共查询到20条相似文献,搜索用时 8 毫秒
1.
The delta' subunit of the DNA polymerase-III holoenzyme is a key component of the DnaX complex; it is required for loading the beta(2) processivity factor onto a primed template. The x-ray crystal structure of delta' indicates a three domain C-shaped structure (Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997) Cell 91, 335-345). In this study, we localized the DnaX-binding domain of delta' to its carboxyl-terminal domain III by quantifying protein-protein interactions using a series of delta' fusion proteins lacking specific domains. The fusion protein corresponding to domain III of delta' bound to DnaX with an affinity approaching that of full-length delta'. In contrast, a construct bearing delta' domains I-II did not bind DnaX at detectable levels. The presence of delta and chi psi strengthened the interaction of DnaX with full-length delta' and delta' domain III. Thus, domain III of delta' not only contains the DnaX-binding site, but also contains the elements required for positive cooperative assembly of the DnaX complex. A domain III-specific anti-delta' monoclonal antibody interfered with DnaX complex formation and abolished the replication activity of DNA polymerase III holoenzyme. 相似文献
2.
Escherichia coli DNA polymerase II is stimulated by DNA polymerase III holoenzyme auxiliary subunits 总被引:6,自引:0,他引:6
A J Hughes S K Bryan H Chen R E Moses C S McHenry 《The Journal of biological chemistry》1991,266(7):4568-4573
DNA polymerase III of Escherichia coli requires multiple auxiliary factors to enable it to serve as a replicative complex. We demonstrate that auxiliary components of the DNA polymerase III holoenzyme, the gamma delta complex and beta subunit, markedly stimulate DNA polymerase II on long single-stranded templates. DNA polymerase II activity is enhanced by single-stranded DNA binding protein, but the stimulation by gamma delta and beta can be observed either in the absence or presence of single-stranded DNA binding protein. In contrast with DNA polymerase III, the requirement of DNA polymerase II for gamma delta cannot be bypassed by large excesses of the beta subunit at low ionic strength in the absence of the single-stranded DNA binding protein. The product of the DNA polymerase II-gamma delta-beta reaction on a uniquely primed single-stranded circle is of full template length; the reconstituted enzyme apparently is incapable of strand displacement synthesis. The possible biological implications of these observations are discussed. 相似文献
3.
The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX gene, tau and gamma, but only tau is essential. 下载免费PDF全文
A Blinkova C Hervas P T Stukenberg R Onrust M E O'Donnell J R Walker 《Journal of bacteriology》1993,175(18):6018-6027
The replicative polymerase of Escherichia coli, DNA polymerase III, consists of a three-subunit core polymerase plus seven accessory subunits. Of these seven, tau and gamma are products of one replication gene, dnaX. The shorter gamma is created from within the tau reading frame by a programmed ribosomal -1 frameshift over codons 428 and 429 followed by a stop codon in the new frame. Two temperature-sensitive mutations are available in dnaX. The 2016(Ts) mutation altered both tau and gamma by changing codon 118 from glycine to aspartate; the 36(Ts) mutation affected the activity only of tau because it altered codon 601 (from glutamate to lysine). Evidence which indicates that, of these two proteins, only the longer tau is essential includes the following. (i) The 36(Ts) mutation is a temperature-sensitive lethal allele, and overproduction of wild-type gamma cannot restore its growth. (ii) An allele which produced tau only could be substituted for the wild-type chromosomal gene, but a gamma-only allele could not substitute for the wild-type dnaX in the haploid state. Thus, the shorter subunit gamma is not essential, suggesting that tau can be substitute for the usual function(s) of gamma. Consistent with these results, we found that a functional polymerase was assembled from nine pure subunits in the absence of the gamma subunit. However, the possibility that, in cells growing without gamma, proteolysis of tau to form a gamma-like product in amounts below the Western blot (immunoblot) sensitivity level cannot be excluded. 相似文献
4.
We have constructed a plasmid-borne artificial operon that expresses the six subunits of the DnaX complex of Escherichia coli DNA polymerase III holoenzyme: tau, gamma, delta, delta', chi and psi. Induction of this operon followed by assembly in vivo produced two taugamma mixed DnaX complexes with stoichiometries of tau(1)gamma(2)deltadelta'chipsi and tau(2)gamma(1)deltadelta'chipsi rather than the expected gamma(2)tau(2)deltadelta'chipsi. We observed the same heterogeneity when taugamma mixed DnaX complexes were reconstituted in vitro. Re-examination of homomeric DnaX tau and gamma complexes assembled either in vitro or in vivo also revealed a stoichiometry of DnaX(3)deltadelta'chipsi. Equilibrium sedimentation analysis showed that free DnaX is a tetramer in equilibrium with a free monomer. An assembly mechanism, in which the association of heterologous subunits with a homomeric complex alters the stoichiometry of the homomeric assembly, is without precedent. The significance of our findings to the architecture of the holoenzyme and the clamp-assembly apparatus of all other organisms is discussed. 相似文献
5.
ATP interactions of the tau and gamma subunits of DNA polymerase III holoenzyme of Escherichia coli 总被引:13,自引:0,他引:13
The tau and gamma subunits of the DNA polymerase III holoenzyme of Escherichia coli were each isolated in large quantities as oligomers from overproducing cells in which their genes (dnaZ and X) were under the control of a T7 phage promoter. The 52-kDa gamma subunit (encoded by the dnaZ sequence) contains three-forths of the N-terminal residues of the 71-kDa tau subunit (encoded by the dnaX sequence). Both gamma and tau share a binding site for ATP (or dATP). A DNA-dependent ATPase activity (Lee, S.H., and Walker, J.R. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 2713-2717) exhibited only by the tau subunit, presumably requires a DNA-binding site in the C-terminal domain lacking in the gamma subunit. Among ATPases dependent on single-stranded DNA, the tau activity is remarkable in the failure of homopolymers (e.g. poly(dA) or poly(dT)) to replace natural DNAs. The presumed need for certain secondary structures may reflect a feature of template binding in the crucial contribution that tau makes to the high processivity of polymerase III holoenzyme. Limited tryptic digestion of tau generates a fragment that resembles gamma in: (i) size, (ii) binding of ATP without ATPase activity, and (iii) a level of complementing holoenzyme activity in extracts of dnaZ-mutant cells that is higher than that of tau. 相似文献
6.
Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins. 总被引:6,自引:0,他引:6
C A Bonner P T Stukenberg M Rajagopalan R Eritja M O'Donnell K McEntee H Echols M F Goodman 《The Journal of biological chemistry》1992,267(16):11431-11438
An interesting property of the Escherichia coli DNA polymerase II is the stimulation in DNA synthesis mediated by the DNA polymerase III accessory proteins beta,gamma complex. In this paper we have studied the basis for the stimulation in pol II activity and have concluded that these accessory proteins stimulate pol II activity by increasing the processivity of the enzyme between 150- and 600-fold. As is the case with pol III, processive synthesis by pol II requires both beta,gamma complex and SSB protein. Whereas the intrinsic velocity of synthesis by pol II is 20-30 nucleotides per s with or without the accessory proteins, the processivity of pol II is increased from approximately five nucleotides to greater than 1600 nucleotides incorporated per template binding event. The effect of the accessory proteins on the rate of replication is far greater on pol III than on pol II; pol III holoenzyme is able to complete replication of circular single-stranded M13 DNA in less than 20 s, whereas pol II in the presence of the gamma complex and beta requires approximately 5 min. We have investigated the effect of beta,gamma complex proteins on bypass of a site-specific abasic lesion by E. coli DNA polymerases I, II, and III. All three polymerases are extremely inefficient at bypass of the abasic lesion. We find limited bypass by pol I with no change upon addition of accessory proteins. pol II also shows limited bypass of the abasic site, dependent on the presence of beta,gamma complex and SSB. pol III shows no significant bypass of the abasic site with or without beta,gamma complex. 相似文献
7.
Yao N Leu FP Anjelkovic J Turner J O'Donnell M 《The Journal of biological chemistry》2000,275(15):11440-11450
The Escherichia coli chromosomal replicase, DNA polymerase III holoenzyme, is highly processive during DNA synthesis. Underlying high processivity is a ring-shaped protein, the beta clamp, that encircles DNA and slides along it, thereby tethering the enzyme to the template. The beta clamp is assembled onto DNA by the multiprotein gamma complex clamp loader that opens and closes the beta ring around DNA in an ATP-dependent manner. This study examines the DNA structure required for clamp loading action. We found that the gamma complex assembles beta onto supercoiled DNA (replicative form I), but only at very low ionic strength, where regions of unwound DNA may exist in the duplex. Consistent with this, the gamma complex does not assemble beta onto relaxed closed circular DNA even at low ionic strength. Hence, a 3'-end is not required for clamp loading, but a single-stranded DNA (ssDNA)/double-stranded DNA (dsDNA) junction can be utilized as a substrate, a result confirmed using synthetic oligonucleotides that form forked ssDNA/dsDNA junctions on M13 ssDNA. On a flush primed template, the gamma complex exhibits polarity; it acts specifically at the 3'-ssDNA/dsDNA junction to assemble beta onto the DNA. The gamma complex can assemble beta onto a primed site as short as 10 nucleotides, corresponding to the width of the beta ring. However, a protein block placed closer than 14 base pairs (bp) upstream from the primer 3' terminus prevents the clamp loading reaction, indicating that the gamma complex and its associated beta clamp interact with approximately 14-16 bp at a ssDNA/dsDNA junction during the clamp loading operation. A protein block positioned closer than 20-22 bp from the 3' terminus prevents use of the clamp by the polymerase in chain elongation, indicating that the polymerase has an even greater spatial requirement than the gamma complex on the duplex portion of the primed site for function with beta. Interestingly, DNA secondary structure elements placed near the 3' terminus impose similar steric limits on the gamma complex and polymerase action with beta. The possible biological significance of these structural constraints is discussed. 相似文献
8.
The tau and gamma proteins of the DNA polymerase III holoenzyme DnaX complex are products of the dnaX gene with gamma being a truncated version of tau arising from ribosomal frameshifting. tau is comprised of five structural domains, the first three of which are shared by gamma (Gao, D., and McHenry, C. (2001) J. Biol. Chem. 276, 4433-4453). In the absence of the other holoenzyme subunits, DnaX exists as a tetramer. Association of delta, delta', chi, and psi with domain III of DnaX(4) results in a DnaX complex with a stoichiometry of DnaX(3)deltadelta'chipsi. To identify which domain facilitates DnaX self-association, we examined the properties of purified biotin-tagged DnaX fusion proteins containing domains I-II or III-V. Unlike domain I-II, treatment of domain III-V, gamma, and tau with the chemical cross-linking reagent BS3 resulted in the appearance of high molecular weight intramolecular cross-linked protein. Gel filtration of domains I-II and III-V demonstrated that domain I-II was monomeric, and domain III-V was an oligomer. Biotin-tagged domain III-V, and not domain I-II, was able to form a mixed DnaX complex by recruiting tau, delta, delta', chi, and psi onto streptavidin-agarose beads. Thus, domain III not only contains the delta, delta', chi, and psi binding interface, but also the region that enables DnaX to oligomerize. 相似文献
9.
James M Bullard Arthur E Pritchard Min-Sun Song Bradley P Glover Anna Wieczorek Joe Chen Nebojsa Janjic Charles S McHenry 《The Journal of biological chemistry》2002,277(15):13246-13256
Using psi-BLAST, we have developed a method for identifying the poorly conserved delta subunit of the DNA polymerase III holoenzyme from all sequenced bacteria. This approach, starting with Escherichia coli delta, leads not only to the identification of delta but also to the DnaX and delta' subunits of the DnaX complex and other AAA(+)-class ATPases. This suggests that, although not an ATPase, delta is related structurally to the other subunits of the DnaX complex that loads the beta sliding clamp processivity factor onto DNA. To test this prediction, we aligned delta sequences with those of delta' and, using the start of delta' Domain III established from its x-ray crystal structure, predicted the juncture between Domains II and III of delta. This putative delta Domain III could be expressed to high levels, consistent with the prediction that it folds independently. delta Domain III, like Domain III of DnaX and delta', assembles by itself into a complex with the other DnaX complex components. Cross-linking studies indicated a contact of delta with the DnaX subunits. These observations are consistent with a model where two tau subunits and one each of the gamma, delta', and delta subunits mutually interact to form a pentameric functional core for the DnaX complex. 相似文献
10.
The DnaX complex subassembly of the DNA polymerase III holoenzyme is comprised of the DnaX proteins tau and gamma and the auxiliary subunits delta, delta', chi, and psi, which together load the beta processivity factor onto primed DNA in an ATP-dependent reaction. delta' and psi bind directly to DnaX whereas delta and chi bind to delta' and psi, respectively (Onrust, R., Finkelstein, J., Naktinis, V., Turner, J., Fang, L., and O'Donnell, M. (1995) J. Biol. Chem. 270, 13348-13357). Until now, it has been unclear which DnaX protein, tau or gamma, in holoenzyme binds the auxiliary subunits delta, delta', chi,and psi. Treatment of purified holoenzyme with the homobifunctional cross-linker bis(sulfosuccinimidyl)suberate produces covalently cross-linked gamma-delta' and gamma-psi complexes identified by Western blot analysis. Immunodetection of cross-linked species with anti-delta' and anti-psi antibodies revealed that no tau-delta' or tau-psi cross-links had formed, suggesting that the delta' and psi subunits reside only on gamma within holoenzyme. 相似文献
11.
Relation of the Escherichia coli dnaX gene to its two products--the tau and gamma subunits of DNA polymerase III holoenzyme. 总被引:11,自引:4,他引:11 下载免费PDF全文
The Escherichia coli DNA polymerase III holoenzyme 71.1 kDa tau subunit is a 643 amino acid protein encoded by the dnaX gene. This gene also encodes the holoenzyme 56.5 kDa gamma subunit. The tau factor (as a tau'-LacZ' fusion protein) has been isolated and shown to be cleaved in vitro to form gamma and a 135 kda C-terminal cleavage product. The tau'-LacZ' fusion protein, gamma, and the C-terminal cleavage product have been isolated. N-terminal sequencing has demonstrated that tau and gamma share the same N-terminal sequences and that tau is proteolytically cleaved in vitro between residues 498 and 499 to form gamma. In addition, residues 420-440 were shown to be present in both tau and gamma by use of antibody specific for a synthetic peptide corresponding to that sequence. Some mechanism functions in vivo to ensure that tau and gamma are synthesized in a ratio of about one-to-one, as shown by radioimmune precipitation of tau and gamma from cellular extracts. 相似文献
12.
Total reconstitution of DNA polymerase III holoenzyme reveals dual accessory protein clamps 总被引:16,自引:0,他引:16
DNA polymerase III holoenzyme (holoenzyme) is the 10-subunit replicase of the Escherichia coli chromosome. In this report, pure preparations of delta, delta', and a gamma chi psi complex are resolved from the five protein gamma complex subassembly. Using these subunits and other holoenzyme subunits isolated from overproducing plasmid strains of E. coli, the rapid and highly processive holoenzyme has been reconstituted from only five pure single subunits: alpha, epsilon, gamma, delta, and beta. The preceding report showed that of the three subunits in the core polymerase, only a complex of alpha (DNA polymerase) and epsilon (3'-5' exonuclease) are required to assemble a processive holoenzyme on a template containing a preinitiation complex (Studwell, P.S., and O'Donnell, M. (1990) J. Biol. Chem. 265, 1171-1178). This report shows that of the five proteins in the gamma complex only a heterodimer of gamma and delta is required with the beta subunit to form the ATP-activated preinitiation complex with a primed template. Surprisingly, the delta' subunit does not form an active complex with gamma but forms a fully active heterodimer complex with the tau subunit (as does delta). Hence, the tau delta' and gamma delta heterodimers are fully active in the preinitiation complex reaction with beta and primed DNA. Holoenzymes reconstituted using the alpha epsilon complex, beta subunit, and either gamma delta or tau delta' are fully processive in DNA synthesis, and upon completing the template they rapidly cycle to a new primed template endowed with a preinitiation complex clamp. Since the holoenzyme molecule contains all of these accessory subunits (gamma, delta, tau, delta', and beta) in all likelihood it has the capacity to form two preinitiation complex clamps simultaneously at two primer termini. Two primer binding components within one holoenzyme may mediate its rapid cycling to multiple primers on the lagging strand and also provides functional evidence for the hypothesis of holoenzyme as a dimeric polymerase capable of simultaneous replication of both leading and lagging strands of a replication fork. 相似文献
13.
DNA polymerase III holoenzyme of Escherichia coli. I. Purification and distinctive functions of subunits tau and gamma, the dnaZX gene products 总被引:5,自引:0,他引:5
Escherichia coli dnaZX, the gene which when mutant blocks DNA chain elongation, was cloned into a lambda PL promoter-mediated expression vector. In cells carrying this plasmid, the activity that complements a mutant dnaZ extract in replicating a primed single-stranded DNA circle was increased about 20-fold. Two polypeptides of 71 and 52 kDa were overproduced. Upon fractionation, two complementing activities were purified to homogeneity and proved to be the 71- and 52-kDa polypeptides. Immunoassays revealed their respective identities with the tau and gamma subunits of DNA polymerase III holoenzyme. The N-terminal amino acid sequences of the first 12 residues were identical in both subunits, as were their molar specific activities in dnaZ complementation. Thus, the tau subunit complements the defect in the mutant holoenzyme from the dnaZts strain as efficiently as does the gamma subunit. Inasmuch as the 71-kDa subunit (tau) can also overcome the enzymatic defect in a dnaX mutant strain, this polypeptide has dual replication functions, only one of which can be performed by the gamma subunit. Availability of pure tau and gamma subunits for study has provided the basis for proposing an asymmetry in the structure and function of a dimeric DNA polymerase III holoenzyme. 相似文献
14.
DNA and RNA-DNA annealing activity associated with the tau subunit of the Escherichia coli DNA polymerase III holoenzyme. 下载免费PDF全文
The DNA polymerase III (pol III)holoenzyme is the 10 subunit replicase of Escherichia coli. The 71 kDa tau subunit, encoded by dnaX, dimerizes the core polymerase (alpha epsilon theta) to form pol III'[(alpha epsilon theta)2 tau 2]. tau is also a single-stranded DNA-dependent ATPase and can substitute for the gamma subunit during initiation complex formation. We show here that tau also possesses a DNA-DNA and RNA-DNA annealing activity that is stimulated by Mg2+, but neither requires ATP nor is inhibited by non-hydrolyzable ATP analogs. This suggests the tau may act to stabilize the primer-template interaction during DNA replication. 相似文献
15.
DNA polymerase III holoenzyme of Escherichia coli. II. A novel complex including the gamma subunit essential for processive synthesis 总被引:10,自引:0,他引:10
Processive DNA synthesis, a property of DNA polymerase III holoenzyme of Escherichia coli, was not achieved by combining the pol III core (alpha, epsilon, and theta subunits) and the beta and gamma subunits. An activity that restored processivity to these subunits was found in crude extracts and was overproduced 4-fold in cells with plasmids amplifying the tau and gamma subunits. Purified to homogeneity, the activity, assayed by reconstitution of processivity, was represented by five polypeptides which were copurified. Judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, these correspond to the known subunits gamma (52 kDa) and delta (35 kDa) and to three new polypeptides: delta' (33 kDa), chi (15 kDa), and psi (12 kDa). The five polypeptides form a tight complex with a native molecular weight of about 200 kDa and a subunit stoichiometry of two gamma subunits to one each of the others. Processive DNA synthesis, now achieved with only three components (pol III core, beta, and the auxiliary complex), provides the opportunity to assess the functions of each and the contribution that the remaining auxiliary tau subunit makes to reconstitute a holoenzyme. 相似文献
16.
M O''''Donnell J Kuriyan X P Kong P T Stukenberg R Onrust 《Molecular biology of the cell》1992,3(9):953-957
17.
The fidelity of base selection by the polymerase subunit of DNA polymerase III holoenzyme. 总被引:4,自引:0,他引:4 下载免费PDF全文
In common with other DNA polymerases, DNA polymerase III holoenzyme of E. coli selects the biologically correct base pair with remarkable accuracy. DNA polymerase III is particularly useful for mechanistic studies because the polymerase and editing activities reside on separate subunits. To investigate the biochemical mechanism for base insertion fidelity, we have used a gel electrophoresis assay to measure kinetic parameters for the incorporation of correct and incorrect nucleotides by the polymerase (alpha) subunit of DNA polymerase III. As judged by this assay, base selection contributes a factor of roughly 10(4)-10(5) to the overall fidelity of genome duplication. The accuracy of base selection is determined mainly by the differential KM of the enzyme for correct vs. incorrect deoxynucleoside triphosphate. The misinsertion of G opposite template A is relatively efficient, comparable to that found for G opposite T. Based on a variety of other work, the G:A pair may require a special correction mechanism, possibly because of a syn-anti pairing approximating Watson-Crick geometry. We suggest that precise recognition of the equivalent geometry of the Watson-Crick base pairs may be the most critical feature for base selection. 相似文献
18.
DNA polymerase III holoenzyme. Components, structure, and mechanism of a true replicative complex 总被引:14,自引:0,他引:14
C S McHenry 《The Journal of biological chemistry》1991,266(29):19127-19130
19.
ATP activation of DNA polymerase III holoenzyme from Escherichia coli. II. Initiation complex: stoichiometry and reactivity 总被引:3,自引:0,他引:3
DNA polymerase III holoenzyme (holenzyme) has an ATPase activity elicited only by a primed DNA template. Reaction of preformed ATP.holoenzyme complex with a primed template results in hydrolysis of the ATP bound to the holoenzyme, release of ADP and Pi, and formation of an initiation complex between holoenzyme and the primed template. Approximately two ATP molecules are hydrolyzed for each initiation complex formed, a value in keeping with the number bound in the ATP.holoenzyme complex. The possibility that the latter and the initiation complex contain two holoenzyme molecules is supported by the presence of two beta monomers in the initiation complex. Holoenzyme action in the absence of ATP resembles that of pol III (the holoenzyme core) or DNA polymerase III (holoenzyme lacking the beta subunit), with or without ATP, in sensitivity to salt and in processivity of elongation. The initiation complex formed by ATP-activated holoenzyme resists a level of KCl (150 mM) that completely inhibits nonactivated holoenzyme and the incomplete forms of the holoenzyme, and displays a processivity at least 20 times greater. Upon completing replication of available template, holoenzyme can dissociate and form an initiation complex with another primed template, provided ATP is available to reactivate the holoenzyme. By inference, no essential subunits are lost in the cycle of initiation, elongation and dissociation. 相似文献
20.
DNA polymerase III holoenzyme of Escherichia coli: Components and function of a true replicative complex 总被引:9,自引:0,他引:9
Charles S. McHenry 《Molecular and cellular biochemistry》1985,66(1):71-85
Summary The DNA polymerase III holoenzyme is a complex, multisubunit enzyme that is responsible for the synthesis of most of the Escherichia coli chromosome. Through studies of the structure, function and regulation of this enzyme over the past decade, considerable progress has been made in the understanding of the features of a true replicative complex. The holoenzyme contains at least seven different subunits. Three of these, , and , compose the catalytic core. Apparently is the catalytic subunit and the product of the dnaE gene. Epsilon, encoded by dnaQ (mutD), is responsible for the proofreading 35 activity of the polymerase. The function of the B subunit remains to be established. The auxiliary subunits, , and , encoded by dnaN, dnaZ and dnaX, respectively, are required for the functioning of the polymerase on natural chromosomes. All of the proteins participate in increasing the processivity of the polymerase and in the ATP-dependent formation of an initiation complex. Tau causes the polymerase to dimerize, perhaps forming a structure that can coordinate leading and lagging strand synthesis at the replication fork. This dimeric complex may be asymmetric with properties consistent with the distinct requirements for leading and lagging strand synthesis. 相似文献