首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the notostigmophoran centipedes, two pairs of vesicular glands have evolved. These paired glands are situated in the first and second trunk segment and open via cuticular ducts in the upper part of the particular pleura. The vesicular glands of Scutigera coleoptrata were investigated using light and, for the first time, electron microscopical methods. The glands consist of wide sac‐like cavities that often appear vesicular. The epithelia of both glands are identically structured and consist of numerous glandular units. Each of these units consists of four different cells: a single secretory cell, a small intermediary cell, and one proximal and one distal canal cell. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cells. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the ultrastructure of glandular units of the vesicular glands is comparable to that of the glandular units of other epidermal glands in Chilopoda and Diplopoda, although the glands look completely different in the light microscope. Thus, it is likely that the vesicular glands and epidermal glands share the same ground pattern. With regard to specific differences in the cuticular lining of the intermediary cells, a common origin of epidermal glands in Myriapoda and Hexapoda is not supported. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
The epidermal maxilla II-gland of Scutigera coleoptrata was investigated using light and electron microscopy. The glandular epithelium surrounds a spacious integumental cavity at the base of the maxilla II. The gland is formed as a compound gland organ that is composed of thousands of epidermal gland units. Each of them consists of four different cell types: a secretory cell, an accessory or intermediary cell, and a proximal and distal canal cell. The intermediary and the two canal cells form a conducting canal. Only in the most distal part of the intermediary cell is the canal lined by a cuticle. In the area of the two canal cells, the conducting canal is completely covered by a cuticle. The canal passes through the cuticle and opens into the spacious integumental cavity, which serves as a secretion reservoir. The structural organization of the epidermal maxilla II-gland was compared to that of other compound epidermal gland organs in Chilopoda and Diplopoda. All these glandular organs in Myriapoda share the same ground pattern.  相似文献   

3.
The maxilla I-gland of Scutigera coleoptrata was investigated using light and electron microscopy methods. This is the first ultrastructural investigation of a salivary gland in Chilopoda. The paired gland opens via the hypopharynx into the foregut and extends up to the third trunk segment. The gland is of irregular shape and consists of numerous acini consisting of several gland units. The secretion is released into an arborescent duct system. Each acinus consists of multiple of glandular units. The units are composed of three cell types: secretory cells, a single intermediary cell, and canal cells. The pear-shaped secretory cell is invaginated distally, forming an extracellular reservoir lined with microvilli, into which the secretion is released. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cell. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the structure of the glandular units of the salivary maxilla I-gland is comparable to that of the glandular units of epidermal glands. Thus, it is likely that in Chilopoda salivary glands and epidermal glands share the same ground pattern. It is likely that in compound acinar glands a multiplication of secretory and duct cells has taken place, whereas the number of intermediary cells remains constant. The increase in the number of salivary acini leads to a shifting of the secretory elements away from the epidermis, deep into the head. Comparative investigations of the different head glands provide important characters for the reconstruction of myriapod phylogeny and the relationships of Myriapoda and Hexapoda.  相似文献   

4.
The hemocytes of Scutigera coleoptrata were investigated by light and electron microscopy. Four types of hemocytes were identified: prohemocytes, plasmatocytes, granulocytes, and spherulocytes. Only granulocytes could be distinguished from the three other types by May-Grünwald staining, as this is the only hemocyte type demonstrating an eosinophilic reaction. Shape and size give further indications for distinguishing the cell types. In addition, differentiation is possible on the basis of their ultrastructure. However, only a combination of all three methods (staining and light and electron microscopy) allows clear separation of the cell types. As transitional stages between the cell types occur in S. coleoptrata, it is likely that prohemocytes, plasmatocytes, and granulocytes are ontogenetic stages of a single cell lineage. Special cell components and their possible functions are described. Plasmatocytes exocytose tubular structures that probably play a role in coagulation processes. These tubular structures develop in the grana of plasmatocytes. Also, a special arrangement of microtubules and microfilaments was demonstrated. For the first time interactions between hemocytes and tracheae are documented within the Chilopoda. It is assumed that the hemocytes meet their oxygen requirements directly from the tracheae. Phylogenetic implications of the results are discussed.  相似文献   

5.
Notostigmophora (Scutigeromorpha) exhibit a special tracheal system compared to other Chilopoda. The unpaired spiracles are localized medially on the long tergites and open into a wide atrium from which hundreds of tracheal tubules originate and extend into the pericardial sinus. Previous investigators reported that the tracheal tubules float freely in the hemolymph. However, here we show for the first time that the tracheal tubules are anchored to a part of the pericardial septum. Another novel finding is this part of the pericardial septum is structured as an aggregated gland on the basis of its specialized epithelium being formed by hundreds of oligocellular glands. It remains unclear whether the pericardial septum has a differently structure in areas that lack a connection with tracheal tubules. The tracheal tubules come into direct contact with the canal cells of the glands that presumably secrete mucous substances covering the entire luminal cuticle of the tracheal tubules. Connections between tracheae and glands have not been observed in any other arthropods.  相似文献   

6.
We describe the ultrastructural organization of the anal organs of Craterostigmus tasmanianus, which are located on the ventral side of the bivalvular anal capsule. Each part of the capsule bears four pore fields with several anal pores. The pores lead into a pore canal, which is surrounded by the single-layered epithelium of the anal organs. Each anal organ is composed of four different cell types: transporting cells of the main epithelium, junctional cells, isolated epidermal glands, and the cells forming the pore canal. The transporting cells exhibit infoldings of the outer cell membranes, forming a basal labyrinth and a poorly developed apical complex. The cells are covered by a specialized cuticle with a widened subcuticular layer. Only the cuticle of the main epithelium is covered by a mucous layer, secreted by the epidermal glands. The ultrastructural organization of the anal organ is comparable to the coxal and anal organs of other pleurostigmophoran Chilopoda. It is likely that the coxal and anal organs of the Pleurostigmophora are homologous, due to their identical ultrastructural organization. Differences concerning the location on the trunk of Pleurostigmophora are not sufficient to reject a hypothesis of homology. Anal organs are found not only in Craterostigmomorpha, but also in most adult Geophilomorpha, and in larvae and most adults of Lithobiomorpha. The anal organs of C. tasmanianus are thought to play an important role in the uptake of atmospheric water. J. Morphol.  相似文献   

7.
Myriapods represent an arthropod lineage, that originating from a marine arthropod ancestor most likely conquered land independently from hexapods and crustaceans. Establishing aerial olfaction during a transition from the ocean to land requires molecules to be detected in gas phase instead of in water solution. Considering that the olfactory sense of myriapods has evolved independently from that in hexapods and crustaceans, the question arises if and how myriapods have solved the tasks of odor detection and odor information processing in air. Comparative studies between arthropod taxa that independently have established a terrestrial life style provide a powerful means of investigating the evolution of chemosensory adaptations in this environment and to understand how the arthropod nervous system evolved in response to new environmental and ecological challenges. In general, the neuroethology of myriapods and the architecture of their central nervous systems are insufficiently understood. In a set of experiments with the centipede Scutigera coleoptrata, we analyzed the central olfactory pathway with serial semi-thin sectioning combined with 3-dimensional reconstruction, antennal backfilling with neuronal tracers, and immunofluorescence combined with confocal laser-scanning microscopy. Furthermore, we conducted behavioral experiments to find out if these animals react to airborne stimuli. Our results show that the primary olfactory and mechanosensory centers are well developed in these organisms but that the shape of the olfactory neuropils in S. coleoptrata is strikingly different when compared with those of hexapods and malacostracan crustaceans. Nevertheless, the presence of distinct neuropils for chemosensory and mechanosensory qualities in S. coleoptrata, malacostracan Crustacea, and Hexapoda could indicate a common architectural principle within the Mandibulata. Furthermore, behavioral experiments indicate that S. coleoptrata is able to perceive airborne stimuli, both from live prey and from a chemical extract of the prey. These results are in line with the morphological findings concerning the well-developed olfactory centers in the deutocerebrum of this species.  相似文献   

8.
9.
The organization and ultrastructure of the accessory glands of the cattle tick, Boophilus microplus, are described. The glands consist of two groups of acinar cells situated on either side of Gene's organ. A single acinus consists of from eight to 12 cells and each cell is connected via an individual duct to pores on the dorsal surface of the mouthparts. The position of these pores is such that the secretion of the accessory glands is incorporated into the egg wax during oviposition. Each gland cell has striking quantities of smooth endoplasmic reticulum and numerous Golgi dictyosomes and appears to produce a secretion that is lipoidal in nature. Each cell secretes into its own individual lumen and is connected to a cuticular pore by a duct cell.  相似文献   

10.
The lateral lens eye of adult Craterostigmus tasmanianus Pocock, 1902 (a centipede from Australia and New Zealand) was examined by light and electron microscopy. An elliptical, bipartite eye is located frontolaterally on either side of the head. The nearly circular posterior part of the eye is characterized by a plano-convex cornea, whereas no corneal elevation is visible in the crescentic anterior part. The so-called lateral ocellus appears cup-shaped in longitudinal section and includes a flattened corneal lens comprising a homogeneous and pigmentless epithelium of cornea-secreting cells. The retinula consists of two kinds of photoreceptive cells. The distribution of the distal retinula cells is highly irregular. Variable numbers of cells are grouped together in multilayered, thread-like unions extending from the ventral and dorsal margins into the center of the eye. Around their knob-like or bilobed apices the distal retinula cells give rise to fused polymorphic rhabdomeres. Both everse and inverse cells occur in the distal retinula. Smaller, club-shaped proximal retinula cells are present in the second (limited to the peripheral region) and proximal third of the eye, where they are arranged in dual cell units. In its apical region each unit produces a small, unidirectional rhabdom of interdigitating microvilli. All retinula cells are surrounded by numerous sheath cells. A thin basal lamina covers the whole eye cup, which, together with the distal part of the optic nerve, is wrapped by external pigment cells filled with granules of varying osmiophily. The eye of C. tasmanianus seemingly displays very high complexity compared to many other hitherto studied euarthropod eyes. Besides the complex arrangement of the entire retinula, the presence of a bipartite eye cup, intraocellar exocrine glands, inverse retinula cells, distal retinula cells with bilobed apices, separated pairs of proximal retinula cells, medio-retinal axon bundles, and the formation of a vertically partitioned, antler-like distal rhabdom represent apomorphies of the craterostigmomorph eye. These characters therefore collectively underline the separate position of the Craterostigmomorpha among pleurostigmophoran centipedes. The remaining retinal features of C. tasmanianus agree with those known from other chilopod eyes and, thus, may be considered plesiomorphies. Characters like the unicorneal eye cup, sheath cells, and proximal rhabdomeres with interdigitating microvilli were already present in the ground pattern of the Pleurostigmophora. Other retinal features were developed in the ancestral lineage of the Phylactometria (e.g., large elliptical eyes, external pigment cells, polygonal sculpturations on the corneal surface). The homology of all chilopod eyes (including Notostigmophora) is based principally on the possession of a dual type retinula.  相似文献   

11.
Summary The SFO of the chicken is divided in half by a large central blood sinus; ventrally it is covered by a thin layer of ependyma (including tanycytes, dendrites, and axons) which connects the two lateral halves and protrudes as a midsagittal crest into the lumen of the third ventricle. The ependyma consists predominantly of tanycytes with long basal processes which terminate upon perivascular spaces. These cells have an extensive Golgi apparatus and abundant lysosomes; their cellular apices containing polyribosomes and a few vesicles frequently protrude into the ventricle. In addition to astrocytes, oligodendrocytes, and microglial cells, there is another glial cell population that is distinguished by the presence of parallel stacks or spherical to ovoid conglomerates of rough ER and their unique location, i.e., limited to areas ventral and ventral-lateral to the large blood sinus. Two types of neurons are present: neurons in which there is a paucity of granulated vesicles and occasional vacuoles in both the cytoplasm and nuclei, the second type of neuron elaborates many granulated vesicles. Numerous puncta adhaerentia are observed between adjacent neuronal perikarya and between glial processes and neuronal perikarya.Diverse axon types are found within the chicken SFO. Axo-dendritic and axo-somatic axon terminals and presynaptic axon dilations contain assorted combinations of electron-lucent and granulated vesicles of different maximal diameters. Based on the morphology of these axons, cholinergic, peptidergic, and serotoninergic fibers are described. There are two additional groups of axons whose classification awaits further investigation.The chicken SFO differs from the mammalian SFO in several respects: it possesses an ependyma with secretory and/or absorptive tanycytes predominating; it is divided midsagittally by a central blood sinus; its lateral and dorsal limits are nebulous; a previously undescribed peculiar type of glial cell is found in a limited portion of the organ; supraependymal neurons are lacking.Dedicated to Prof. H. Grau at the occasion of his 80th birthdayWe gratefully acknowledge the technical help of Susan Woroch and secretarial assistance of Diana Hapes and Debbie Harrison  相似文献   

12.
The lateral compound eye of Scutigera coleoptrata was examined by electron microscopy. Each ommatidium consists of a dioptric apparatus, formed by a cornea and a multipartite eucone crystalline cone, a bilayered retinula and a surrounding sheath of primary pigment and interommatidial pigment cells. With reference to the median eye region, each cone is made up of eight cone segments belonging to four cone cells. The nuclei of the cone cells are located proximally outside the cone near the transition area between distal and proximal retinula cells. The connection between nuclear region and cone segment is via a narrow cytoplasmic strand, which splits into two distal cytoplasmic processes. Additionally, from the nuclear region of each cone cell a single cytoplasmic process runs in a proximal direction to the basement membrane. The bilayered rhabdom is usually made up of the rhabdomeres of 9–12 distal retinula cells and four proximal retinula cell. The pigment shield is composed of primary pigment cells (which most likely secrete the corneal lens) and interommatidial pigment cells. The primary pigment cells underlie the cornea and surround, more or less, the upper third of the crystalline cone. By giving rise to the cornea and by functioning as part of the pigment shield these pigment cells serve a double function. Interommatidial pigment cells extend from the cornea to the basement membrane and stabilise the ommatidium. In particular, the presence of cone cells, primary pigment cells as well as interommatidial pigment cells in the compound eye of S. coleoptrata is seen as an important morphological support for the Mandibulata concept. Furthermore, the phylogenetic significance of these cell types is discussed with respect to the Tetraconata.  相似文献   

13.
Most species of Staphylinidae are predators in an agroecosystem. They acquire prey information from their environment through receptors. In this study, the sensilla on maxillary and labial palps of Philonthus kailiensis, Philonthus lewisius and Quedius robustus were examined with scanning electron microscopy to identify and analyse the external morphology and distribution of the sensilla to enhance our knowledge of the sensilla of Staphylinidae and provide a rationale of taxonomical studies on the two genus. Results showed that the sensilla are classified into six types: Böhm bristles, sensilla chaetica, sensilla furcate, sensilla coeloconica, sensilla placodea and sensilla basiconica. No sexual dimorphism exists among the three species. The relationships and functions of sensilla on maxillary and labial palps were also speculated. There may be a certain correlation between the sensilla on maxillary and labial palps of the staphylinid and its habitat.  相似文献   

14.
Observations are reported on the ultrastructure of the buccal cavity, body cuticle, spermatids, spermatozoa, male genitalia, and caudal glands of Gonionchus australis. The buccal cuticle is a continuation of the pharyngeal cuticle. Anteriorly it is secreted by arcade tissue and overlaps the mouth rim; laterally it forms longitudinal tooth ridges. The non-annulated cephalic cuticle differs sharply from the remainder of the body wall cuticle. The cortical and basal zones become much thinner, while a largely structureless, lucent median zone expands to fill the bulk of the lips and lip flaps. Spermatids possess fibrous bodies, multimembrane organelles, mitochondria, and compact chromatin. The spermatozoa of G. australis resemble those of most other nematodes by the absence of the nuclear envelope and presence of fibrous bodies, mitochondria, and compact chromafin. The ejaculatory duct possesses microvilli. Two ejaculatory glands lie beside the duct. Two neurons are located within each spicule and each part of the paired gubernaculum. Caudal gland nuclei are large, with dispersed chromatin. The ducts of all three caudal glands are filled with secretory vesicles.  相似文献   

15.
Present models of turbellarian evolution depict the organism with a frontal organ — a complex of glands whose necks emerge at the anterior tip of the body — and therefore imply that this organ is homologous throughout the Turbellaria. However, comparisons of representatives of the Acoela and Macrostomida, two putatively primitive orders of the Turbellaria, show that frontal organs in these two are not similar in ultrastructure or histochemistry. The acoel Convoluta pulchra had a prominent cluster of frontal mucous glands whose necks emerged together in a frontal pore at the exact apical pole of the organism, and an array of smaller glands of at least five other types opened at the anterior end, separately from and ventral to this pore. The frontal organs (Stirndrüsen) of two species of Macrostomum on the other hand, comprised an array of discretely emerging necks of at least two gland types including one with rhabdiform (rhammite) and one with globular mucous secretion granules neither of which emerge at the apical pole. In neither species did the organ appear to be sensory. Our findings indicate a low probability of homology between the frontal glands of the Acoela and Macrostomida.  相似文献   

16.
The investigation of the antennae of Scutigera coleoptrata (Linnaeus, 1758) by scanning electron microscopy (SEM) revealed the presence of five types of sensilla: sensilla trichodea, beak‐like sensilla, cone‐shaped sensilla brachyconica on the terminal article, sensory cones at the antennal nodes, and the shaft organ. Alongside the presence and absence of antennal sensillar types, three unique characters were found in the Scutigeromorpha: the presence of long antennae with nodes bearing sensory cones, the presence of a bipartite shaft including the shaft organ, and the presence of beak‐like sensilla. Neuroanatomical data showed that the animals' brains are equipped with well‐developed primary olfactory and mechanosensory centers, suggesting that the antennae must be equipped with specialized sensilla to perceive chemosensory and mechanosensory cues. With the evidence provided in this article for the Scutigeromorpha, SEM data are available at last on the antennal sensilla for all five chilopod taxa, allowing a comparative discussion of antennal morphology in Chilopoda. J. Morphol., 2011. © 2011Wiley‐Liss, Inc.  相似文献   

17.
Chlorophorus caragana is a species of long‐horned beetle that damages Caragana davazamcii Sancz. (Fabales: Papilionaceae) bushes in desert areas in China. The beetles cause substantial damage to local forestry plantations and the environment. Sensilla on the maxillary and labial palps of coleopterans a allow the insects to recognize their host plants. We used scanning and transmission electron microscopy to study the ultrastructure, distribution, and abundance of various sensilla on the maxillary and labial palps of C. caragana. We found four types of sensilla including ten subtypes: one of Böhm's bristles, three of sensilla chaetica, one of digitiform sensilla, and five of sensilla twig basiconica. The types and distribution of the sensilla on the maxillary and labial palps were highly similar between males and females. Finally, this article discusses the functions of the sensilla of related species in recognizing hosts and the significance of gustation studies in the context of the control of C. caragana.  相似文献   

18.
The head gland of the cercaria of Schistosoma mansoni appears to be a relatively large unicellular entity consisting of a fundus tapering into a system of multiple ducts that opens into the integument at the anterior end of the oral sucker. The fundus is located in the posteriodorsal area of the oral sucker and contains most of the secretory granules. The ducts are usually narrow and devoid of secretory granules especially near their integumental junctions in the cercaria. In Schistosomules of S. mansoni the fundus is reduced and the ducts are distended as secretory granules move en masse into the integument during the penetration of cercaria into their host where they may provide material for repair of the integument of the oral sucker damaged during penetration. The head gland has a strong affinity for luxol fast blue and acid hematin stains which suggests the presence of phospholipids.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号