首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An expression plasmid for hen egg-white lysozyme in Saccharomyces cerevisiae was constructed by inserting almost full-length cDNA (about 600 base pairs) encoding hen egg-white pre-lysozyme into a yeast expression vector, pAM 82. The hen lysozyme was expressed under the control of the repressible acid phosphatase promoter of pAM 82 in S. cerevisiae. About half of the expressed lysozyme was secreted in the yeast growth medium as a precise mature protein which exhibited specific activity consistent with that of authentic hen egg-white lysozyme. The replacement of Trp 62 of hen egg-white lysozyme with a tyrosine residue was performed by site-directed mutagenesis using a 19-mer oligodeoxyribonucleotide. The mutant lysozyme with Tyr 62 was found to exhibit enhanced bacteriolytic activity.  相似文献   

2.
The nuclear magnetic resonance spectrum of the 19F nuclei in N-trifluoroacetylated chitotriose was studied in the presence of turkey lysozyme. In contrast to results previously obtained with hen lysozyme, the 19F nmr spectrum of the complex did not show any striking pH dependence. It was, in fact, very similar at all pH's to the spectrum of the trisaccharide complexed with hen lysozyme at low pH, where Asp 101 is protonated. The replacement of Asp 101 in turkey lysozyme by a glycine is thought to account for this difference and the results allow unequivocal assignment of a value of 4.2 to the pKa of Asp 101 in hen lysozyme. The dissociation constant of the chitotriose-turkey lysozyme complex was measured at various pH's using uv difference methods and compared with that previously reported for the hen lysozyme-chitotriose complex. Again, the results could be attributed to the loss in binding energy due to the absence of Asp 101. In contrast to chitotriose, the binding of chitobiose and methyl-2-acetamido-2-deoxy-β-d-glucopyranoside as studied by both uv difference and nmr methods is the same within experimental error for turkey and hen lysozyme. The results obtained for binding of chitobiose suggest that Asp 101 does not contribute as much to the binding energy of the disaccharide as was previously thought. Finally, the specific activities of both of these lysozymes against Micrococcus lysodeikticus were found to be identical.  相似文献   

3.
Two lysozymes were purified from quail egg white by cation exchange column chromatography and analyzed for amino acid sequence. The enzymes showed the same pH optimum profile for lytic activity with broad pH optima (pH 5.0-8.0) but had difference in mobility on native-PAGE. The native-PAGE immunoblot showed one or two lysozymes present in individual egg whites. The established amino acid sequence of quail egg white lysozyme A (QEWL A) was the same as quail lysozyme reported by Kaneda et al. [Kaneda, M., Kato, I., Tominaga, N., Titani, K., Narita, K., 1969. The amino acid sequence of quail lysozyme. J. Biochem. (Tokyo). 66, 747-749] and had six amino acid substitutions at position 3 (Phe to Tyr), 19 (Asn to Lys), 21 (Arg to Gln), 102 (Gly to Val) 103 (Asn to His) and 121 (Gln to Asn) compared to hen egg white lysozyme. QEWL A and QEWL B showed one substitution, at the position 21, Gln replaced by Lys, plus an insertion of Leu between position 20 and 21, being the first report that QEWL B had 130 amino acids. The amino acid differences between two lysozymes did not seem to affect antigenic determinants detected by polyclonal anti-hen egg white lysozyme, but caused them to separate well from each other by ion exchange chromatography.  相似文献   

4.
The interactions of the substrate analogues, GlcNAc, beta-methyl GlcNAc, (GlcNAc)2, and (GlcNAc)3, with turkey egg-white lysozyme [ED 3.2.1.17], in which the Asp 101 of hen lysozyme is replaced by Gly, were studied at various pH values by measuring changes in the circular dichroic (CD) band at 295 nm. Results were compared with those for hen egg-white lysozyme. The modes of binding of these substrate analogues to turkey lysozyme were very similar to those hen lysozyme except for the participation of Asp 101 in hen lysozyme. The ionization constants of the catalytic carboxyls, Glu 35 and Asp 52, in the turkey lysozyme-(GlcNAc)3 complex were determined by measuring the pH dependence of the CD band at 304 nm, which originates from Trp 108 near the catalytic carboxyls. The ionization behavior of the catalytic carboxyls of turkey lysozyme in the presence and absence of (GlcNAc)3 was essentially the same as that for hen lysozyme. The pH dependence of the binding constant of (GlcNAc)3 to hen lysozyme was compared with that to turkey lysozyme between pH 2 and 8. The pH dependence of the binding constant for (GlcNAc)3 to turkey lysozyme could be interpreted entirely in terms of perturbation of catalytic carboxyls. In the case of hen lysozyme, it was interpreted in terms of perturbation of the catalytic carboxyls and Asp 101 in the substrate-binding site. The pK values of Asp 101 in hen lysozyme and the hen lysozyme-(GLcNAc)3 complex were 4.5 and 3.4, respectively. The binding constants of (GlcNAc)3 to lysozyme molecules with different microscopic protonation forms, with respect to the catalytic carboxyls, were estimated. The binding constant of lysozyme, in which Asp 52 and Glu 35 are deprotonated, to (GlcNAc)3 was the smallest. The other three species had similar binding constant to (GlcNAc)3.  相似文献   

5.
The amino acid sequence of satyr tragopan lysozyme and its activity was analyzed. Carboxymethylated lysozyme was digested with trypsin and the resulting peptides were sequenced. The established amino acid sequence had three amino acid substitutions at positions 103 (Asn to Ser), 106 (Ser to Asn), and 121 (His to Gln) comparing with Temminck's tragopan lysozyme and five amino acid substitutions at positions 3 (Phe to Tyr), 15 (His to Leu), 41 (Gln to His), 101 (Asp to Gly) and 103 (Asn to Ser) with chicken lysozyme. The time course analysis using N-acetylglucosamine pentamer as a substrate showed a decrease of binding free energy change, 1.1 kcal/mol at subsite A and 0.2 kcal/mol at subsite B, between satyr tragopan and chicken lysozymes. This was assumed to be responsible for the amino acid substitutions at subsite A-B at position 101 (Asp to Gly), however another substitution at position 103 (Asn to Ser) considered not to affect the change of the substrate binding affinity by the observation of identical time course of satyr tragopan lysozyme with turkey and Temminck's tragopan lysozymes that carried the identical amino acids with chicken lysozyme at this position. These results indicate that the observed decrease of binding free energy change at subsites A-B of satyr tragopan lysozyme was responsible for the amino acid substitution at position 101 (Asp to Gly).  相似文献   

6.
The structure of lysozyme from guinea hen egg white (GEWL), which differs from hen egg white lysozyme (HEWL) by ten amino acid substitutions, was investigated by nuclear magnetic resonance (NMR) spectroscopy. GEWL and HEWL were very similar to each other in their tertiary structure as judged from the profile of 1H-NMR spectra, pH titration, and an N-acetylglucosamine trisaccharide [(GlcNAc)3 binding experiment. However, we have noticed several characteristics which distinguish GEWL from HEWL. The signal of Trp 108 indole N1H of GEWL was shifted upfield by about 0.3 ppm when compared with that of HEWL, and its hydrogen exchange was faster than that of HEWL. The pKa values of Glu 35 estimated from the pH titration curve of Trp 108 indole N1H were different between GEWL and HEWL. From a careful examination of spectral changes caused by (GlcNAc)3 binding, the changes in the chemical shift values of Trp 28 C5H and Asn 59 alpha CH of GEWL were found to be slightly larger than those of HEWL. Ile 55 of HEWL is replaced by valine in GEWL. Such a replacement may affect the neighboring hydrogen bonding between the main chain C = O of Leu 56 and Trp 108 indole N1H, resulting in a change in the microenvironment of the substrate-binding site near Trp 108.  相似文献   

7.
One-electron oxidation of six different c-type lysozymes from hen egg white, turkey egg white, human milk, horse milk, camel stomach and tortoise was studied by gamma- and pulse-radiolysis. In the first step, one tryptophan side chain is oxidized to indolyl free radical, which is produced quantitatively. As shown already, the indolyl radical subsequently oxidizes a tyrosine side chain to the phenoxy radical in an intramolecular reaction. However this reaction is not total and its stoichiometry depends on the protein. Rate constants also vary between proteins, from 120 x s(-1) to 1000 x s(-1) at pH 7.0 and room temperature [extremes are hen and turkey egg white (120 x s(-1)) and human milk (1000 x s(-1))]. In hen and turkey egg white lysozymes we show that another reactive site is the Asn103-Gly104 peptidic bond, which gets broken radiolytically. Tryptic digestion followed by HPLC separation and identification of the peptides was performed for nonirradiated and irradiated hen lysozyme. Fluorescence spectra of the peptides indicate that Trp108 and/or 111 remain oxidized and that Tyr20 and 53 give bityrosine. Tyr23 appears not to be involved in the process. Thus new features of long-range intramolecular electron transfer in proteins appear: it is only partial and other groups are involved which are silent in pulse radiolysis.  相似文献   

8.
A novel human antibody AR16, targeting the G5 linear epitope of rabies virus glycoprotein (RVG) was shown to have promising antivirus potency. Using AR16, the minimal binding region within G5 was identified as HDFR (residues 261–264), with key residues HDF (residues 261–263) identified by alanine replacement scanning. The key HDF was highly conserved within phylogroup I Lyssaviruses but not those in phylogroup II. Using computer-aided docking and interaction models, not only the key residues (Asp30, Asp31, Tyr32, Trp53, Asn54, Glu99, Ile101, and Trp166) of AR16 that participated in the interaction with G5 were identified, the van der Waals forces that mediated the epitope–antibody interaction were also revealed. Seven out of eight presumed key residues (Asp30, Asp31, Tyr32, Trp53, Asn54, Glu99, and Ile101) were located at the variable regions of AR16 heavy chains. A novel mAb cocktail containing AR16 and CR57, has the potential to recognize non-overlapping, non-competing epitopes, and neutralize a broad range of rabies virus.  相似文献   

9.
Asn46Asp/Asp52Ser or Asn46Glu/Asp52Ser hen egg white lysozyme (HEL) mutant was designed by introducing the substituted catalytic residue Asp46 or Glu46, respectively, based on Venerupis philippinarum (Vp) lysozyme structure as a representative of invertebrate‐type (i‐type) lyzozyme. These mutations restored the bell‐shaped pH‐dependency of the enzyme activity from the sigmoidal pH‐dependency observed for the Asp52Ser mutant. Furthermore both lysozyme mutants possessed retaining mechanisms like Vp lysozyme and HEL. The Asn46Glu/Asp52Ser mutant, which has a shorter distance between two catalytic residues, formed a glycosyl adduct in the reaction with the N‐acetylglucosamine oligomer. Furthermore, we found the accelerated turnover through its glycosyl adduct formation and decomposition. The turnover rate estimated from the glycosyl formation and decomposition rates was only 20% of the observed hydrolysis rate of the substrate. Based on these results, we discussed the catalytic mechanism of lysozymes.  相似文献   

10.
To investigate the functional role of subsites E and F in lysozyme catalysis, Asn37 of hen egg-white lysozyme (HEL), which is postulated to participate in sugar residue binding at the right-sided subsite F through hydrogen bonding, was replaced by Ser or Gly by site-directed mutagenesis. The mutations of Asn37 neither significantly affected the binding constant for chitotriose nor the enzymatic activity toward the substrate glycol chitin. However, kinetic analysis with the substrate N-acetylglucosamine pentamer, (GlcNAc)(5), revealed that the conversion of Asn37 to Gly decreased the binding free energies for subsites E and F, while the conversion to Ser increased the substrate affinity at subsite F. It was further found that the rate constant of transglycosylation was reduced by these mutations. These results suggest that Asn37 is involved not only in substrate binding at subsite F but also in transglycosylation activity. No remarkable change in the tertiary structure except the side chain of the 37th residue was detected on X-ray analysis of the mutant proteins, indicating that the alterations in the enzymatic function between the wild type and mutant enzymes depend on limited structural change around the substitution site. It is thus speculated that the slight conformational difference in the side chain of position 37 may affect the substrate and acceptor binding at subsites E and F, leading to lower the efficiency of the transglycosylation activities of the mutant proteins.  相似文献   

11.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

12.
The stopped-flow chemical modification with N-bromosuccinimide (NBS) of Trp 62 of hen (chicken) egg white lysozyme (EC 3.2.1.17) was found to depend greatly on pH: it was not observed at pH's above 7, but it was observed at pH's lower than 6. In addition, at pH's between 6 and 7 the NBS modification showed a delta epsilon pH profile similar to a "titration curve," giving a pK (congruent to 6.5) nearly equal to the pK (congruent to 6.2) of a catalytic residue, Glu 35. The stopped-flow chemical (NBS) modification of N-acetyl-L-tryptophan ethyl ester, a model compound of Trp 62, does not depend on pH at the pH's examined, approximately 3.5-8.5. These experimental results suggest that a change in the state of Trp 62 at Subsite C is induced by protonation-deprotonation of an ionizable residue, which could be Glu 35 (catalytic site), indicating that stopped-flow NBS modification is a good probe for detection of changes in the micorenvironment around the tryptophan residue(s) of enzymes.  相似文献   

13.
Tryptophan at the 62nd position (Trp62) of hen egg-white lysozyme is an amino acid residue whose action is essential for its enzymatic activity. Its indole ring may possibly come into direct contact with sugar residues of the substrate, and thus contribute significantly to substrate binding. For further elucidation of its role in catalytic processes, this amino acid was converted to other aromatic residues, such as Tyr, Phe, and His, by site-directed mutagenesis. All the mutations were found to enhance the bacteriolytic activity but to decrease the hydrolytic activity toward an artificial substrate, glycol chitin. Such a change in substrate preference appears remarkable considering the smaller size of the aromatic residue on the mutant enzyme at the 62nd position.  相似文献   

14.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

15.
The environments of the binding subsites in Asp 101-modified lysozyme, in which glucosamine or ethanolamine is covalently bound to the carboxyl group of Asp 101, were investigated by chemical modification and nuclear magnetic resonance spectroscopy. Trp 62 in each of the native and the modified lysozymes was nitrophenylsulfenylated. The yield of the nitrophenylsulfenylated derivative from the lysozyme modified with glucosamine at Asp 101 (GlcN-lysozyme) was considerably lower than those from native lysozyme and from the lysozyme modified with ethanolamine at Asp 101 (EtN-lysozyme). These results suggest that Trp 62 in GlcN-lysozyme is less susceptible to nitrophenylsulfenylation. Kinetic analyses of the [Trp 62 and Asp 101]-doubly modified lysozymes indicated that the nitrophenylsulfenylation of Trp 62 in the native lysozyme, EtN-lysozyme, or GlcN-lysozyme decreased the sugar residue affinity at subsite C while increasing the binding free energy change by 2.7 kcal/mol, 1.5 kcal/mol, or 0.1 kcal/mol, respectively. Although the profile of tryptophan indole NH resonances in the 1H-NMR spectrum for EtN-lysozyme was not different from that for the native lysozyme, the indole NH resonance of Trp 62 in GlcN-lysozyme was apparently perturbed in comparison with that of native lysozyme. These results suggest that the environment of subsite C in GlcN-lysozyme is considerably different from those in native lysozyme and EtN-lysozyme. The glucosamine residue attached to Asp 101 may contact the sugar residue binding site of the lysozyme, affecting the environment of subsite C.  相似文献   

16.
The enzymatic behaviour, amino acid composition and some physical properties of a new endo-N-acetylmuramidase (B-enzyme) of Bacillus subtilis YT–25 were determined and compared with hen’s egg white lysozyme. The molecular weight was estimated to be about 13000 by the sedimentation equilibrium method. The isoelectric point was pH 9.8. The amino acid composition indicates that the enzyme is rich in basic amino acids, especially lysin. Maximal activity on the lysis of cell walls of M. lysodeikticus occurred at pH 6.2. The enzyme was stable at pH 3.5 ~ 6.0. The specific activity for the lysis of cell walls of M. lysodeikticus was less than fourth part of that of hen’s egg white lysozyme. Digest of cell walls of M. lysodeikticus with B-enzyme consisted greater numbers of high molecular products than digest with egg white lysozyme. Substrate specificity of B-enzyme seemed to be different from that of egg white lysozyme.  相似文献   

17.
The binding constants of N-acetylglucosamine (G1cNAc) and its methyl alpha- and beta- glycosides to hen and turkey egg-white lysozymes [EC 3.2.1.17], in the latter of which Asp 101 is replaced by Gly, were determined at various pH values by measuring changes in the circular dichroic (DC) band at 295 nm. The binding of beta-methyl-G1cNAc to turkey and hen lysozymes perturbed the pK value of Glu 35 from 6.0 to 6.5, the pK value of Asp 52 from 3.5 to 3.9, and the pK value of Asp 66 from 1.3 to 0.7. In addition, perturbation of the pK value of Asp 101 from 4.4 to 4.0 was observed in the binding of this saccharide to hen lysozyme. The binding of alpha-methyl-GlcNAc to hen and turkey lysozymes perturbed the pK value of Glu 35 to the alkaline side by about 0.5 pH unit, the pK value of Asp 66 to the acidic side by about 0.5 pH unit, and the pK value (4.4) of an ionizable group to the acidic side by about 0.6 pH unit. The last ionizable group was tentatively assigned to Asp 48. The pK value of Asp 52 was not perturbed by the binding of this saccharide. The pH dependence curves for the binding of GlcNAc to hen and turkey lysozymes were very similar and it was suggested that Asp 48, in addition to Asp 66, Asp 52, and Glu 35, is perturbed by the binding of GlcNAc.  相似文献   

18.
Trp108 of chicken lysozyme is in van der Waals contact with Glu35, one of two catalytic carboxyl groups. The role of Trp108 in lysozyme function and stability was investigated by using mutant lysozymes secreted from yeast. By the replacement of Trp108 with less hydrophobic residues, Tyr (W108Y lysozyme) and Gln (W108Q lysozyme), the activity, saccharide binding ability, stability, and pKa of Glu35 were all decreased with a decrease in the hydrophobicity of residue 108. Namely, at pH 5.5 and 40 degrees C, the activities of W108Y and W108Q lysozymes against glycol chitin were 17.3 and 1.6% of that of wild-type lysozyme, and their dissociation constants for the binding of a trimer of N-acetyl-D-glucosamine were 7.4 and 309 times larger than that of wild-type lysozyme, respectively. For the reversible unfolding at pH 3.5 and 30 degrees C, W108Y and W108Q lysozymes were less stable than wild-type lysozyme by 1.4 and 3.6 kcal/mol, respectively. As for the pKa of Glu35, the values for W108Y and W108Q lysozymes were found to be lower than that for wild-type lysozyme by 0.2 and by 0.6 pKa unit, respectively. The pKa of Glu35 in lysozyme was also decreased from 6.1 to 5.4 by the presence of 1-3 M guanidine hydrochloride, or to 5.5 by the substitution of Asn for Asp52, another catalytic carboxyl group. Thus, both the hydrophobicity of Trp108 and the electrostatic interaction with Asp52 are equally responsible for the abnormally high pKa (6.1) of Glu35, compared with that (4.4) of a normal glutamic acid residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Li SJ 《Biopolymers》2006,81(2):74-80
Metal binding to lysozyme has received wide interest. In particular, it is interesting that Ni2+, Mn2+, Co2+, and Yb3+ chloride salts induce an increase in the solubility of the tetragonal form in crystals of hen egg white lysozyme at high salt concentration, but that Mg2+ and Ca2+ chloride salts do not. To investigate the interactions of the di- and trivalent metal ions with the active site of lysozyme and compare the effects of the di- and trivalent metal ions on molecular conformation of lysozyme based on the structural analysis, the crystal structures of hen egg white lysozyme grown at pH 4.6, in the presence of 0.5 M MgCl2, CaCl2, NiCl2, MnCl2, CoCl2, and YbCl3, have been determined by X-ray crystallography at 1.58 A resolution. The crystals grown in these salts have an identical space group, P4(3)2(1)2. The molecules show no conformational changes, irrespective of the salts used. Ni2+ and Co2+ binding to the Odelta atom of Asp52 in the active site at 1.98 and 2.02 A, respectively, and Yb3+ binding to both the Odelta atom of Asp52 and the Odelta1 atom of Asn46 at 2.25 A have been identified. The binding sites of Mn2+, Mg2+, and Ca2+ have not been found from different Fourier electron density maps. The Ni2+ and Co2+ ions bind to the Odelta atom of Asp52 at almost the same position, while the Yb3+ ion takes a different position from the Ni2+ and Co2+ ions. On the other hand, the anion Cl-, interacting with the Oeta atom of Tyr23 at a site of about 2.90 A, has also been determined for each crystal.  相似文献   

20.
A lysozyme derivative in which two domains were cross-linked intramolecularly was newly prepared by means of a two-step reaction. First, the beta-carboxyl group of Asp101 in lysozyme was selectively modified with 2-(2-pyridyldithio)ethylamine in the presence of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride. After reduction of the pyridyldithio moiety of Asp101 modified lysozyme at pH 4.5 with dithiothreitol, the derivative was allowed to cross-link intramolecularly by reaction with 1,3-dichloroacetone at pH 7. Intramolecularly cross-linked lysozyme thus formed was purified by gel chromatography followed by ion-exchange chromatography. Based on the results of 1H-NMR and peptide analyses, it was concluded that Asp101 was cross-linked to Trp62 with a -CH2COCH2SCH2CH2NH-bridge in this derivative. The derivative showed minor but distinct activity against Micrococcus lysodeikticus and glycol chitin. Its melting temperature for thermal denaturation was higher by 7.3 degrees than that of native lysozyme at pH 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号