首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant and aphid biomass, photosynthetic pigment (chlorophylls a and b and carotenoids) concentrations, and chlorophyll a/b and chlorophyll/carotenoid ratios were quantified in aphid-infested 'Tugela' near-isogenic lines (Tugela, Tugela-Dn1, Tugela-Dn2, and Tugela-Dn5). The objectives were to quantify changes of photosynthetic pigments (chlorophylls a and b, and carotenoids) caused by aphid feeding and assess resistance of wheat isolines through aphid and plant biomass analysis. Biomass of bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae)-infested plants was lower than Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae),- infested plants. When infested by D. noxia, all lines showed increased biomass over time, except Tugela where biomass decreased on day 12. No difference in plant biomass was detected among R. padi-infested and uninfested wheat lines. Biomass of D. noxia from Tugela (D. noxia-susceptible) was significantly higher than from plants with Diuraphis noxia-resistant Dn genes. Diuraphis noxia biomass from Tugela-Dn1 and Dn2 lines was not different from each other, but they were lower than from Tugela-Dn5. In contrast, there was no difference in R. padi biomass among wheat lines. Concentrations of chlorophylls a and b and carotenoids were significantly lower in D. noxia-infested plants compared with R. padi-infested and uninfested plants. When infested by D. noxia, chlorophyll a and b concentrations were not different among wheat lines on day 3, but they were lower in Tugela and Tugela-Dn1 than in Tugela-Dn2 and -Dn5 plants on days 6 and 12. However, no difference was detected in chlorophyll a/b or chlorophyll/carotenoid ratio among Tugela lines. The study demonstrated that Dn genes in the Tugela isolines conferred resistance to D. noxia but not to R. padi. Tugela-Dn1 was antibiotic, Tugela-Dn2 was tolerant and antibiotic, and Tugela-Dn5 was moderately antibiotic.  相似文献   

2.
Chlorophyll degradation enzyme (i.e., chlorophyllase, Mg-dechelatase, and chlorophyll oxidase) activities of aphid-infested and uninfested 'Tugela' and Tugela near-isogenic wheat lines (i.e., Tugela-Dn1, Tugela-Dn2, and Tugela-Dn5) were assayed. Chlorophyllase activity was higher in bird cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae),-infested wheat lines compared with Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae)]-infested and uninfested plants. Mg-dechelatase activity was higher in D. noxia-infested wheat lines than in R. padi-infested and uninfested plants. Also, Mg-dechelatase activity was lower in Tugela wheat infested with D. noxia than in Tugela near-isogenic lines with Dn genes. Based on the in vitro assays of chlorophyll degradation enzyme (i.e., chlorophyllase and Mg-dechelatase) activities, we proposed that the chlorotic symptoms observed on D. noxia-infested Tugela wheat were most likely to be elicited by unbalanced chlorophyll biosynthesis and degradation.  相似文献   

3.
Abstract:  Aphid behaviour-modifying semiochemicals were tested against Russian wheat aphid Diuraphis noxia in South African wheat. Volatile substances from plant essential oils, methyl salicylate, 1,8-cineole and menthol were tested in the laboratory and field in combination with the D. noxia -susceptible wheat variety Betta and the resistant variety Elands. All three substances were repellent to D. noxia in olfactometric tests. Diuraphis noxia settled less on Elands plants that had been exposed to the volatiles, whereas the effect of the volatiles on D. noxia settling on Betta was less obvious. A slow-release pellet formulation was used to apply semiochemicals in wheat in replicated plot field trials in 2004 and 2005. In 2004, semiochemicals reduced aphid populations in Elands, but led to increased aphid populations in Betta. Further, the impact of the chemicals on aphid numbers and grain quality (thousand grain weight) varied according to plant variety, indicating an interaction between semiochemicals and plant resistance/variety.  相似文献   

4.
5.
Three aphid species were compared with respect to ability of enhancing the nutritional quality of their host plants. Rhopalosiphum padi, which does not induce macroscopic changes in its host plants, was compared with Schizaphis graminum and Diuraphis noxia, both of which induce distinctive types of chlorotic lesions. Phloem sap samples were collected from severed stylets of feeding aphids and from exudates of cut leaves of plants uninfested or infested with each aphid species. Samples were analyzed for concentrations of individual amino acids.Compared to R. padi, S. graminum ingested phloem sap with a two-fold higher concentration of amino acids and a much higher proportion of essential amino acids. Similar differences between these two aphid species were observed on both wheat and barley. For each aphid species, the absolute concentrations of amino acids and the relative proportions of essential amino acids were similar between the two host plants. Effects of D. noxia were similar to those of S. graminum, though less dramatic. Exudates from leaves infested with each aphid species showed relative concentrations of individual amino acids that were similar to those in the corresponding stylet exudates. Based on comparison of stylet exudates and cut leaf exudates from infested and uninfested plants, R. padi seems to have little effect on amino acid composition of phloem. Changes in the phloem induced by both S. graminum and D. noxia appear to be systemic, affecting at least the whole leaf they are feeding on. The changes observed for D. noxia and for S. graminum are likely to be nutritionally advantageous for the aphids and are expected to affect the aphids' dependence on nutritional supplementation by intracellular symbionts (Buchnera).  相似文献   

6.
The Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), is one of the most devastating insect pests of wheat (Triticum spp.) and barley (Hordeum spp.) in the world. Yield losses and control costs are valued at several hundred million dollars each year. The use of D. noxia-resistant cultivars is an ecologically, economically, and biologically sound method of managing this pest. Several D. noxia resistance (Dn) genes from wheat have been used to develop cultivars resistant to D. noxia. However, a new U.S. D. noxia biotype (biotype 2) in Colorado is virulent to all known Dn genes except the Dn7 gene from rye (Secale spp.). Hence, there is an immediate need to identify and characterize unique sources of D. noxia resistance to biotypes. In this article, we report resistance to D. noxia biotype 2, identified in a selection from wheat cereal introduction (CItr) 2401, that is controlled by two dominant genes. CItr2401 has a strong antibiosis effect that is exhibited as a reduced intrinsic rate of increase of D. noxia biotype 2. CItr2401 plants also exhibit tolerance to leaf rolling and chlorosis. No antixenosis was detected in CItr2401.  相似文献   

7.
A study to determine yield response to the Russian wheat aphid, Diuraphis noxia (Mordvilko), was conducted during the 1997-1998 and 1998-1999 growing seasons at three eastern Colorado locations, Akron, Fort Collins, and Lamar, with three wheat lines containing either Russian wheat aphid-resistant Dn4 gene, Dn6 gene, or resistance derived from PI 222668, and TAM 107 as the susceptible control. Russian wheat aphids per tiller were greater on TAM 107 than the resistant wheat lines at the 10x infestation level at Fort Collins and Akron in 1999. Yield, seed weight, and number of seeds per spike for each wheat line were somewhat affected by Russian wheat aphid per tiller mainly at Fort Collins. The infested resistant wheat lines harbored fewer Russian wheat aphids and yielded more than the infested susceptible wheat lines. Wheat lines containing the Dn4, Dn6, and PI 222668 genes contain different levels of antibiosis or antixenosis and tolerance. Although differences existed among sites and resistance, there is a benefit to planting resistant wheat when there is a potential for Russian wheat aphid infestations.  相似文献   

8.
The Russian wheat aphid, Diuraphis noxia (Mordvilko), is a serious worldwide pest of wheat and barley. Russian wheat aphid populations from Hungary, Russia, and Syria have previously been identified as virulent to D. noxia (Dn) 4, the gene in all Russian wheat aphid-resistant cultivars produced in Colorado. However, the virulence of Russian wheat aphid populations from central Europe, North Africa, and South America to existing Dn genes has not been assessed. Experiments with plants containing several different Dn genes demonstrated that populations from Chile, the Czech Republic, and Ethiopia are also virulent to Dn4. The Czech population was also virulent to plants containing the Dnx gene in wheat plant introduction PI220127. The Ethiopian population was also virulent to plants containing the Dny gene in the Russian wheat aphid-resistant 'Stanton' produced in Kansas. The Chilean and Ethiopian populations were unaffected by the antibiosis resistance in Dn4 plants. There were significantly more nymphs of the Chilean population on plants of Dn4 than on Dn6 plants at both 18 and 23 d postinfestation, and the Ethiopian population attained a significantly greater weight on Dn4 plants than on plants containing Dn5 or Dn6. These newly characterized virulent Russian wheat aphid populations pose a distinct threat to existing or proposed wheat cultivars possessing Dn4.  相似文献   

9.
We examined the physiological and biochemical responses of resistant ('Halt' and 'Prairie Red') and susceptible ('TAM 107') wheat, Triticum aestivum L., to injury by the Russian wheat aphid, Diuraphis noxia (Mordvilko). Photosynthetic capacity was evaluated by measuring assimilation/internal CO2 (A/Ci) curves, chlorophyll fluorescence, chlorophyll, and nonstructural carbohydrate content. Total protein and peroxidase specific activity also were determined. No significant differences were detected in chlorophyll concentration between aphid-infested and control TAM 107 plants. The aphid-infested resistant cultivars had similar or significantly higher chlorophyll concentrations compared with their respective control plants. Measurements over time showed that infested Halt plants had delays in photosynthetic senescence, Prairie Red plants had photosynthetic rate changes that were similar to control plants, and TAM 107 plants displayed accelerated photosynthetic senescence patterns. The photochemical and nonphotochemical quenching coefficients were significantly higher in infested Halt plants compared with their respective control plants on day 3. Infested TAM 107 plants had significantly higher photochemical quenching compared with control plants at all times evaluated, and they had significantly higher nonphotochemical quenching on day 3. Throughout the experiment, infested Prairie Red plants exhibited photochemical and nonphotochemical quenching coefficient values that were not significantly different from control plants. Total protein content was not significantly different between aphid-infested and control plants for all cultivars. Differences between physiological responses of infested susceptible and resistant cultivars, particularly temporal changes in photosynthetic activity, imply that resistant Halt and Prairie Red wheat tolerate some impacts of aphid injury on photosynthetic integrity.  相似文献   

10.
Field experiments were conducted in 1997 and 1998 to evaluate the impact of resistance to Russian wheat aphid, Diuraphis noxia (Mordvilko), on the cereal aphid complex in wheat. Two spring wheats were planted: the variety "Centennial" (Russian wheat aphid susceptible) and the advanced line IDO488 (Russian wheat aphid resistant). IDO488 incorporates the resistance found in PI 294994 into a Centennial background. Field plots were artificially infested with adult D. noxia and sampled weekly. The most abundant aphid species in 1997 were Metopolophium dirhodum (Walker), Sitobion avenae (F.), D. noxia, and Rhopalosiphum padi (L.). In 1998, the order of abundance was M. dirhodum, R. padi, S. avenae, and D. noxia. The resistant genotype had significantly fewer D. noxia than the susceptible one during both years. However, plant genotype had no significant effect on the other aphid species in either year. Both the initial density of D. noxia and plant growth stage, had a significant effect on D. noxia population development, but had no effect on the other aphid species. There was no interaction between D. noxia resistance and the population density of the other aphid species observed.  相似文献   

11.
The influence of Russian wheat aphid ( Diuraphis noxia Mordvilko) infestation on the response of barley ( Hordeum vulgare L. ev Hazen) plants to drought stress was investigated. Fourteen-day-old plants were infested with eight apterous adult aphids, which were removed 7 days later with systemic insecticide. Leaves previously infested with aphids had lower relative water content, reduced stomatal conductance, more negative water potential, lower levels of chlorophyll and higher levels of amino-N, proline and glycinebetaine than corresponding leaves from uninfested plants. When water was withheld for a period of 7 days after aphids were removed, the relative water content of previously infested plants dropped steadily from 0.89 to 0.60, while the relative water content of uninfested plants remained at about 0.94 for the first 4 days of the drought stress period followed by a steady drop to about 0.77 by the end of the drought stress period. Leaf water potentials dropped steadily during the drought stress period in both previously infested (-1.14 to -1.91 MPa) and unin-fested (-0.54 to -1.52 MPa) plants. Analysis of glycinebetaine and proline levels at the end of the drought stress period indicated that leaves of previously infested plants accumulated lower levels of these solutes than leaves from uninfested plants. Upon alleviation of drought stress, plants previously infested with aphids showed little increase in dry weight while younger leaves and tillers from uninfested plants showed large increases. It is concluded that Russian wheat aphids cause drought-stress symptoms in leaves of infested plants even in the presence of ample root moisture. The observations of low levels of glycinebetaine and proline present in leaves after water was withheld from roots and lack of leaf growth upon alleviation of drought stress in previously-infested plants, suggest that aphid infestation limits the capacity of barley plants to adjust successfully to drought stress.  相似文献   

12.
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is a serious economic pest of wheat worldwide. Host plant resistance is the preferred method to control RWA infestations. The identification and mapping of RWA-resistant genes and the development of resistant wheat cultivars can be facilitated through the use of molecular markers. In the present study, microsatellite (SSR) markers linked to the RWA-resistant genes Dn4 and Dn6 were identified using several F(2) mapping populations derived from crosses of susceptible wheat cultivars and resistant sources. Two flanking microsatellite markers Xgwm106 and Xgwm337 are linked in coupling phase with Dn4 on the short arm of wheat chromosome 1D at 7.4 cM and 12.9 cM, respectively. Two other microsatellite markers Xgwm44 and Xgwm111 are linked to Dn6 in coupling phase near the centromere on the short arm of chromosome 7D at 14.6 cM and 3.0 cM, respectively. This is the first report on the chromosomal location of Dn6, which proved to be either allelic or tightly linked to Dn1, Dn2 and Dn5. This result of Dn6 location contradicts previous reports that Dn6 was independent of Dn1, Dn2 and Dn5. The linked markers can be conveniently used for marker-assisted selection in wheat breeding programs for the identification and/or pyramiding of Dn4 and Dn6 genes.  相似文献   

13.
Elicitors are molecules which can induce the activation of plant defence responses. Elicitor activity of intercellular wash fluid from Russian wheat aphid, Diuraphis noxia (Mordvilko) infested resistant (cv Tugela DN), and susceptible (cv Tugela), wheat (Triticum aestivum L.), was investigated. Known Russian wheat aphid resistance related responses such as peroxidase and beta-1,3-glucanase activities were used as parameters of elicitor activity. The intercellular wash fluid from infested resistant plants contains high elicitor activity while that from infested susceptible plants contains no or very little elicitor activity. After applying C-18 reverse phase and concanavalin A Sepharose chromatography, elicitor active glycoproteins were isolated from the intercellular wash fluid of Russian wheat aphid infested resistant wheat. The elicitor-active glycoproteins separated into three polypeptides during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isolated glycoproteins elicited peroxidase activity to higher levels in resistant than in susceptible cultivars. It was evident that the glycoproteins were probably a general elicitor of plant origin. Information gained from these studies is valuable for the development of plant activators to enhance the defence responses of plants.  相似文献   

14.
It is hypothesized that the interaction between aphids and plants follows a gene-for-gene model. The recent appearance of several new Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), biotypes in the United States and the differential response of wheat, Triticum aestivum L., genotypes containing different resistance genes also suggest a gene-for-gene interaction. However, aphid elicitors remain unknown. This study was conducted to identify fractionated Russian wheat aphid extracts capable of eliciting differential responses between resistant and susceptible wheat genotypes. We extracted whole soluble compounds and separated proteins and metabolites from two Russian wheat aphid biotypes (1 and 2), injected these extracts into seedlings of susceptible wheat Gamtoos (dn7) and resistant 94M370 (Dn7), and determined phenotypic and biochemical plant responses. Injections of whole extract or protein extract from both biotypes induced the typical susceptible symptom, leaf rolling, in the susceptible cultivar, but not in the resistant cultivar. Furthermore, multiple injections with protein extract from biotype 2 induced the development of chlorosis, head trapping, and stunting in susceptible wheat. Injection with metabolite, buffer, or chitin, did not produce any susceptible symptoms in either genotype. The protein extract from the two biotypes also induced significantly higher activities of three defense-response enzymes (catalase, peroxidase, and beta-glucanase) in 94M370 than in Gamtoos. These results indicate that a protein elicitor from the Russian wheat aphid is recognized by a plant receptor, and the recognition is mediated by the Dn7-gene product. The increased activities of defense-response enzymes in resistant plants after injection with the protein fraction suggest that defense response genes are induced after recognition of aphid elicitors by the plant.  相似文献   

15.
The impact of light and its role in Russian wheat aphid, Diuraphis noxia (Mordvilko), damage symptom formation, and photosynthetic capacity in 'Arapahoe' wheat (Triticum aestivum L.) were examined. After 72 h under continuous dark or continuous light regimes, the number of aphids (nymphs), leaf rolling and chlorosis ratings, fresh leaf weight, and chlorophyll contents were recorded. Photosynthetic rates, chlorophyll a, kinetics and chlorophyll extractions also were determined. Aphid infestation caused significant reductions in plant height, fresh weight, gas exchange, and chlorophyll fluorescence only under continuous light. Under the 72 h continuous dark regime, aphid infestation did not cause either damage symptom formation or reduction in plant growth or metabolism (photosynthesis). Furthermore, significantly more D. noxia nymphs were produced under continuous light condition than continuous dark. Our results demonstrate that the development of D. noxia feeding damage symptoms (i.e., leaf rolling and chlorotic streaks) on susceptible wheat seedlings is a light-activated process, even though the elicitor of the plant damage symptoms is aphid feeding.  相似文献   

16.
Genetic resistance is a useful control strategy for managing Russian wheat aphid, Diuraphis noxia (Mordvilko), in wheat, Triticum aestivum L. In 2003, a Russian wheat aphid population (denoted as biotype 2) identified in Colorado was virulent to genotypes carrying the Dn4 Russian wheat aphid resistance gene, necessitating the rapid identification and deployment of new sources of resistance. Although the Dn7 gene had shown excellent resistance to Russian wheat aphid biotypes 1 and 2 in evaluations in the greenhouse, no information is available on the amount of protection provided by Dn7 under field conditions. The objective of this study was to compare the reaction of Dn4- and Dn7-carrying spring wheat genotypes under artificial infestation by Russian wheat aphid biotype 1 in the field. Irrigated field experiments were conducted in 2003 and 2004 in a split-split plot arrangement with six replications. The whole plot treatment was infestation level (control, 1x, and 10x Russian wheat aphids), and the subplot treatment was resistance source (Dn4- and Dn7-carrying genotypes). The sub-subplot treatment consisted of side-by-side planting of resistant and susceptible genotypes. The Dn4 subplot was significantly more damaged than the Dn7 subplot in 2003, but not in 2004. Interaction effects observed in 2004 suggested an advantage of Dn7 relative to Dn4 in terms of reduced Russian wheat aphid abundance and plant damage. Deployment of the Dn7 Russian wheat aphid resistance gene should provide protection in the field comparable with that provided by the Dn4 resistance gene for management of Russian wheat aphid biotype 1.  相似文献   

17.
Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) was recorded for the first time in South Africa in 1978. In 2005, a second biotype, RWASA2, emerged, and here we report on the emergence of yet another biotype, found for the first time in 2009. The discovery of new Russian wheat aphid biotypes is a significant challenge to the wheat, Triticum aestivum L., industry in South Africa. Russian wheat aphid resistance in wheat, that offered wheat producers a long-term solution to Russian wheat aphid control, may no longer be effective in areas where the new biotypes occur. It is therefore critical to determine the diversity and extent of distribution of biotypes in South Africa to successfully deploy Russian wheat aphid resistance in wheat. Screening of 96 Russian wheat aphid clones resulted in identification of three Russian wheat aphid biotypes. Infestations of RWASA1 caused susceptible damage symptoms only in wheat entries containing the Dn3 gene. Infestations of RWASA2 caused susceptible damage symptoms in wheat entries containing Dn1, Dn2, Dn3, and Dn9 resistant genes. Based on the damage-rating scores for the seven resistance sources, a new biotype, which caused damage rating scores different from those for RWASA1 and RWASA2, was evident among the Russian wheat aphid populations tested. This new biotype is virulent to the same resistance sources as RWASA2 (Dn1, Dn2, Dn3, and Dn9), but it also has added virulence to Dn4, whereas RWASA2 is avirulent to this resistance source.  相似文献   

18.
The impact of the leaf-chlorosis-eliciting Russian wheat aphid, Diuraphis noxia (Mordvilko), and the nonchlorosis-eliciting bird cherry-oat aphid, Rhopalosiphum padi (L.), feeding on D. noxia-susceptible and -resistant cereals was examined during the period (i.e., 3, 6, and 9 d after aphid infestation) that leaf chlorosis developed. After aphid number, leaf rolling and chlorosis ratings, and fresh leaf weight were recorded on each sampling date, total protein content, peroxidase, catalase, and polyphenol oxidase activities of each plant sample were determined spectrophotometrically. Although R. padi and D. noxia feeding caused significant increase of total protein content in comparison with the control cereal leaves, the difference in total protein content between R. padi and D. noxia-infested leaves was not significant. Although R. padi-feeding did not elicit any changes of peroxidase specific activity in any of the four cereals in comparison with the control leaves, D. noxia feeding elicited greater increases of peroxidase specific activity only on resistant 'Halt' wheat (Triticum aestivum L.) and susceptible 'Morex' barley (Hordeum vulgare L.), but not on susceptible 'Arapahoe' and resistant 'Border' oat (Avena sativa L.). D. noxia-feeding elicited a ninefold increase in peroxidase specific activity on Morex barley and a threefold on Halt wheat 9 d after the initial infestation in comparison with control leaves. Furthermore, D. noxia feeding did not elicit any differential changes of catalase and polyphenol oxidase activities in comparison with either R. padi feeding or control leaves. The findings suggest that D. noxia feeding probably results in oxidative stress in plants. Moderate increase of peroxidase activity (approximately threefold) in resistant Halt compared with susceptible Arapahoe wheat might have contributed to its resistance to D. noxia, whereas the ninefold peroxidase activity increase may have possibly contributed to barley's susceptibility. Different enzymatic responses in wheat, barley, and oat to D. noxia and R. padi feeding indicate the cereals have different mechanisms of aphid resistance.  相似文献   

19.
A field experiment was conducted to determine whether resistance to Russian wheat aphid, Diuraphis noxia (Mordvilko), conferred by the Dn4 gene is affected by genetic background. This was done by comparing the yield responses to Russian wheat aphid-resistant wheat containing Dn4, derived through the backcross method, to those of the corresponding recurrent parents. Infested resistant cultivars had fewer Russian wheat aphids per tiller than infested susceptible cultivars at the Lamar and Fort Collins, CO sites but not at the Akron, CO site. At the Lamar site, resistant cultivars yielded more than the susceptible cultivars. 'Prairie Red' and 'Yumar' were more resistant than 'Prowers', especially at the higher infestation level. Resistance in these cultivars was categorized in a laboratory experiment to confirm this differential expression of resistance. Resistance in Prairie Red, 'Halt', 'Prowers 99', and Yumar was categorized at three plant growth stages. Antibiosis was expressed as reductions in maximum number of nymphs produced per 24 h and intrinsic rate of increase. The maximum number of nymphs produced per 24 h was reduced in Halt and 'Lamar'. Averaged over cultivars, the intrinsic rate of increase was less at jointing than at the seedling or tillering growth stages. Tolerance was expressed in the resistant cultivars as reduced chlorosis and leaf rolling. Growth reductions in infested Prowers 99 plants was less than the other cultivars. This study confirms that some cultivars containing Dn4 may express antibiosis and tolerance, whereas others may not show the same categories. Thus, expression is affected by genetic background.  相似文献   

20.
In spring 2003, several outbreaks of the Russian wheat aphid, Diuraphis noxia (Mordvilko), were reported in fields of supposedly resistant wheat cultivars ('Stanton', 'Halt', and 'Prairie Red') in eastern Colorado. We conducted two laboratory experiments to compare the biological performance of this new biotype 2 (B2) to that of two D. noxia collections of biotype 1 (B1) from western Kansas by using three wheat cultivars as host plants: 'Trego', a susceptible cultivar, and Stanton and Halt, two cultivars with different genetic sources of resistance. Survival of solitary nymphs from first instar to adult for the two clones of B1 on Trego was 96 and 90%, respectively, compared with 67 and 43% on Stanton, and 65 and 57% on Halt. In contrast, B2 had 60% survival on Trego, 43% survival on Halt, and 85% survival on Stanton. One clone of B1 required longer to mature on Halt compared with Trego or Stanton, but no other differences in developmental time among cultivars were significant. The standardized fecundity of solitary foundresses of the B1 clones was 19.6 and 20.1 nymphs on Trego, compared with 4.6 and 0.9 on Stanton, and 2.8 and 1.1 on Halt, respectively, over the same period. In contrast, fecundity of B2 was 21.1, 20.8, and 19.7 on Trego, Stanton, and Halt, respectively. When larger colonies developed on individual plants over longer periods, Trego supported the largest number of B1 aphids by experiment's end, whereas Stanton and Halt yielded the largest numbers of B2. The order of overall plant damage was Trego > Stanton > Halt when infested with B1, with no significant differences for B2. Trego had more pronounced leaf rolling than other cultivars, independent of biotype. Collectively, the results suggest that D. noxia B2 from Colorado has evolved cross-virulence to both Dn4- and Dny-based resistance sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号