首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipase C- is a PLC isozyme that contains a CDC25 homology domain and a pair of RA domains in addition to a conserved PLC catalytic domain. PLC- is activated by both growth factors and GPCR ligands in a distinct manner. Growth factors such as EGF stimulate PLC- in an RA2 domain-dependent manner through Ras and Rap. On the other hand, several GPCR ligands that are linked with Ga12 or Ga13 can activate PLC- by associating with GTP-RhoA. GTP-RhoA binds with the region in the PLC- Y domain. Gs-linked ligands such as PGE1 and adrenaline stimulate PLC- by cAMP-dependent activation of Epac and Rap2B. PLC- is important for cardiac development and function. In addition, several lines of evidence indicate that PLC- promotes cell growth in an activity-dependent or -independent manner. In particular, PLC--dependent suppression of EGF receptor downregulation contributes to its growth promoting activity. Proper regulation of PLC- activity is essential for preventing tumor formation. Our previous report indicated that EGF-dependent ubiquitination of PLC- is required for the control of PLC--dependent cell growth. Recently, we found that PLC- is phosphorylated by growth factor stimulation, and this is another mechanism of the negative regulation. PLC- is phosphorylated by PKC-α upon stimulation with growth factors such as EGF and PDGF. The EGF-induced phosphorylation of PLC- was abolished by PKC inhibitors and by the expression of the dominant negative mutant of PKC-α. Furthermore, PKC-α was found to phosphorylate PLC- directly in vitro, suggesting that PLC- is a substrate of PKC-α in cells. In addition, PLC- was co-immunoprecipitated with PKC-α in an EGF-dependent manner. Immunocytochemical studies showed that PLC- co-localized with PKC-α in the plasma membrane after EGF stimulation. In addition, inhibition of PKC activity enhanced PLC--mediated PIP2 hydrolysis, suggesting that PKC-α negatively regulates PLC- activity. Taken together, these results suggest for the first time that PLC- is regulated by PKC-α-dependent phosphorylation.  相似文献   

2.
Gangliosides are complex glycosphingolipids that are important in many biological processes. The present study investigated the role of gangliosides in the organization of lipid rafts in RBL-2H3 mast cells and in the modulation of mast cell degranulation via FcRI. The role of gangliosides was examined using two ganglioside deficient cell lines (B6A4A2III-E5 and B6A4C1III-D1) as well as the parent cell line (RBL-2H3). All three cell lines examined express FcRI, Lyn, Syk and LAT. However, only in RBL-2H3 cells were FcRI, LAT and α-galactosyl derivatives of ganglioside GD1b mobilized to lipid raft domains following FcRI stimulation. The inhibition of glycosphingolipid synthesis in RBL-2H3 cells also resulted in a decrease in the release of β-hexosaminidase activity after FcRI activation. The two mutant cell lines have a reduced release of β-hexosaminidase activity after FcRI stimulation, but not after exposure to calcium ionophore. These results indicate that the α-galactosyl derivatives of ganglioside GD1b are important in the initial events of FcRI signaling upstream of Ca2+ influx. Since the initial signaling events occur in lipid rafts and in the mutant cell lines the rafts are disorganized, these results also suggest that these gangliosides contribute to the correct assembly of lipid rafts and are essential for mast cell activation via FcRI.  相似文献   

3.
A growing body of work implies that links between PLC isoforms, in particular PLC, and small G-proteins from Ras superfamily could be important in regulation of a number of cellular processes. Through successful use of biochemistry and structural biology, several interactions have been characterized providing some ideas about the regulatory mechanisms. A number of signalling pathways have also been suggested that could involve direct interaction of Ras and Rho GTPases with PLC. Importantly, several studies combining cell biology and genetics have provided new insights into functions of PLC and highlighted the importance of this approach to extend further and consolidate currently incomplete picture regarding its roles in development and disease.  相似文献   

4.
The aim of this study was to determine the fine structure of amylopectin from grain amaranth. Amaranthus amylopectin was hydrolyzed with α-amylase, and single clusters and a group of clusters (domain) were isolated by methanol precipitation. The domain and the clusters were treated with phosphorylase a and then β-amylase to remove all external chains, whereby the internal structure was obtained. The ,β-limit dextrins were analyzed on Sepharose CL 6B. The average DP (degree of polymerization) and peak-DP values of fractions of clusters were 57 and 82, respectively; the values of the domain were 137 and 309, respectively. The unit chain length profiles were analyzed by high-performance anion-exchange chromatography with pulsed amperometric detector (HPAEC–PAD). The results showed that the domain fraction contained 2.2 clusters, and single clusters were composed of 13 chains. The ,β-limit dextrins of the clusters were further hydrolyzed with α-amylase to characterize their building block composition. The average DP of the branched blocks was 11 and they contained on average 2.5 chains. Their average chain length, internal chain length, and degree of branching were approximately 4.3, 2.8, and 14, respectively. A cluster consisted of 6 branched blocks, and the internal chain length between the blocks was 6.8.  相似文献   

5.
Glycine has been shown to possess important functions as a bidirectional neurotransmitter. At synaptic clefts, the concentration of glycine is tightly regulated by the uptake of glycine released from nerve terminals into glial cells by the transporter GLYT1. It has been recently demonstrated that protein kinase C (PKC) mediates the downregulation of GLYT1 activity in several cell systems. However, it remains to be elucidated which subtypes of PKC might be important in the regulation of GLYT1 activity. In this study, we attempted to make clear the mechanism of the phorbol 12-myristate 13-acetate (PMA)-suppressed uptake of glycine in C6 glioma cells which have the native expression of GLYT1. In C6 cells, the expression of PKCα, PKCδ, and PKC of the PMA-activated subtypes was detected. The PMA-suppressed action was fully reversed by the removal of both extracellular and intracellular Ca2+. Furthermore, the inhibitory effects of PMA or thymeleatoxin (THX), which is a selective activator of conventional PKC (cPKC), were blocked by the downregulation of all PKCs expressed in C6 cells by long-term incubation with THX, or pretreatment with GF109203X or Gö6983, which are broad inhibitors of PKC, or Gö6976, a selective inhibitor of cPKC. On the other hand, treatment of C6 cells with ingenol, a selective activator of novel PKCs, especially PKCδ and PKC, did not affect the transport of glycine. Silencing of PKCδ expression by using RNA interference or pretreatment with the inhibitor peptide for PKC had no effect on the PMA-suppressed uptake of glycine. Together, these results suggest PKCα to be a crucial factor in the regulation of glycine transport in C6 cells.  相似文献   

6.
In ecological studies involving the analysis of  2.4 million living (stained) individual tests, to date  2140 species of benthic foraminifera have been recorded. Of these 602 species are agglutinated, 341 porcelaneous and 1197 hyaline. The numbers of species in the major environments are: marginal marine 701 (in  1.5 million individuals), shelf 989 (in  0.6 million individuals) and deep sea 831 (in  0.3 million individuals). 381 species occur in more than one major environment. Overall  33% have abundance of > 10% while  67% are of minor abundance (< 10%). The majority of species are rare, most are endemic and very few are cosmopolitan (5% or less). To estimate the potential total number of living species the following factors need to be quantified: the proportion of species already named (here considered unlikely to be less than 50% of the potential total), the number of species currently known to be dead but for which living representatives may yet to be found (assumed to be 5% = 107 species), and the proportion of species that are synonyms (10–25% = 214 to 535 species). Assuming that 50% of species have already been named (2140 + 107 = 2247), the potential total ranges from  3959 to  4280 species for 10% synonymy to  3210 to  3531 species for 25% synonymy.  相似文献   

7.
Molecular modeling was used to clarify the mechanism of the selectivity of Candida antarctica lipase B and Candida rugosa lipase towards cis9, trans11 (c9, t11-) and trans10, cis12 (t10, c12-) conjugated linoleic acid. Hydrogen bonds network, substrate conformation, binding affinity and water molecules in the binding site were analyzed. Substrate conformation and binding affinity were not correlated with the experimental results of the substrate selectivity. On the contrary, better enzyme preference towards a substrate was correlated with two stronger hydrogen bonds (His-NH-Oa and His-NH-Ser-Oγ) and less water molecules between the substrate the binding pocket. Possible explanation of these was discussed.  相似文献   

8.
Nitric oxide (NO) effects on the cardiac mitochondrial voltage-dependent anion channel (VDAC) are unknown. The effects of exogenous NO on VDAC purified from rat hearts were investigated in this study. When incorporated into lipid bilayers, VDAC was inhibited directly by an NO donor, PAPA NONOate, in a concentration-dependent biphasic manner. This was prevented by an NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The effect paralleled that of NO in delaying the opening of the mitochondrial permeability transition (PT) pore. These biphasic effects on the cardiac VDAC and the mitochondrial PT pore reveal a tandem impact of NO on the two mitochondrial entities.  相似文献   

9.
Crosslinked macroporous hydrophilic poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)s [abbreviated poly(GMA-co-EGDMA)] with identical chemical structure (60% of glycidyl methacrylate) but with varied average pore sizes (from 30 to 560 nm), specific surface areas (from 13.2 to 106.0 m2/g), specific volumes (from 0.755 to 1.191 cm3/g) and particle sizes (less than 100–650 μm) were synthesized via suspension polymerization. The influence of the resin properties on the loading of Candida antarctica lipase B (Cal-B) during immobilization and on the hydrolytic (hydrolysis of para-nitrophenyl acetate) and synthetic (ring-opening polymerization of -caprolactone) activity of the immobilized Cal-B were studied. Immobilization of Cal-B was performed at different temperatures and pH values. Cal-B immobilized at 30 °C and pH 6.8 was leading to increased activities. By decreasing the resin diameter: (i) the amount of Cal-B adsorbed onto the resin decreases, (ii) the conversion of para-nitrophenyl acetate increases (hydrolytic activity) and (iii) the conversion of -caprolactone and the molecular weight of the synthesized poly--caprolactone increases (synthetic activity). Varying the porosity parameters results in different hydrolytic and synthetic activities. Pore sizes of all synthesized resins (from 30 to 560 nm) are big enough to overcome diffusion limitations. Therefore increasing the pore size of the resins resulted in a large increase in the hydrolytic and synthetic activity. Increasing the specific surface area resulted in an increase of activities, as the result of alleviated substrate approach to the immobilized enzyme zones. The obtained results were compared to results from dried Cal-B powder and Novozyme 435. Resin with particle size less than 100 μm and pore size 48 nm had much higher hydrolytic activity than both dried Cal-B powder and Novozyme 435. Nearly similar trends were observed for the synthetic activity.Via the DMSO leaching technique we could show that about 80% of Cal-B was covalently attached to the macroporous resin.  相似文献   

10.
The ability of hydrophilic residues to shift the transverse position of transmembrane (TM) helices within bilayers was studied in model membrane vesicles. Transverse shifts were detected by fluorescence measurements of the membrane depth of a Trp residue at the center of a hydrophobic sequence. They were also estimated from the effective length of the TM-spanning sequence, derived from the stability of the TM configuration under conditions of negative hydrophobic mismatch. Hydrophilic residues (at the fifth position in a 21-residue hydrophobic sequence composed of alternating Leu and Ala residues and flanked on both ends by two Lys) induced transverse shifts that moved the hydrophilic residue closer to the membrane surface. At pH 7, the dependence of the extent of shift upon the identity of the hydrophilic residue increased in the order: L < GYT < RH < S < P < K < EQ < N < D. By varying pH, shifts with ionizable residues fully charged or uncharged were measured, and the extent of shift increased in the order: L < GYHoT < EoR < S < P < K+< QDoH+ < NE < D. The dependence of transverse shifts upon hydrophilic residue identity was consistent with the hypothesis that shift magnitude is largely controlled by the combination of side chain hydrophilicity, ionization state, and ability to position polar groups near the bilayer surface (snorkeling). Additional experiments showed that shift was also modulated by the position of the hydrophilic residue in the sequence and the hydrophobicity of the sequence moved out of the bilayer core upon shifting. Combined, these studies show that the insertion boundaries of TM helices are very sensitive to sequence, and can be altered even by weakly hydrophilic residues. Thus, many TM helices may have the capacity to exist in more than one transverse position. Knowledge of the magnitudes of transverse shifts induced by different hydrophilic residues should be useful for design of mutagenesis studies measuring the effect of transverse TM helix position upon function.  相似文献   

11.
An -poly-l-lysine-degrading enzyme (PLD) from Kitasatospora sp. CCTCC M205012 has been purified to homogeneity by three steps of anion-exchange chromatography including DEAE-Sepharose, Source 15Q and Mono Q, with a 500-fold increase in specific activity and 40.9% yield. The PLD has a molecular mass of approximately 87.0 kDa and consists of two identical subunits with a molecular mass of 43.6 kDa. Electrophoretic shows that the PLD isoelectric point was about 7.2. The optimum temperature and pH for the PLD was 30 °C and 7.0, respectively. The PLD was deactivated by EDTA, which was indicated that the enzyme was a metallo enzyme. The activity of PLD was stimulated by Co2+ and inhibited by Ca2+ remarkably. The apparent Km with l-lysyl-p-nitroanilide as substrate was 0.216 mM and the Vmax was 0.112 mmol/min mg. The PLD was an exo-type enzyme and monomers of l-lysine were detected during the enzymatic degradation of -PL.  相似文献   

12.
An assemblage of planktonic foraminifera is described from 125 samples taken from the Cercado, Gurabo, and Mao Formations in the Cibao Valley, northern Dominican Republic. The primary objectives of this study are to establish a biochronologic model for the late Neogene of the Dominican Republic and to examine sea surface conditions within the Cibao Basin during this interval. The Cercado Formation is loosely confined to Zones N17 and N18 ( 7.0–5.9 Ma). The Gurabo Formation spans Zones N18 and N19 ( 5.9–4.5 Ma). The Mao Formation is placed in Zone N19 ( 4.5–3.6 Ma). Changes in the relative abundances of indicator species are used to reconstruct sea surface conditions within the basin. Increasing relative abundances of Globigerinoides sacculifer and Globigerinoides ruber, in conjunction with a decreasing relative abundance of Globigerina bulloides, suggests the onset of increasing sea surface temperature and salinity in conjunction with diminishing primary productivity at 6.0 Ma. Abrupt increases in the relative abundances of G. sacculifer and G. ruber at 4.8 Ma suggest a major increase in sea surface temperature and salinity in the early Pliocene. The most likely mechanism for these changes is isolation of the Caribbean Ocean through progressive restriction of Pacific–Caribbean transfer via the Central American Seaway. Periods of high productivity associated with upwelling events are recorded in the upper Cercado Formation ( 6.1 Ma) and in the middle Mao Formation ( 4.2 Ma) by spikes in G. bulloides and Neogloboquadrina spp. respectively. The timing of major increases in sea surface salinity and temperature as well as decreasing productivity ( 4.8 Ma) and periods of upwelling ( 6.1and 4.2 Ma) in the Cibao Basin generally corroborate previously suggested Caribbean oceanographic changes related to the uplift of Panama. Changes in sea surface conditions depicted by paleobiogeographic distributions in the Cibao Basin suggest that shoaling along the Isthmus of Panama had implications in a shallow Caribbean basin as early as 6.0 Ma. Major paleobiologic changes between 4.8 and 4.2 Ma likely represent the period of final closure of the CAS and a nearly complete disconnection between Pacific and Caribbean water masses. This study illustrates the use of planktonic foraminifera in establishing some paleoceanographic conditions (salinity, temperature, productivity, and upwelling) within a shallow water basin, outlining the connection between regional and localized oceanographic changes.  相似文献   

13.
The dynamics of superoxide anion (O2) in vivo remain to be clarified because no appropriate method exists to directly and continuously monitor and evaluate O2 in vivo. Here, we establish an in vivo method using a novel electrochemical O2 sensor. O2 generated is measured as a current and evaluated as a quantified partial value of electricity (Qpart), which is calculated by integration of the difference between the baseline and the actual reacted current. The accuracy and efficacy of this method were confirmed by dose-dependent O2 generation in xanthine–xanthine oxidase in vitro in phosphate-buffered saline and human blood. It was then applied to endotoxemic rats in vivo. O2 current began to increase 1 h after lipopolysaccharide, and Qpart increased significantly for 6 h in endotoxemic rats, in comparison to sham-treated rats. These values were attenuated by superoxide dismutase. The generation and attenuation of O2 were indirectly confirmed by plasma lipid peroxidation with malondialdehyde, endothelial injury with soluble intercellular adhesion molecule-1, and microcirculatory dysfunction. This is a novel method for measuring O2 in vivo and could be used to monitor and treat the pathophysiology caused by excessive O2 generation in animals and humans.  相似文献   

14.
Nitrogen dioxide (NO2) is an important oxidant molecule in biology that is produced by several biological processes, and it is also an important air pollutant. It can oxidize proteins and lipids with important consequences on their biological functions. Despite its relevance, the interaction of NO2 with the cell barrier, the lipid membrane, is poorly understood. For instance, can lipid membranes limit NO2 diffusion? To estimate the permeability of lipid membranes to NO2 it is necessary to learn more about its solubility in the lipid phase. However, experimental data on NO2 solubility is very limited. To improve our knowledge on this matter, we used a mixed approach consisting in calculating the solubility of NO2 and related diatomic and triatomic gases (NO, O2, CO2, etc.) in different solvents using quantum calculations and Tomasi’s Polarizable Continuum Model and validating and correcting these results using experimental data available for the related gases. This approach led to an estimated partition coefficient for NO2 of 2.7 between n-octanol and water, and 1.5 between lipid membranes and water, meaning that NO2 is a moderately hydrophobic molecule (less than NO, more than CO2). Based on the solubility-diffusion permeability theory, the permeability coefficient was estimated to be 5 cm s−1, up to 4000 times higher than that of peroxynitrous acid. It is concluded that lipid membranes are not significant barriers to NO2 transport.  相似文献   

15.
Hemicelluloses were extracted from flax shives using pressurized low-polarity water (PLPW), pressurized aqueous ethanol (PAE), microwave-assisted water (MW-Water) or aqueous ethanol (MW-EtOH), and precipitated with ethanol. Hemicelluloses still remaining in solution were further separated using ultrafiltration. All samples were characterized with chemical analysis, ion-moderated partition chromatography (IMP), size exclusion chromatography (SEC), and Fourier transform infrared (FT-IR) spectroscopy. PLPW, PAE, MW-Water and MW-EtOH extracted 90, 80, 18, and 40% of the total hemicelluloses, respectively. The molecular weight of the ethanol-precipitated hemicelluloses ranged from approximately 11,000 to 40,000 Da and the ethanol-soluble low-molecular weight hemicelluloses were about 1700 Da. High-molecular weight hemicellulose isolated from PAE extracts contained 23% lignin, while that from the PLPW extracts contained 5% lignin. Low-molecular weight hemicelluloses separated by ultrafiltration from PLPW and PAE extracts contained similar amounts of lignin (20%). However, the yield of low-molecular weight hemicelluloses from PLPW was higher (15%) compared to that from PAE (6%). The FT-IR results revealed the specific band maximum at 1220 cm−1 and the bands between 1175 and 1000 cm−1 which are typical of xylans.  相似文献   

16.
The haemolymph lipoprotein of the scorpion, Pandinus imperator was isolated and characterised. Contrary to the lipoproteins of insects and the discoidal HDL-lipoproteins of a crayfish and polychaete, the Pandinus lipoprotein consists of three instead of two apoproteins (apoPiLp I = 230 kDa, apoPiLp II = 130 kDa and apoPiLp III = 120 kDa). The apolipoproteins are arranged in varying stoichiometries as judged by cross-linking experiments. In lipoprotein samples from individual animals, the two smaller subunits occurred in a 1:1 stoichiometry, while the relative amount of the 230 kDa peptide varied. The lipoprotein is a slightly heart-shaped HDL with a diameter of 15 nm. It is present in two densities of 1100 and 1190 kg/m3, of which the latter is by far more abundant. The native molecular mass was estimated to be 500 kDa. The lipid content was determined as 33.5% and consists of 70% neutral lipids and 30% phospholipids. Strikingly, 42.5% of the phospholipids is phosphatidylserine while phosphatidylcholine and phosphatidylethanolamine account for 55.1% and 2.3%, respectively. Carbohydrate analysis suggests the presence of only high-mannose-type N-glycans. N-glycan profiling shows glycans corresponding to a size of 8.0–11.5 hexose units.  相似文献   

17.
Cambrian rocks in South Australia occur in the Stansbury, Arrowie, eastern Officer and Warburton Basins. The succession in the Stansbury and Arrowie Basins can be divided into three sequence sets (supersequences), 1, 2 and 3. Sequence set 1 can be divided into five third-order sequences: 1.0, 1.1A, 1.1B, 1.2 and 1.3. Trilobites from the Stansbury and Arrowie Basins are restricted largely to the lower part of the succession. Four trilobite zones are recognized: Abadiella huoi (latest Atdabanian–earliest Botoman), Pararaia tatei, Pararaia bunyerooensis and Pararaia janeae Zones (all Botoman). Trilobites higher in the succession are known from only a few horizons and in part correlate with the upper Lower Cambrian Lungwangmiaoan Stage of China, equivalent to the top Toyonian. Pagetia sp. has been reported in the Coobowie Formation of the Stansbury Basin, thus suggesting an early Middle Cambrian age.The Cambrian faunas of the Warburton Basin range in age from early Middle Cambrian (Late Templetonian) to very Late Cambrian, although the richest faunal assemblages are late Middle Cambrian (Ptychagnostus punctuosus to Goniagnostus nathorsti Zones). Conodonts, including Cordylodus proavus, occur in a Datsonian fauna.The Arrowie Basin contains the most complete and best studied archaeocyath succession in the Australia–Antarctica region. The Warriootacyathus wilkawillensis, Spirillicyathus tenuis and Jugalicyathus tardus Zones from the lower Wilkawillina Limestone (Arrowie Basin) and equivalents are correlated with the Atdabanian. Botoman archaeocyathids occur higher in the Wilkawillina Limestone. The youngest (Toyonian) archaeocyath fauna in Australia occurs in the Wirrealpa Limestone (Arrowie Basin).Brachiopods and molluscs of the Arrowie and Stansbury Basins can be divided into four biostratigraphic assemblages. Several informal Early Cambrian SSF biostratigraphic assemblages are recognized. Probable tabulate-like corals occur in the Botoman Moorowie Formation. Seven informal acritarch assemblages occur in the Early Cambrian of the Stansbury and Arrowie Basins. Trace fossils may mark the Precambrian–Cambrian boundary. Only two of several tuffaceous horizons from the Stansbury and Arrowie Basins have been dated (i) a date of 522.0 ± 2.1 Ma from the Heatherdale Shale of the Stansbury Basin, about 400 m above latest Atdabanian archaeocyathids and (ii) a date of 522.0 ± 1.8 Ma from the lower part of the Billy Creek Formation in the Arrowie Basin. Neither date is regarded as reliable.  相似文献   

18.
Highly activated glyoxyl-supports rapidly immobilize proteins at pH 10 (where the -amino groups of the Lys groups of the protein surface are very reactive), and stabilize them by multipoint covalent attachment. However, they do not immobilize proteins at pH 8. This paper shows that the enzyme immobilization at this mild pH value is possible by incubation of the enzymes in the presence of different thiolated compounds (dithiothreitol, DTT; was selected as optimal reagent). The thiolated compounds (even the not reducing ones) stabilized the imino bonds formed at pH 8 between the aldehydes in the support and the amino groups of the protein. However, thiolated compounds are unable to reduce the imino bonds or the aldehyde groups and a final reduction step (e.g., using sodium borohydride) was always necessary. After enzyme immobilization through the most reactive amino group of the protein, the further incubation of this immobilized enzyme at pH 10 would improve the reactivity of the -amino groups of the Lys residues of the protein surface. Then, an intense multipoint covalent reaction of the enzyme with the dense layer of glyoxyl groups in the support could be obtained, increasing the stability of the immobilized enzyme. Using three different industrially relevant enzymes (penicillin G acylase from Escherichia coli (PGA), lipase from Bacillus thermocatenulatus (BTL2) and glutaryl acylase from Pseudomonas sp. (GA)), new immobilized-stabilized biocatalysts of the enzymes were produced. After reduction, the preparations incubated at pH 10 were more stable than those that were only immobilized and reduced at pH 8. In the case of the PGA, this preparation was even 4–5-fold more stable than those obtained by direct immobilization at pH 10 (around 40,000–50,000-fold more stable than the soluble enzyme).  相似文献   

19.
A recombinant glutaryl-7-aminocephalosporanic acid acylase (GLA) from Pseudomonas N176 has been over-expressed in BL21(DE3)pLysS Escherichia coli cells. By alternating screenings of medium components and simplified factorial experimental designs, an improved microbial process was set up at shake-flask level (and then scaled up to 2L-fermentors) giving a 80- and 120-fold increase in specific and volumetric enzyme productivity, respectively. Under the best expression conditions, 1380 U/g cell and 16,100 U/L of GLA were produced versus the 18 U/g cell and the 140 U/L obtained in the initial standard conditions. Osmotic stress caused by the addition of NaCl, low cell growth rate linked to high biomass yield in the properly-designed rich medium, optimization of the time and the amount of inducer’s addition and decrease of temperature during recombinant protein production, represent the factors concurring to achieve the reported expression level. Notably, this expression level is significantly higher than any previously described production of GLAs. High volumetric production, cost reduction and the simple one-step chromatographic purification of the His-tagged recombinant enzyme, makes this GLA an economic tool to be used in the 7-ACA industrial production.  相似文献   

20.
Large amounts of crude glycerol produced in the biodiesel industry can be used as a low-cost renewable feedstock to produce chemicals and fuels. Compared to sugars (sucrose, glucose, xylose, etc.), glycerol has a lower reducing level, which is of benefit to the production of reduced chemicals. In this work, glycerol as the sole carbon source in propionic acid fermentation by metabolically engineered Propionibacterium acidipropionici (ACK-Tet) was studied. It was found that the adapted ACK-Tet mutant could use glycerol for its growth and produced propionic acid at a high yield of 0.54–0.71 g/g, which was much higher than that from glucose (0.35 g/g). In addition, the production of acetic acid in glycerol fermentation was much less than that from glucose. Thus, glycerol fermentation produced a high purity propionic acid with a high propionic acid to acetic acid ratio of 22.4 (vs. 5 for glucose fermentation), facilitating the recovery and purification of propionic acid from the fermentation broth. The highest propionic acid concentration obtained from glycerol fermentation was 106 g/L, which was 2.5 times of the highest concentration (42 g/L) previously reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号