首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capillary endothelial cells can be switched between growth and apoptosis by modulating their shape with the use of micropatterned adhesive islands. The present study was carried out to examine whether cytoskeletal filaments contribute to this response. Disruption of microfilaments or microtubules with the use of cytochalasin D or nocodazole, respectively, led to levels of apoptosis in capillary cells equivalent to that previously demonstrated by inducing cell rounding with the use of micropatterned culture surfaces containing small (<20 microm in diameter) circular adhesive islands coated with fibronectin. Simultaneous disruption of microfilaments and microtubules led to more pronounced cell rounding and to enhanced levels of apoptosis approaching that observed during anoikis in fully detached (suspended) cells, indicating that these two cytoskeletal filament systems can cooperate to promote cell survival. Western blot analysis revealed that the protein kinase Akt, which is known to be critical for control of cell survival became dephosphorylated during cell rounding induced by disruption of the cytoskeleton, and that this was accompanied by a decrease in bcl-2 expression as well as a subsequent increase in caspase activation. This ability of the cytoskeleton to control capillary endothelial cell survival may be important for understanding the relationship among extracellular matrix turnover, cell shape changes, and apoptosis during angiogenesis inhibition.  相似文献   

2.
We have used embryonic cells grown in vitro to study the roles of microtubules and microfilaments in the development and maintenance of the polarized shape of retinal photoreceptors. After several days in culture, isolated cone photoreceptors displayed a highly elongated, compartmentalized morphology similar to that of photoreceptors in vivo. When treated with the microtubule-depolymerizing agent nocodazole, these elongated photoreceptors became progressively shorter, eventually losing their compartmentalized structure and becoming round. Conversely, treatment with the actin-depolymerizing agent cytochalasin D caused the elongated photoreceptors to lengthen even further. Computer-assisted, quantitative analysis showed that responses of individual cells to both nocodazole and Cytochalasin D were concentration-dependent, graded, and reversible. Immunocytochemical studies suggested the presence of longitudinally oriented actin filaments and microtubules in these photoreceptors, prominent in the region that undergoes the most pronounced length changes in response to cytoskeletal inhibitors. Prior to becoming elongated, photoreceptor precursors could be accurately identified in early retinal cultures. These round cells undergo a stereotyped sequence of morphogenetic transformations during in vitro development, including elongation and compartmentalization of the cell body as well as extension of a single neurite. Treatment with either cytochalasin D or nocodazole completely blocked morphogenesis. In addition, cytochalasin D caused the development of an abnormal, elongated cell process, which formed by a microtubule-dependent mechanism. These nocodazole and cytochalasin D effects also were reversible. Taken together, these data indicate that the complex developmental transformations leading to photoreceptor polarization occur in the absence of intercellular contacts, and are predominantly controlled by intracellular cytoskeletal forces. They suggest the existence of continuously active, oppositely directed, microtubule- and actin-dependent forces, the balance of which is a determining factor in the development as well as the maintenance of the elongated, compartmentalized organization of photoreceptor cells.  相似文献   

3.
4.
With regard to the fact that, in anchorage-dependent lens epithelial cells, DNA synthesis can be switched on and off by cell flattening and cell rounding, respectively, the state of the microfilaments has been followed by labelling actin with FL-phalloidin during cell-shape alterations. Cell flattening proved to be accompanied by both a structural organization of actin filaments into stress fibres and an enlargement of the area of the cell nucleus. Cell rounding, on the other hand, caused the microfilament bundles to disappear and the area of the nucleus to become smaller. From the time course of the inhibition of DNA synthesis by cytochalasin B, it was inferred that functionally intact microfilaments are required for the entrance of the cells into DNA synthesis but not for the maintenance of ongoing DNA synthesis. The assumption has been made that the tension, generated by microfilaments during cell spreading, will affect the state of the plasma membrane as well as the shape and the structure of the nucleus, which in turn seems to be preparatory for cells to enter the cycle.  相似文献   

5.
With regard to the fact that, in anchorage-dependent lens epithelial cells, DNA synthesis can be switched on and off by cell flattening and cell rounding, respectively, the state of the microfilaments has been followed by labelling actin with FL-phalloidin during cell-shape alterations. Cell flattening proved to be accompanied by both a structural organization of actin filaments into stress fibres and an enlargement of the area of the cell nucleus. Cell rounding, on the other hand, caused the microfilament bundles to disappear and the area of the nucleus to become smaller. From the time course of the inhibition of DNA synthesis by cytochalasin B, it was inferred that functionally intact microfilaments are required for the entrance of the cells into DNA synthesis but not for the maintenance of ongoing DNA synthesis. the assumption has been made that the tension, generated by microfilaments during cell spreading, will affect the state of the plasma membrane as well as the shape and the structure of the nucleus, which in turn seems to be preparatory for cells to enter the cycle.  相似文献   

6.
Shape-dependent local differentials in cell proliferation are considered to be a major driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclear volume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery.  相似文献   

7.
Changes in cell shape can lead to detachment and cell death, and the disruption in the actin cytoskeletal network, as one marker of cell shape changes, can itself induce apoptosis. In this study, the effects of cytochalasin B on the apoptosis-related proteins, protein kinase B and survivin were investigated. Apoptosis induced by disruption of microfilaments with cytochalasin B was found, although it happened at a low level, to simultaneously occur with G2/M arrest in 50% of the cytochalasin B-treated cells. During apoptosis, PKB phosphorylation and survivin expression was decreased by cytochalasin B, and the decline in survivin expression were preceded by PKB dephosphorylation, which implicated that survivin may be a target of PKB protein. The G2/M arrest of cytochalasin B-treated cells may be the direct function of cytochalasin B to microfilaments or the subsequent inhibition of survivin expression, or both. These results suggest that PKB/survivin signaling pathway may be responsible for the apoptosis induced by the disruption of actin cytoskeleton.  相似文献   

8.
The extracellular matrix (ECM) plays an essential role in the regulation of cell proliferation during angiogenesis. Cell adhesion to ECM is mediated by binding of cell surface integrin receptors, which both activate intracellular signaling cascades and mediate tension-dependent changes in cell shape and cytoskeletal structure. Although the growth control field has focused on early integrin and growth factor signaling events, recent studies suggest that cell shape may play an equally critical role in control of cell cycle progression. Studies were carried out to determine when cell shape exerts its regulatory effects during the cell cycle and to analyze the molecular basis for shape-dependent growth control. The shape of human capillary endothelial cells was controlled by culturing cells on microfabricated substrates containing ECM-coated adhesive islands with defined shape and size on the micrometer scale or on plastic dishes coated with defined ECM molecular coating densities. Cells that were prevented from spreading in medium containing soluble growth factors exhibited normal activation of the mitogen-activated kinase (erk1/erk2) growth signaling pathway. However, in contrast to spread cells, these cells failed to progress through G1 and enter S phase. This shape-dependent block in cell cycle progression correlated with a failure to increase cyclin D1 protein levels, down-regulate the cell cycle inhibitor p27Kip1, and phosphorylate the retinoblastoma protein in late G1. A similar block in cell cycle progression was induced before this same shape-sensitive restriction point by disrupting the actin network using cytochalasin or by inhibiting cytoskeletal tension generation using an inhibitor of actomyosin interactions. In contrast, neither modifications of cell shape, cytoskeletal structure, nor mechanical tension had any effect on S phase entry when added at later times. These findings demonstrate that although early growth factor and integrin signaling events are required for growth, they alone are not sufficient. Subsequent cell cycle progression and, hence, cell proliferation are controlled by tension-dependent changes in cell shape and cytoskeletal structure that act by subjugating the molecular machinery that regulates the G1/S transition.  相似文献   

9.
During development Caenorhabditis elegans changes from an embryo that is relatively spherical in shape to a long thin worm. This paper provides evidence that the elongation of the body is caused by the outermost layer of embryonic cells, the hypodermis, squeezing the embryo circumferentially. The hypodermal cells surround the embryo and are linked together by cellular junctions. Numerous circumferentially oriented bundles of microfilaments are present at the outer surfaces of the hypodermal cells as the embryo elongates. Elongation is associated with an apparent pressure on the internal cells of the embryo, and cytochalasin D reversibly inhibits both elongation and the increase in pressure. Circumferentially oriented microtubules also are associated with the outer membranes of the hypodermal cells during elongation. Experiments with the microtubule inhibitors colcemid, griseofulvin, and nocodazole suggest that the microtubules function to distribute across the membrane stresses resulting from microfilament contraction, such that the embryo decreases in circumference uniformly during elongation. While the cytoskeletal organization of the hypodermal cells appears to determine the shape of the embryo during elongation, an extracellular cuticle appears to maintain the body shape after elongation.  相似文献   

10.
Steady-state current-voltage relationships (SSCVRs) of the plasma membrane of human T-lymphocytes were studied at the physiological temperature of 37°C by using the whole-cell patch-clamp technique. SSCVRs displayed a characteristic N-like shape with a negative resistance region (NRR) in a voltage range of −45 to −35 mV. The majority of cells assayed revealed SSCVR patterns crossing the V-axis at three points (in mV): V1 = −55 to −45, V2 = −40 to −35, V3 = −30 to −10. SSCVRs of T-cells activated by phytohaemagglutinin (48–96 h) also displayed NRR, but crossed the V-axis at one point only (V1 = −55 to −60 mV). It implies the possibility of two stable levels of membrane potential (V1 and V3) for the resting T-cells, but only one (V1) for activated T-cells. These data thus account for the triggering property of T-cell membrane potential previously reported. The NRR can be explained on the basis of the Hodgkin-Huxley type n4j model of K+ channel kinetics. According to the model the possibility for a membrane to have on or two stable levels of membrane potential depends on the ratio of selective K+ conductance to non-selective leaky conductance (Gk/Gleak). The steady-state level of K+ conductance in resting T-lymphocytes proved to be sensitive to Ca2+. Buffering Ca2+ ions from either external or internal solution resulted in an appreciable increase in K+ conductance. The possibility for membrane potential have two stable levels of membrane potential in connection with the Ca2+ dependence of K+ conductance was supposed to be important for Ca2+-signalling during T-cell activation.  相似文献   

11.
Szymanski DB  Marks MD  Wick SM 《The Plant cell》1999,11(12):2331-2347
Actin microfilaments form a three-dimensional cytoskeletal network throughout the cell and constitute an essential throughway for organelle and vesicle transport. Development of Arabidopsis trichomes, unicellular structures derived from the epidermis, is being used as a genetic system in which to study actin-dependent growth in plant cells. The present study indicates that filamentous actin (F-actin) plays an important role during Arabidopsis trichome morphogenesis. For example, immunolocalization of actin filaments during trichome morphogenesis identified rearrangements of the cytoskeletal structure during the development of the mature cell. Moreover, pharmacological experiments indicate that there are distinct requirements for actin- and microtubule-dependent function during trichome morphogenesis. The F-actin-disrupting drug cytochalasin D does not affect the establishment of polarity during trichome development; however, maintenance and coordination of the normal pattern of cell growth are very sensitive to this drug. In contrast, oryzalin, an agent that depolymerizes microtubules, severely inhibits cell polarization. Furthermore, cytochalasin D treatment phenocopies a known class of mutations that cause distorted trichome morphology. Results of an analysis of cell shape and microfilament structure in wild-type, mutant, and drug-treated trichomes are consistent with a role for actin in the maintenance and coordination of an established growth pattern.  相似文献   

12.
The quartz crystal microbalance (QCM) was used to create a piezoelectric biosensor utilizing living endothelial cells (ECs) as the biological signal transduction element. ECs adhere to the hydrophilically treated gold QCM surface under growth media containing serum. At 24 h following cell addition, calibration curves were constructed relating the steady state Δf and ΔR shift values observed to the numbers of electronically counted cells requiring trypsinization to be removed from the surface. We then utilized this EC QCM biosensor for the detection of the effect of [nocodazole] on the steady state Δf and ΔR shift values. Nocodazole, a known microtubule binding drug, alters the cytoskeletal properties of living cells. At the doses used in these studies (0.11–15 μM), nocodazole, in a dose dependent fashion, causes the depolymerization of microtubules in living cells. This leads a monolayer of well spread ECs to gradually occupy a smaller area, lose cell to cell contact, exhibit actin stress fibers at the cell periphery and acquire a rounded cell shape. We observed the negative Δf shift values and the positive ΔR shift values to increase significantly in magnitude over a 4-h incubation period following nocodazole addition, in a dose dependent fashion, with a transition midpoint of 900 nM. Fluorescence microscopy of the ECs, fixed on the gold QCM surface and stained for actin, demonstrated that the shape and cytoskeleton of ECs were affected by as little as 330 nM nocodazole. These results indicate that the EC QCM biosensor can be used for the study of EC attachment and to detect EC cytoskeletal alterations. We suggest the potential of this cellular biosensor for the real time identification or screening of all classes of biologically active drugs or biological macromolecules that affect cellular attachment, regardless of their molecular mechanism of action.  相似文献   

13.
Abstract: Tetanus toxin (TeTX) has been demonstrated to inhibit transmitter release by two mechanisms: Zn2+-dependent proteolytic cleavage of synaptobrevin and activation of a neuronal transglutaminase. Herein, attenuation of TeTX-induced blockade of noradrenaline release from synaptosomes was achieved by prior disassembly of microfilaments with cytochalasin D or breakdown of microtubules by colchicine or nocodazole. These drugs and monodansylcadaverine, a transglutaminase inhibitor, displayed some additivity in antagonizing the inhibitory effect of the toxin on synaptosomal transmitter release; as none of them reduced synaptobrevin cleavage, all appear to work independently of the toxin's proteolytic action. Prior stabilization of microtubules with taxol prevented the antagonism seen with colchicine, highlighting that this cytoskeletal component is the locus of the effect of colchicine. Replacement of Ca2+ with Ba2+ caused disappearance of the fraction of evoked secretion whose inhibition by TeTX is reliant on polymerized actin but did not alter the blockade by toxin that is dependent on microtubules. Two temporally distinguished phases of release were reduced by TeTX, and colchicine lessened its effects on both. Blockade of the fast phase (≤10 s) of secretion by TeTX was unaffected by cytochalasin D, but it clearly antagonized the toxin-induced inhibition of the slow (10-s to ≥5-min) component; it is notable that such antagonism was accentuated during a second bout of evoked release. These findings are consistent with sustained release requiring dissociation of synaptic vesicles from the microfilaments, a step that seems to be perturbed by TeTX.  相似文献   

14.
Effect of hydrocortisone on cell morphology in C6 cells   总被引:1,自引:0,他引:1  
Hydrocortisone has been found to induce cell spreading in rat glial C6 cells by 24 hours after its addition. This spreading phenomenon is correlated with an increase in the fraction of the peripheral cytoplasm occupied by microfilaments. Cytochalasin B causes disorganization of microfilaments in the peripheral cytoplasm of the cells. Additionally, it also prevents cell spreading in response to hormonal stimulation. High levels of calcium prevent recovery of normal microfilament organization and cell spreading following removal of cytochalasin B, but have no effect on normal microfilament organization alone. Additionally both the hydrocortisone induced spreading of C6 cells and increases in peripheral microfilaments are shown to be dependent on RNA ans protein synthesis. The levels of protein co-electrophoresing with actin are not effected by hydrocortisone.  相似文献   

15.
Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occurred at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin beta1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin beta1 and fibronectin in a MEK-ERK-dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.  相似文献   

16.
C J Smith  R Sridaran 《Life sciences》1991,48(12):1217-1225
Numerous studies have examined the effects of cytoskeletal disruption on steroidogenesis; while some report an inhibition, other studies show a stimulation of steroid hormone production. In the present study, the possibility of a biphasic effect of cytoskeletal inhibitors on steroidogenesis was examined. Luteal tissue from day 12 pregnant rats was incubated for either 3.5 h (short-term) or 12.5 h (long-term) with cytochalasin D or colchicine at 10(-4) M in Medium 199 (medium). Controls were incubated in medium alone. After the incubation, the tissues were separated from the medium, and either processed for electron microscopy, or weighed and snap-frozen for subsequent homogenization and steroid hormone measurements. Progesterone, testosterone, and 17 beta-estradiol levels in the medium were measured by radioimmunoassay. After the short-term incubation, progesterone release decreased with cytochalasin D treatment, while cells became more rounded in shape with a loss of microfilaments. Upon long-term incubation, progesterone release increased and cell contact lessened. Colchicine had no effect at either incubation time, and estradiol and testosterone production remained unchanged throughout the experiments. These results demonstrate that cytochalasin D has a biphasic effect on luteal progesterone release in the rat and provides an explanation for the dichotomy of results thus far reported. In addition, the effects of cytochalasin D on rat luteal progesterone production appear to be the result of changes in cell shape or cell-to-cell contact.  相似文献   

17.
Both microtubules and microfilaments have been implicated in the exocytotic and endocytotic transport of coated and smooth surfaced membrane vesicles. We have reexamined this question by using specific pharmacological agents to disrupt these filaments and assess the effect on the movement of acetylcholine receptor (AChR) containing membrane vesicles in embryonic chick myotubes. Myotube cultures treated with nocodazole (0.6 microgram/ml) or colcemid (0.5 microgram/ml) (to disrupt microtubules) show only a 20-25% decrease in the number of cell surface AChRs after 48 h. Addition of chick brain extract (CBE) to cultured myotubes causes a significant increase in the total number of cell surface AChRs (measured by [125I]alpha-bungarotoxin (alpha-BGT) binding), thus providing us with a way to manipulate receptor and transport vesicle populations. Cultures treated with CBE plus nocodazole or colcemid show a 1.7-fold increase in AChR number over drug treatment alone, the same increase seen in cultures treated with CBE alone, although the total number remains about 20-25% less than that seen in control cultures. In cultures treated with cytochalasin D (0.2 microgram/ml) or dihydrocytochalasin B (5.0 micrograms/ml) (to disrupt microfilaments), 35 and 65% decreases in cell surface AChR number were seen after 48 h. However, in cultures treated with CBE and cytochalasin D, the same total number of AChRs was found as in cultures treated with CBE alone. No significant effects were seen with any of these drugs on the receptor incorporation rate (the appearance of new alpha-BGT-binding sites) after 6 h. The half-life for AChRs in control cultures was 23.0 h. In cytochalasin D and dihydrocytochalasin B it was 21.9 and 19.0 h, respectively; with colcemid and nocodazole, it increased to 37.1 and 28.1 h. These results suggest that non-myofibrillar microfilament bundles are not involved in the movement of AChR-containing membrane vesicles; further, the small effects seen with microtubule inhibitors tend to rule out a major role for microtubules in this transport.  相似文献   

18.
Summary The effects of vinblastine, colchicine, lidocaine, and cytochalasin B on tumor cell killing by BCG-activated macrophages were examined. These four drugs were selected for their action on membrane-associated cytoskeletal components, microtubules, and microfilaments. Colchicine and vinblastine, which block microtubular synthesis, inhibit macrophage-mediated tumor-cell cytotoxicity at a concentration of 10–6 M. Cytochalasin B, which disrupts microfilaments, enhances tumor cell lysis and stasis due to activated macrophages at a concentration of 10–7 M. Lidocaine, which may induce the disappearance of both microtubules and microfilaments, has the same inhibiting effect as vinblastine at a concentration of 5×10–7 M. Whereas vinblastine and lidocaine seem to act on the macrophage itself, cytochalasin B exerts its effect predominantly on the tumor cell. These results suggest that microtubules and microfilaments play a role in the destruction of tumor cells by activated macrophages.  相似文献   

19.
Microtubules and microfilaments are major cytoskeletal components and important modulators for chromosomal movement and cellular division in mammalian oocytes. In this study we observed microtubule and microfilament organisation in bovine oocytes by laser scanning confocal microscopy, and determined requirements of their assembly during in vitro maturation. After germinal vesicle breakdown, small microtubular asters were observed near the condensed chromatin. The asters appeared to elongate and encompass condensed chromatin particles. At the metaphase stage, microtubules were observed in the second meiotic spindle at the metaphase stage. The meiotic spindle was a symmetrical, barrel-shaped structure containing anastral broad poles, located peripherally and radially oriented. Treatment with nocodazole did not inhibit germinal vesicle breakdown. However, progression to metaphase failed to occur in oocytes treated with nocodazole. In contrast, microfilaments were observed as a relatively thick uniform area around the cell cortex and overlying chromatin following germinal vesicle breakdown. Treatment with cytochalasin B inhibited microfilament polymerisation but did not prevent either germinal vesicle breakdown or metaphase formation. However, movement of chromatin to the proper position was inhibited in oocytes treated with cytochalasin B. These results suggest that both microtubules and microfilaments are closely associated with reconstruction and proper positioning of chromatin during meiotic maturation in bovine oocytes.  相似文献   

20.
Human MSCs have been studied to define the mechanisms involved in normal bone remodeling and the regulation of osteogenesis. During osteogenic differentiation, MSCs change from their characteristic fibroblast-like phenotype to near spherical shape. In this study, we analyzed the correlation between the organization of cytoskeleton of MSCs, changes in cell morphology, and the expression of specific markers (alkaline phosphatase activity and calcium deposition) of osteogenic differentiation. For osteoblastic differentiation, cells were cultured in a culture medium supplemented with 100 nM dexamethasone, 10 mM beta- glycerophosphate, and 50 microg/ml ascorbic acid. The organization of microfilaments and microtubules was examined by inmunofluorescence using Alexa fluor 594 phalloidin and anti alpha-tubulin monoclonal antibody. Cytochalasin D and nocodazole were used to alter reversibly the cytoskeleton dynamic. A remarkable change in cytoskeleton organization was observed in human MSCs during osteogenic differentiation. Actin cytoskeleton changed from a large number of thin, parallel microfilament bundles extending across the entire cytoplasm in undifferentiated MSCs to a few thick actin filament bundles located at the outermost periphery in differentiated cells. Under osteogenic culture conditions, a reversible reorganization of microfilaments induced by an initial treatment with cytochalasin D but not with nocodazole reduced the expression of differentiation markers, without affecting the final morphology of the cells. The results indicate that changes in the assembly and disassembly kinetics of microfilaments dynamic of actin network formation may be critical in supporting the osteogenic differentiation of human MSCs; also indicated that the organization of microtubules appears to have a regulatory role on the kinetic of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号