is most likely that 1-stearoyl-2-adrenoyl phosphatidylethanolamine is an active species. C22:4 acid was liberated together with C20:4 acid from adrenal triglycerides by the action of ACTH but the liberation was insensitive to cycloheximide inhibition. Finally, cardiolipin which enhances the transfer of cholesterol to cytochrome P-450scc may not be a physiological mediator of ACTH action.  相似文献   

13.
14.
Following simple homogenization, significant amounts of mitochondrial-derived, cholesterol side chain cleaving enzyme (desmolase) activity are recovered in rat adrenal 105 000 X g-supernatant fraction. Corticotropin administration enhances soluble desmolase activity, and cycloheximide potentiates this effect. The lipid droplet fraction which has no desmolase activity markedly enhances pregnenolone synthesis in the soluble desmolase preparations, presumably by supplying free cholesterol substrate. Corticotropin particularly with cycloheximide pretreatment, enhances lipid fraction activity. Thus increased cholesterol availability may largely explain the corticotropin effect on the soluble desmolase system. Since protein synthesis is required for corticotropin activity in intact mitochondria, but not in calcium-swollen mitochondria or the soluble enzyme system, the labile protein apparently required during corticotropin action may function to overcome a "barrier" which exists only in the intact mitochondria and restrains cholesterol side chain cleavage.  相似文献   

15.
The intrinsic isotope effect on the reduction of the FAD-containing dehydrogenase electron transferase, adrenodoxin reductase, by (4S)-[2H]NADPH has been determined to be 7.1 to 7.7. The replacement of FAD by a series of FAD analogs at the active site of adrenodoxin reductase with oxidation-reduction potentials which vary over a range of 212 mV has made it possible to extrapolate to this limiting value from the variation in the observed isotope effect on Vmax with flavin midpoint potential. Stop-flow studies which allow the direct determination of the intrinsic isotope effect on the reductive half-reaction corroborate this result. During the steady state reduction of ferricyanide by the native enzyme under conditions of Vmax, this isotope effect is almost fully expressed (VH/VD = 6.7 to 6.8). In contrast, we observe a dramatic attenuation of the intrinsic isotope effect (due to hydride transfer to flavin) when the oxidative half-reaction is mediated by the natural acceptor protein, the 2Fe/2S ferredoxin, adrenodoxin. In a coupled three-protein system, the adrenodoxin-mediated reductions of both the artificial electron acceptor, cytochrome c, and the physiological electron acceptor, cytochrome P-450scc, by adrenodoxin reductase occur at similar rates and with similar kinetic isotope effects (1.9 to 2.0) when (4S)-[2H]NADPH is the reductant. We infer similar mechanisms for the reduction of both cytochromes. These results are in agreement with previous studies (Lambeth, J.D., and Kamin, H. (1979) J. Biol. Chem. 254, 2766-2774) which show that the reductive half-reaction is not solely rate-determining in adrenodoxin-mediated processes. The observation of a linear free energy relationship between Vmax and the flavin midpoint potential during steady state reduction of ferricyanide confirms that the reductive half-reaction is rate-determining in this assay. The relationship between Vmax and flavin midpoint potential in reactions which require adrenodoxin suggests that the midpoint potential of native adrenodoxin reductase has been optimized. Thus, the apoenzyme of adrenodoxin reductase tailors the midpoint potential of bound FAD in order to balance the activation energies of the reductive and oxidative half-reactions.  相似文献   

16.
17.
Highly purified beef adrenal cytochrome P-450 specific for cholesterol side chain cleavage (P-450-scc) has been reconstituted with sonicated vesicles containing cholesterol and either dimyristoyl phosphatidylcholine (DMPC) or dioleoyl phosphatidylcholine (DOPC). When cholesterol was present in DMPC vesicles at 1:15 molar ratio, cardiolipin and L-alpha-phosphatidylinositol 4-monophosphate (DPI) increased side chain cleavage by at least 5-fold (0.7 min-1-3.5 min-1). In DOPC vesicles, a smaller increase was observed (2.8 min-1-5.0 min-1). Activator phospholipids increased the rate of transference of cholesterol both to and from the cytochrome when, respectively, cholesterol-free P-450scc and cholesterol-P-450scc complex are combined with either DMPC or DOPC vesicles. Transfer of cholesterol to and from cytochrome P-450 occurred with similar first order rate constants and was also independent of the concentrations of cholesterol vesicles and P-450. It is suggested that transfer in both directions is limited by the rate of insertion of P-450scc into the membrane. Phospholipid stimulatory effects for both cholesterol transfer and for activation of side chain cleavage occurred with the same ranking, even though cholesterol transfer, following reconstitution, was 5-10 times slower than the turnover of side chain cleavage. DPI increased Vmax for side chain cleavage in both DMPC and DOPC vesicles to the same rate (12 min-1) without effect on the Km for cholesterol, while cardiolipin both produced a similar increase in Vmax and decreased Km (cholesterol). This activation by DPI is attributed to more favorable incorporation of P-450scc in these membranes and is consistent with previously reported effects of acidic phospholipids on other mitochondrial proteins.  相似文献   

18.
In an attempt to elucidate the physiological relevance of the peripheral type of benzodiazepine receptor in adrenocortical mitochondria, we examined the effect of three different benzodiazepines (diazepam, Ro5-4864, and chlordiazepoxide) on the conversion of cholesterol to pregnenolone, the rate-limiting step in steroidogenesis, by using cholesterol-loaded mitochondria from bovine adrenal zona fasciculata. These benzodiazepines, except chlordiazepoxide, caused a dose-dependent stimulation of the cholesterol side chain cleavage in the mitochondria. The stimulatory effect of Ro5-4864 was approximately 10 times more potent than that of diazepam. No inhibitory effect of YM-684 (Ro15-1788), a potent antagonist to central-type benzodiazepine receptors, was observed in the stimulation induced by diazepam and Ro5-4864. Both external calcium ion and voltage-dependent calcium channel blocker, (+)-PN200-110, were without effect on the diazepam-induced steroidogenesis. By contrast, pretreatment of mitochondria with digitonin abolished the stimulatory effect of diazepam on the mitochondrial steroidogenesis. The present results indicate that the peripheral-type benzodiazepine receptor of adrenocortical mitochondria plays an essential role in regulating cholesterol side chain cleavage without any change of calcium channels.  相似文献   

19.
An analog of 20alpha-hydroxycholesterol, (20R)-20-phenyl-5-pregnene-3beta,20-diol, which is completely substituted at C-22 was prepared with radioisotopes at various positions. The analog labeled with 3H at C-M and 14C at C-4 and C-IU was converted into radioactive pregnenolone by an enzyme preparation derived from adrenal mitochondria. Cleavage of the phenyl analog labeled with 3H in the aromatic ring by the same enzyme preparation led to the formation of [3H]phenol. Using the substrate doubly labeled with 14C at C-4 and 3H in the aromatic ring, it appeared that the products of the reactions, pregnenolone and phenol, were formed in equal amounts. During incubation of the side chain labeled substrate, another labeled fragment was formed. It was identified as acetophenone, a product resulting from cleavage of the C17,20 bond. The steroidal fragment corresponding to this C8 ketone was traced using nuclear label analog. From its nonpolar chromatographic properties it appears to be a C-17-deoxy-C19 steroid.  相似文献   

20.
Mitochondrial cytochrome P450 11A1 (CYP11A1 or P450 11A1) is the only known enzyme that cleaves the side chain of cholesterol, yielding pregnenolone, the precursor of all steroid hormones. Pregnenolone is formed via three sequential monooxygenation reactions that involve the progressive production of 22R-hydroxycholesterol (22HC) and 20α,22R-dihydroxycholesterol, followed by the cleavage of the C20-C22 bond. Herein, we present the 2.5-Å crystal structure of CYP11A1 in complex with the first reaction intermediate, 22HC. The active site cavity in CYP11A1 represents a long curved tube that extends from the protein surface to the heme group, the site of catalysis. 22HC occupies two-thirds of the cavity with the 22R-hydroxyl group nearest the heme, 2.56 Å from the iron. The space at the entrance to the active site is not taken up by 22HC but filled with ordered water molecules. The network formed by these water molecules allows the “soft” recognition of the 22HC 3β-hydroxyl. Such a mode of 22HC binding suggests shuttling of the sterol intermediates between the active site entrance and the heme group during the three-step reaction. Translational freedom of 22HC and torsional motion of its aliphatic tail are supported by solution studies. The CYP11A1–22HC co-complex also provides insight into the structural basis of the strict substrate specificity and high catalytic efficiency of the enzyme and highlights conserved structural motifs involved in redox partner interactions by mitochondrial P450s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号