首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal stability of transferrin receptor isolated from human placenta in detergent-free solution has been investigated by static light-scattering and photon correlation spectroscopy. In detergent-free solution at 293.2 K, human transferrin receptor (hTfR) forms stable associates with a hydrodynamic radius of 16 nm. With increasing temperature the particles get more compact, above 340 K a phase transition takes, place and spontaneous aggregation of the receptor occurs. Under these conditions large clusters are formed that lead to fractal aggregates, coexisting with dendritic crystalline structures. The experimental findings are compatible with a model, which involves a reaction limited cluster-cluster aggregation mechanism in conjunction with a nucleation process. The molar enthalpy change associated with the phase transition was determined to be (1860 +/- 150) kJ/mol(-1) at a transition temperature of (341.3 +/- 0.2) K.  相似文献   

2.
Plant cells possess much of the molecular machinery necessary for receptor-mediated endocytosis (RME), but this process still awaits detailed characterization. In order to identify a reliable and well-characterized marker to investigate RME in plant cells, we have expressed the human transferrin receptor (hTfR) in Arabidopsis protoplasts. We have found that hTfR is mainly found in endosomal (Ara7- and FM4-64-positive) compartments, but also at the plasma membrane, where it mediates binding and internalization of its natural ligand transferrin (Tfn). Cell surface expression of hTfR increases upon treatment with tyrphostin A23, which inhibits the interaction between the YTRF endocytosis signal in the hTfR cytosolic tail and the mu2-subunit of the AP2 complex. Indeed, tyrphostin A23 inhibits Tfn internalization and redistributes most of hTfR to the plasma membrane, suggesting that the endocytosis signal of hTfR is functional in Arabidopsis protoplasts. Co-immunoprecipitation experiments show that hTfR is able to interact with a mu-adaptin subunit from Arabidopsis cytosol, a process that is blocked by tyrphostin A23. In contrast, treatment with brefeldin A, which inhibits recycling from endosomes back to the plasma membrane in plant cells, leads to the accumulation of Tfn and hTfR in larger patches inside the cell, reminiscent of BFA compartments. Therefore, hTfR has the same trafficking properties in Arabidopsis protoplasts as in animal cells, and cycles between the plasma membrane and endosomal compartments. The specific inhibition of Tfn/hTfR internalization and recycling by tyrphostin A23 and BFA, respectively, thus provide valuable molecular tools to characterize RME and the recycling pathway in plant cells.  相似文献   

3.
Membrane-mediated assembly of the prothrombinase complex   总被引:1,自引:0,他引:1  
Prothrombinase assembly was studied on macroscopic planar bilayers consisting of 20% dioleoyl-phosphatidylserine (DOPS) and 80% dioleoyl-phosphatidylcholine (DOPC). The dissociation constant for the binding of factor Xa to the bilayer, measured by ellipsometry, was Kd = 47 +/- 8 nM (mean +/- S.D.) and this value was lowered to Kd = 2.2 +/- 0.3 pM by preadsorption of factor Va. This latter value was determined from direct measurement of steady-state thrombin production. A comparable value of Kd = 1.0 +/- 0.1 pM was found by repeating these experiments in suspensions of phospholipid vesicles, and it was verified that prothrombinase assembly was not influenced by the addition of prothrombin. Using a minute amount (0.094 fmol cm-2) of preadsorbed factor Va, it was found that the rate of prothrombinase assembly exceeds the rate of collisions between Xa molecules from the buffer and the sparse Va molecules on the bilayer. Apparently, factor Xa adsorbs first to the membrane and then associates rapidly with factor Va by lateral diffusion. The data indicate almost instantaneous equilibrium of this complex formation on the surface with a lower limit for the bimolecular rate constant of kon = 2.8 x 10(13) (mol/cm2)-1 s-1. In suspensions of small phospholipid vesicles, prothrombinase assembly is collisionally limited and the value of kon should be proportional to vesicle diameter. This was verified with a method for estimation of kon values from thrombin generation curves. Values of 0.36 x 10(9) and 1.6 x 10(9) M-1 s-1 were found for vesicles of 20-30- and 60-80-nm diameter, respectively.  相似文献   

4.
Stopped-flow techniques were used to investigate the kinetics of the formation of manganese peroxidase compound I (MnPI) and of the reactions of MnPI and manganese peroxidase compound II (MnPII) with p-cresol and MnII. All of the rate data were obtained from single turnover experiments under pseudo-first order conditions. In the presence of H2O2 the formation of MnPI is independent of pH over the range 3.12-8.29 with a second-order rate constant of (2.0 +/- 0.1) x 10(6) M-1 s-1. The activation energy for MnPI formation is 20 kJ mol-1. MnPI formation also occurs with organic peroxides such as peracetic acid, m-chloroperoxybenzoic acid, and p-nitroperoxybenzoic acid with second-order rate constants of 9.7 x 10(5), 9.5 x 10(4), and 5.9 x 10(4) M-1 s-1, respectively. The reactions of MnPI and MnPII with p-cresol strictly obeyed second-order kinetics. The second-order rate constant for the reaction of MnPII with p-cresol is extremely low, (9.5 +/- 0.5) M-1 s-1. Kinetic analysis of the reaction of MnII with MnPI and MnPII showed a binding interaction with the oxidized enzymes which led to saturation kinetics. The first-order dissociation rate constants for the reaction of MnII with MnPI and MnPII are (0.7 +/- 0.1) and (0.14 +/- 0.01) s-1, respectively, when the reaction is conducted in lactate buffer. Rate constants are considerably lower when the reactions are conducted in succinate buffer. Single turnover experiments confirmed that MnII serves as an obligatory substrate for MnPII and that both oxidized forms of the enzyme form productive complexes with MnII. Finally, these results suggest the alpha-hydroxy acids such as lactate facilitate the dissociation of MnIII from the enzyme.  相似文献   

5.
The kinetics and thermodynamics of Bi(III) exchange between bismuth mononitrilotriacetate (BiL) and human serum transferrin as well as those of the interaction between bismuth-loaded transferrin and transferrin receptor 1 (TFR) were investigated at pH 7.4-8.9. Bismuth is rapidly exchanged between BiL and the C-site of human serum apotransferrin in interaction with bicarbonate to yield an intermediate complex with an effective equilibrium constant K(1) of 6 +/- 4, a direct second-order rate constant k(1) of (2.45 +/- 0.20) x 10(5) M(-1) s(-1), and a reverse second-order rate constant k(-1) of (1.5 +/- 0.5) x 10(6) M(-1) s(-1). The intermediate complex loses a single proton with a proton dissociation constant K(1a) of 2.4 +/- 1 nM to yield a first kinetic product. This product then undergoes a modification in its conformation followed by two proton losses with a first-order rate constant k(2) = 25 +/- 1.5 s(-1) to produce a second kinetic intermediate, which in turn undergoes a last modification in the conformation to yield the bismuth-saturated transferrin in its final state. This last process rate-controls Bi(III) uptake by the N-site of the protein and is independent of the experimental parameters with a constant reciprocal relaxation time tau(3)(-1) of (3 +/- 1) x 10(-2) s(-1). The mechanism of bismuth uptake differs from that of iron and probably does not involve the same transition in conformation from open to closed upon iron uptake. The interaction of bismuth-loaded transferrin with TFR occurs in a single very fast kinetic step with a dissociation constant K(d) of 4 +/- 0.4 microM, a second-order rate constant k(d) of (2.2 +/- 1.5) x 10(8) M(-1) s(-1), and a first-order rate constant k(-d) of 900 +/- 400 s(-1). This mechanism is different from that observed with the ferric holotransferrin and implies that the interaction between TFR and bismuth-loaded transferrin probably takes place on the helical domain of the receptor which is specific for the C-site of transferrin and HFE. The relevance of bismuth incorporation by the transferrin receptor-mediated iron acquisition pathway is discussed.  相似文献   

6.
The kinetics of hybridization of 11-meric and 14-meric oligonucleotides, dTGGGAAGAGGG (ODN-11) and dTGGGAAGAGG GTCA (ODN-14), with 14-meric oligonucleotide dpTGACCCTCT TCCCA (p14) attached to the surface of a cuvette was studied by the resonant mirror method. The treatment of the experimental curves with exponential equations leads to the following values for association (kas) and dissociation (kdis) rate constants at 25 degrees C: kas = 219 +/- 39 and 183 +/- 162 M-1 s-1, kdis = (2.0 +/- 0.4) x 10(-3) and (4 +/- 1) x 10(-4) s-1 for the duplexes (p14) x (ODN-11) and p14 x (ODN-14), respectively. The oligonucleotide dTGCCTTGAATGGGAA GAGGGTCA (ODN-23), which forms a hairpin structure, does not associate with p14. The data were compared with the results of melting curve detection and temperature-jump experiments. The association rate constants for ODN-11 and ODN-14 are much slower than those values in homogeneous aqueous solution. The dissociation rate constants have the same magnitude values as estimated by using association constants measured from melting curves but differ from the values estimated in temperature-jump experiments.  相似文献   

7.
The kinetics and thermodynamics of Al(III) exchange between aluminum citrate (AlL) and human serum transferrin were investigated in the 7.2-8.9 pH range. The C-site of human serum apotransferrin in interaction with bicarbonate removes Al(III) from Al citrate with an exchange equilibrium constant K1 = (2.0 +/- 0.6) x 10(-2); a direct second-order rate constant k1 = 45 +/- 3 M(-1) x s(-1); and a reverse second-order rate constant k(-1) = (2.3 +/- 0.5) x 10(3) M(-1) x s(-1). The newly formed aluminum-protein complex loses a single proton with proton dissociation constant K1a = (15 +/- 3) nM to yield a first kinetic intermediate. This intermediate then undergoes a modification in its conformation followed by two proton losses; first-order rate constant k2 = (4.20 +/- 0.02) x 10(-2) s(-1) to produce a second kinetic intermediate, which in turn undergoes a last slow modification in the conformation to yield the aluminum-loaded transferrin in its final state. This last process rate-controls Al(III) uptake by the N-site of the protein and is independent of the experimental parameters with a constant reciprocal relaxation time tau3(-1) = (6 +/- 1) x 10(-5) x s(-1). The affinities involved in aluminum uptake by serum transferrins are about 10 orders of magnitude lower than those involved in the uptake of iron. The interactions of iron-loaded transferrins with transferrin receptor 1 occur with average dissociation constants of 3 +/- 1 and 5 +/- 1 nM for the only C-site iron-loaded and of 6.0 +/- 0.6 and 7 +/- 0.5 nM for the iron-saturated ST in the absence or presence of CHAPS, respectively. No interaction is detected between receptor 1 and aluminum-saturated or mixed C-site iron-loaded/N-site aluminum-loaded transferrin under the same conditions. The fact that aluminum can be solubilized by serum transferrin in biological fluids does not necessarily imply that its transfer from the blood stream to cytoplasm follows the receptor-mediated pathway of iron transport by transferrins.  相似文献   

8.
A biopanning process designed to find peptide epitopes specific for cell surface receptors has been used in this study to select seven- and 12-amino-acid peptides capable of binding to and internalizing with the human transferrin receptor (hTfR). Through sequential rounds of negative and positive selection, two peptide sequences were identified that specifically bind to the hTfR. Phage containing the sequences HAIYPRH or THRPPMWSPVWP were inhibited from binding the hTfR in a dose-dependent fashion when peptides of the same sequence were present in a competition assay. Interestingly, transferrin did not compete with either of these sequences for receptor binding, suggesting that these peptides bind a site on the hTfR distinct from the transferrin binding site. When either of these sequences was expressed as a fusion to green fluorescent protein (GFP), the recombinant GFP molecule was internalized in cells expressing the hTfR. These studies suggest that the two peptides can be used to target other proteins into the endosomal pathway. Further, they provide a strategy for identifying peptides that bind to other cell surface receptors that can be used for both diagnostic and therapeutic purposes.  相似文献   

9.
Cyanide binding to prostaglandin H (PGH) synthase results in a spectral shift in the Soret region. This shift was exploited to determine equilibrium and kinetic parameters of the cyanide binding process. At pH 8.0, ionic strength 0.22 M, 4 degrees C, the cyanide dissociation constant, determined from equilibrium experiments, is (65 +/- 10) microM. The binding rate constant is (2.8 +/- 0.2) x 10(3) M-1 s-1, and the dissociation rate constant is zero within experimental error. Through a kinetic study of the binding process as a function of pH, from pH 3.96 to 8.00, it was possible to determine the pKa of a heme-linked acid group on the enzyme of 4.15 +/- 0.10 with citrate buffer. An apparent pKa of 4.75 +/- 0.03 was determined with acetate buffer; this different value is attributed to complexation of the enzyme with one of the components of the acetate buffer.  相似文献   

10.
The binding of the monoiodinated alpha-neurotoxin I from Naja mossambica mossambica to the membrane-bound acetylcholine receptor from Torpedo marmorata was investigated using a new picomolar-sensitive microtitration assay. From equilibrium binding studies a non-linear Scatchard plot demonstrated two populations of binding sites characterized by the two dissociation constants Kd1 = 7 +/- 4 pM and Kd2 = 51 +/- 16 pM and having equal binding capacities. These two populations differed in their rate of dissociation (k-1.1 = 25 x 10(-6) s-1 and k-1.2 = 623 x 10(-6) s-1 respectively), but not in their rate of formation of the toxin-receptor complex (k + 1 = 11.7 x 10(6) M-1 s-1). From these rate constants the same two values of dissociation constant were deduced (Kd1 = 2 pM and Kd2 = 53 pM). All the specific binding was prevented by the cholinergic antagonists alpha-bungarotoxin and d-tubocurarine. In addition, a biphasic competition phenomenon allowed us to differentiate between two d-tubocurarine sites (Kda = 103 nM and Kdb = 13.7 microM respectively). Evidence is provided indicating that these two sites are shared by d-tubocurarine and alpha-neurotoxin I, with inverse affinities. Fairly conclusive agreement between our equilibrium, kinetic and competition data demonstrates that the two high-affinity binding sites for this short alpha-neurotoxin are selectively distinguishable.  相似文献   

11.
The colloidal properties of transferrin receptor, isolated from human placenta, in detergent free solution has been investigated by light scattering techniques and analytical ultracentrifugation. In detergent free solution at 293.2 K, hTfR forms stable aggregates with an apparent hydrodynamic radius of 17 nm. The molecular mass was determined by ultracentrifugation to lie between (1722+/-87) kDa (sedimentation equilibrium) and (1675+/-46) kDa (sedimentation velocity). This implies that the aggregates are build up from nine hTfR dimers. Based on model calculations, which are in good agreement with the experimental data, we propose a torus-like structure for the aggregates. Upon pH shift from pH 7.5 to 5.0 or removal of the N-linked carbohydrate chains, formation of larger aggregates is induced. These aggregates can be described in terms of porous fractal structures. We propose a simple model, which accounts for that behaviour assuming that the aggregation is mainly due to the reduction of negative surface charge.  相似文献   

12.
We have studied the kinetics of binding of the menaquinol analog 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO) by fumarate reductase (FrdABCD) using the stopped-flow method. The results show that the fluorescence of HOQNO is quenched when HOQNO binds to FrdABCD. The observed quenching of HOQNO fluorescence has two phases and it can be best fitted to a double exponential equation. A two-step equilibrium model is applied to describe the binding process in which HOQNO associates with FrdABCD by a fast bimolecular step to form a loosely bound complex; this is subsequently converted into a tightly bound complex by a slow unimolecular step. The rates of the forward and the reverse reactions for the first equilibrium (k1 and k2) are determined to be k1 = (1.1 +/- 0.1) x 10(7) M-1.s-1, and k2 = 6.0 +/- 0.6 s-1, respectively. The dissociation constants of the first equilibrium (Kd1 = k2/k1) is calculated to be about 550 nM. The overall dissociation constant for the two-step equilibrium, Kd overall = Kd1/[1+ (1/Kd2)], is estimated to be < or = 7 nM. Comparison of the kinetic parameters of HOQNO binding by FrdABCD and by dimethyl sulfoxide reductase provides important information on menaquinol binding by these two enzymes.  相似文献   

13.
Reactivation of tetrameric porcine skeletal muscle lactic dehydrogenase after dissociation and extensive unfolding of the monomers by 6 M guanidine hydrochloride (Gdn . HCl) is characterized by sigmoidal kinetics, indicating a complex mechanism involving rate-limiting folding and association steps. For analysis of the association reactions, chemical cross-linking with glutaraldehyde may be used [Hermann, R., Jaenicke, R., & Rudolph, R. (1981) Biochemistry 20, 2195-2201]. The data clearly show that the formation of a dimeric intermediate is determined by a first-order folding reaction of the monomers with k1 = (8.0 +/- 0.1) x 10(-4) s-1. The rate constant of the association of dimers to tetramers which represents the second rate-limiting step on the pathway of reconstitution after guanidine denaturation, was then determined by reactivation and cross-linking experiments after dissociation in 0.1 M H3PO4 containing 1 M Na2SO4. The rate constant for the dimer association (which is the only rate-limiting step after acid dissociation) was k2 = (3.0 +/- 0.5) x 10(4) M-1 s-1. On the basis of the given two rate constants, the complete reassociation pattern of porcine lactic dehydrogenase after dissociation and denaturation in 6 M Gdn . HCl can be described by the kinetic model (formula: see text).  相似文献   

14.
The binding of [125I] alpha-latrotoxin to synaptosomes from the rat brain is studied. It is shown that the constant rate of toxin association with the synaptosome receptor at 37 degrees C is equal to 8.2 +/- 1.3 x 10(7) M-1.s-1, while that of synaptosomal membrane -7.6 +/- 2.7 x 10(6) M-1 s-1. Depolarization of the synaptosome membrane induced by 55 mM KCl decreases the binding rate of toxin to the receptor, the rate constant being equal to 3.9 +/- 1.5 x 10(7) m-1 s-1. The pattern of the dissociation process of the toxin-receptor complex of synaptosomes and of synaptosomal membrane is different. In the first case dissociation follows two stages with the rate constants 3.6 x 10(-3) s-1 and 1.2/10(-4) s-1, in the second case it follows one stage with the constant equalled 2.0 x 10(-5) s-1. The quantity of the toxin binding sites on synaptosomes may vary under the action of agents modifying the activity of calcium fluxes which are induced by alpha-latrotoxin. It is supposed that a decrease in the ATP level in synaptosomes as well as deenergy of the surface membrane leads to a change in the state of the alpha-latrotoxin receptor.  相似文献   

15.
This study describes the kinetic behaviour and physicochemical aspects of an endogenous inhibitor of progesterone--receptor binding in trophoblast cytosol from day-12 embryos. The progesterone cytosol receptor was partially purified and isolated from the inhibitor as the 0--50%-satd. (NH4)2SO4 fraction. The inhibitory substance was shown to reside in the 50--70%-satd. (NH4)2SO4 fraction. Equilibration of the inhibitor preparation with the receptor fraction increased the Kapp.D of the ligand--receptor binding reaction in a concentration-dependent manner (26 +/- 3-fold increase in Kapp.D per mg of protein of the (NH4)2SO4 fraction, n = 16). However, the inhibitor did not alter the concentration of binding sites. Studies of other physicochemical aspects of the inhibitor showed it to be non-diffusible, excluded from Sephadex G-25, stable at 35 degrees C for 30 min, but irreversibly denatured at 70 degrees C for 30 min. The Stokes' radius was estimated by gel chromatography to be 2.8 +/- 0.11 nm (n = 5). Inhibitory activity was destroyed by HgCl2, suggesting that disulphide bridges play an essential role in the biological activity of this molecule. The inhibitor is a macromolecule which does not bind progesterone and differs from albumin. The kinetic mechanism by which the inhibitor enhanced Kapp.D was investigated by measuring association and dissociation rate constants and the energy of activation (Ea) for each reaction. The association rate (k+1) for progesterone and receptor was (1.3 +/- 0.2) x 10(4) M-1 . s-1 but declined to (0.4 +/- 0.1) x 10(4) M-1 . s-1 (n = 5) when exposed to the inhibitor (P less than 0.01). The dissociation rate (k-1) was (3.2 +/- 0.6) x 10(-5) s-1 for progesterone--receptor complex and was unchanged by the inhibitor. The Ea for the association of complex was 33.6 +/- 4.2 kJ/mol and was increased to 63.0 +/- 8.4 kJ/mol by the inhibitor (P less than 0.05). The Ea of dissociation was unaltered. Thus, an inhibitor is present in trophoblast cytosol which specifically enhances Kapp.D without altering availability of binding sites. The mode of action of inhibitor is to increase the energy of activation for association of complex without influencing the dissociation reaction.  相似文献   

16.
17.
Binding onto cellobiohydrolase II from Trichoderma reesei of glucose, cellobiose, cellotriose, derivatized and analogous compounds, is monitored by protein-difference-absorption spectroscopy and by titration of ligand fluorescence, either at equilibrium or by the stopped-flow technique. The data complete earlier results [van Tilbeurgh, H., Pettersson, L. G., Bhikhabhai, R., De Boeck, H. and Claeyssens, M. (1985) Eur. J. Biochem. 148, 329-334] indicating an extended active center, with putative subsites ABCD. Subsite A specifically complexes with beta-D-glucosides and D-glucose; at 25 degrees C the latter influences the concomitant binding of other ligands at neighbouring sites. For several ligands this cooperative effect for binding (at 0.33 M glucose and temperature range 4-37 degrees C) was characterized by a substantial increase of the enthalpic term (delta delta H = -35 kJ mol-1). Glucose (0.33 M) decreases the association and dissociation rate parameters of 4-methylumbelliferyl beta-D-cellobioside by one order of magnitude: k+ = (3.6 +/- 0.5) x 10(-5) M-1 s-1 versus (5.1 +/- 0.1) x 10(-6) M-1 s-1 (in the absence of glucose) and k- = (1.3 +/- 0.1) s-1 versus (14.0 +/- 0.3) s-1. As deduced from substrate-specificity studies and inhibition experiments, subsite B interacts with terminal non-reducing glucopyranosyl residues of oligomeric ligands and substrates, whereas catalytic (hydrolytic) cleavage occurs between C and D. Association constants 10-100 times higher than those for cellobiose or its glycosides were observed for D-glucopyranosyl-(1----4)-beta-D-xylopyranose and cellobionolactone derivatives, suggesting 'transition-state'-type binding for these ligands at subsite C. Although subsite D can accomodate a bulky chromophoric group (MeUmb) its preference for a glucosyl residue is reflected in the lower binding enthalpy of cellotriose (-34 kJ mol-1) as compared to cellobiose (-28.3 kJ mol-1) and MeUmb(Glc)2 (-11.6 kJ mol-1). This model indicates that oligomeric ligands (substrates) interact through cooperativity of their subunits at the extended binding site of cellobiohydrolase II.  相似文献   

18.
Xia H  Anderson B  Mao Q  Davidson BL 《Journal of virology》2000,74(23):11359-11366
Some inborn errors of metabolism due to deficiencies of soluble lysosomal enzymes cause global neurodegenerative disease. Representative examples include the infantile and late infantile forms of the ceroid lipofuscinoses (CLN1 or CLN2 deficiency, respectively) and mucopolysaccharidoses type VII (MPS VII), a deficiency of beta-glucuronidase. Treatment of the central nervous system component of these disorders will require widespread protein or enzyme replacement, either through dissemination of the protein or through dissemination of a gene encoding it. We hypothesize that transduction of brain microcapillary endothelium (BME) with recombinant viral vectors, with secretion of enzyme product basolaterally, could allow for widespread enzyme dissemination. To achieve this, viruses should be modified to target the BME. This requires (i) identification of a BME-resident target receptor, (ii) identification of motifs targeted to that molecule, (iii) the construction of modified viruses to allow for binding to the target receptor, and (iv) demonstrated transduction of receptor-expressing cells. In proof of principal experiments, we chose the human transferrin receptor (hTfR), a molecule found at high density on human BME. A nonamer phage display library was panned for motifs which could bind hTfR. Forty-three clones were sequenced, most of which contained an AKxxK/R, KxKxPK/R, or KxK motif. Ten peptides representative of the three motifs were cloned into the HI loop of adenovirus type 5 fiber. All motifs tested retained their ability to trimerize and bind transferrin receptor, and seven allowed for recombinant adenovirus production. Importantly, the fiber-modified viruses facilitated increased gene transfer (2- to 34-fold) to hTfR expressing cell lines and human brain microcapillary endothelia expressing high levels of endogenous receptor. Our data indicate that adenoviruses can be modified in the HI loop for expanded tropism to the hTfR.  相似文献   

19.
Reversible binding of DIDS [4,4'-diisothiocyanato-2,2'-stilbenedisulphonate] to Band 3 protein, the anion exchanger located in erythrocyte plasma membrane, was studied in human erythrocytes. For this purpose, the tritiated form of DIDS ([3H]DIDS) has been synthesized and the filtering technique has been used to follow the kinetics of DIDS binding to the sites on Band 3 protein. The obtained results showed monophasic kinetics both for dissociation and association of the 'DIDS--Band 3' complex at 0 degree C in the presence of 165 mM KCl outside the cell (pH 7.3). A pseudo-first order association rate constant k+1 was determined to be (3.72 +/- 0.42) x 10(5) M-1 s-1, while the dissociation rate constant K-1 was determined to be (9.40 +/- 0.68) x 10(-3) s-1. The dissociation constant KD, calculated from the measured values of k-1 and k+1, was found to be 2.53 x 10(-8) M. The standard thermodynamics parameters characterizing reversible DIDS binding to Band 3 protein at 0 degree C were calculated. The mean values of the activation energies for the association and dissociation steps in the DIDS binding mechanism were determined to be (34 +/- 9) kJ mole-1 and (152 +/- 21) kJ mole-1, respectively. The results provide, for the first time, evidence for the reversibility of DIDS binding to Band 3 protein at 0 degree C. The existence of a stimulatory site is suggested, nearby the transport site on the Band 3 protein. The binding of an anion to this site can facilitate (through electrostatic repulsion interaction between two anions) the transmembrane movement of another anion from the transport site.  相似文献   

20.
We have examined the binding of [3H]bradykinin to bovine myometrial membranes and assessed its sensitivity to guanine nucleotides. Total binding displayed a typical B2 kinin receptor specificity. However, saturation binding isotherms were resolved into at least two components with KD values of 8 pM (45%) and 378 pM (55%). Low affinity binding exhibited relatively rapid rates of association (kobs = 1.40 x 10(-2) s-1) and dissociation (k-1 = 3.82 x 10(-3) s-1), while high affinity binding exhibited considerably slower rates (kobs = 9.52 x 10(-4) s-1 and k-1 = 4.43 x 10(-5) s-1). Pre-equilibrium dissociation kinetics revealed that formation of high affinity binding was characterized as a time-dependent accumulation of the slow dissociation rate at the expense of at least one other more rapid dissociation rate. In the presence of 10 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p), at least two binding components were resolved with KD values of 37 pM (12%) and 444 pM (88%). Gpp(NH)p apparently specifically perturbed high affinity binding by completely preventing the accumulation of the slow dissociation phase. Instead, two more rapid dissociation rates (k-1 = 8.53 x 10(-3) s-1 and 4.43 x 10(-4) s-1) were observed. These results suggest that [3H]bradykinin interacts with at least two B2 kinin receptor-like binding sites in bovine myometrial membranes. A three-state model for the guanine nucleotide-sensitive agonist interaction with the high affinity binding sites is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号