首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Citrate transport via CitS of Klebsiella pneumoniae has been shown to depend on the presence of Na+. This transport system has been expressed in Escherichia coli, and uptake of citrate in E. coli membrane vesicles via this uptake system was found to be an electrogenic process, although the pH gradient is the main driving force for citrate uptake (M. E. van der Rest, R. M. Siewe, T. Abee, E. Schwartz, D. Oesterhelt, and W. N. Konings, J. Biol. Chem. 267:8971-8976, 1992). Analysis of the affinity constants for the different citrate species at different pH values of the medium indicates that H-citrate2- is the transported species. Since the electrical potential across the membrane is a driving force for citrate transport, this indicates that transport occurs in symport with at least three monovalent cations. Citrate efflux is stimulated by Na+ concentrations of up to 5 mM but inhibited by higher Na+ concentrations. Citrate exchange, however, is stimulated by all Na+ concentrations, indicating sequential events in which Na+ binds before citrate for translocation followed by a release of Na+ after release of citrate. CitS has, at pH 6.0 and in the presence of 5 mM citrate on both sides of the membrane, an apparent affinity (K(app)) for Na+ of 200 microM. The Na+/citrate stoichiometry was found to be 1. It is postulated that H-citrate2- is transported via CitS in symport with one Na+ and at least two H+ ions.  相似文献   

2.
Sobczak I  Lolkema JS 《Biochemistry》2003,42(32):9789-9796
The citrate transporter CitS of Klebsiella pneumoniae is a secondary transporter that transports citrate in symport with two sodium ions and one proton. Treatment of CitS with the alkylating agent N-ethylmaleimide resulted in a complete loss of transport activity. Treatment of mutant proteins in which the five endogenous cysteine residues were mutated into serines in different combinations revealed that two cysteine residues located in the C-terminal cytoplasmic loop, Cys-398 and Cys-414, were responsible for the inactivation. Labeling with the membrane impermeable methanethiosulfonate derivatives MTSET and MTSES in right-side-out membrane vesicles showed that the cytoplasmic loop was accessible from the periplasmic side of the membrane. The membrane impermeable but more bulky maleimide AmdiS did not inactivate the transporter in right-side-out membrane vesicles. Inactivation by N-ethylmaleimide, MTSES, and MTSET was prevented by the presence of the co-ion Na(+). Protection was obtained upon binding 2 Na(+), which equals the transport stoichiometry. In the absence of Na(+), the substrate citrate had no effect on the inactivation by permeable or impermeable thiol reagents. In contrast, when subsaturating concentrations of Na(+) were present, citrate significantly reduced inactivation suggesting ordered binding of the substrate and co-ion; citrate is bound after Na(+). In the presence of the proton motive force, the reactivity of the Cys residues was increased significantly for the membrane permeable N-ethylmaleimide, while no difference was observed for the membrane impermeable thiol reagents. The results are discussed in the context of a model for the opening and closing of the translocation pore during turnover of the transporter.  相似文献   

3.
Citrate transport in Klebsiella pneumoniae   总被引:5,自引:0,他引:5  
Sodium ions were specifically required for citrate degradation by suspensions of K. pneumoniae cells which had been grown anaerobically on citrate. The rate of citrate degradation was considerably lower than the activities of the citrate fermentation enzymes citrate lyase and oxaloacetate decarboxylase, indicating that citrate transport is rate limiting. Uptake of citrate into cells was also Na+ -dependent and was accompanied by its rapid metabolism so that the tricarboxylic acid was not accumulated in the cells to significant levels. The transport could be stimulated less efficiently by LiCl. Li+ ions were cotransported with citrate into the cells. Transport and degradation of citrate were abolished with the uncoupler [4-(trifluoromethoxy)phenylhydrazono]propanedinitrile (CCFP). After releasing outer membrane components and periplasmic binding proteins by cold osmotic shock treatment, citrate degradation became also sensitive towards monensin and valinomycin. The shock procedure had no effect on the rate of citrate degradation indicating that the transport is not dependent on a binding protein. Citrate degradation and transport were independent of Na+ ions in K. pneumoniae grown aerobically on citrate and in E. coli grown anaerobically on citrate plus glucose. An E. coli cit+ clone obtained by transformation of K. pneumoniae genes coding for citrate transport required Na specifically for aerobic growth on citrate indicating that the Na-dependent citrate transport system is operating. Na+ and Li+ were equally effective in stimulating citrate degradation by cell suspensions of E. coli cit+. Citrate transport in membrane vesicles of E. coli cit+ was also Na+ dependent and was energized by the proton motive force (delta micro H+). Dissipation of delta micro H+ or its components delta pH or delta psi by ionophores either totally abolished or greatly inhibited citrate uptake. It is suggested that the systems energizing citrate transport under anaerobic conditions are provided by the outwardly directed cotransport of metabolic endproducts with protons yielding delta pH and by the decarboxylation of oxaloacetate yielding delta pNa+ and delta psi. In citrate-fermenting K. pneumoniae an ATPase which is activated by Na+ was not found. The cells contain however a proton translocating ATPase and a Na+/H+ antiporter in their membrane.  相似文献   

4.
The single asparagine 322 mutant of the lactose permease was made by constructing a hybrid plasmid which contained the amino-terminal coding sequence from the wild-type permease gene and the carboxyl-terminal coding sequence from a previously characterized double mutant permease which contained an asparagine residue at position 322. Since histidine at position 322 has been postulated to be critically involved with H+ transport and the active accumulation of sugars, the ability of the Asn-322 mutant to couple H+ and sugar transport was carefully examined. Measurements of proton/lactose stoichiometries gave very similar values for the wild-type (0.78) and the Asn-322 strain (0.82). Moreover, the Asn-322 mutant was able to effectively accumulate lactose against a concentration gradient although the levels of accumulation in the Asn-322 mutant (approximately 5-7-fold) were significantly less than that of the wild-type strain (approximately 30-40-fold). Overall, these results are inconsistent with the notion that an ionizable histidine residue at position 322 is obligatorily required for H+ transport or the active accumulation of galactosides against a concentration gradient. The ability of the Asn-322 mutant to recognize a variety of sugars was compared with wild-type, Val-177, and Val-177/Asn-322 strains. The Asn-322 mutant exhibited an ability to recognize and transport maltose (an alpha-glucoside) which was significantly better than the wild-type strain but not as good as either the single Val-177 mutant or the double Val-177/Asn-322 mutant. Both the Asn-322 and the Val-177/Asn-322 strain showed a relatively poor recognition for alpha-galactosides (i.e. melibiose), beta-galactosides (lactose and thiodigalactoside), and beta-glucosides (cellobiose). In contrast, the single Val-177 strain exhibited a normal recognition for these sugars.  相似文献   

5.
To study the role of carbohydrate in lysosomal protein transport, we engineered two novel glycosylation signals (Asn-X-Ser/Thr) into the cDNA of human procathepsin L, a lysosomal acid protease. We constructed six mutant cDNAs encoding glycosylation signals at mutant sites Asn-138, Asn-175, or both sites together, in the presence or absence of the wild-type Asn-204 site. We stably transfected wild-type and mutant cDNAs into NIH3T3 mouse fibroblasts and then used species-specific antibodies to determine the glycosylation status, phosphorylation, localization, and transport kinetics of recombinant human procathepsin L containing one, two, or three glycosylation sites. Both novel glycosylation sites were capable of being glycosylated, although Asn-175 was utilized only 30–50% of the time. Like the wild-type glycosylation at Asn-204, carbohydrates at Asn-138 and Asn-175 were completely sensitive to endoglycosidase H, and they were phosphorylated. Mutant proteins containing two carbohydrates were capable of being delivered to lysosomes, but there was not a consistent relationship between the efficiency of lysosomal delivery and carbohydrate content of the protein. Pulse-chase labeling revealed a unique biosynthetic pattern for proteins carrying the Asn-175 glycosylation sequence. Whereas wild-type procathepsin L and mutants bearing carbohydrate at Asn-138 appeared in lysosomes by about 60 min, proteins with carbohydrate at Asn-175 were processed to a lysosome-like polypeptide within 15 min. Temperature shift, brefeldin A, and NH4Cl experiments suggested that the rapid processing did not occur in the endoplasmic reticulum and that Asn-175 mutants could interact with the mannose 6-phosphate receptor. Taken together, our results are consistent with the interpretation that Asn-175 carbohydrate confers rapid transport to lysosomes. We may have identified a recognition domain in procathepsin L that is important for its interactions with the cellular transport machinery.  相似文献   

6.
Citrate utilization plasmids have previously been identified in atypical Escherichia coli isolates. A different citrate-utilizing (Cit+) variant of E. coli K-12 arose as a consequence of two chromosomal mutations (B. G. Hall, J. Bacteriol. 151:269-273, 1982). The processes controlling the transport of citrate in both a Cit+ chromosomal mutant and a Cit+ plasmid system were studied. Both systems were found to be inducible in growth experiments. In transport assays with whole cells, citrate-grown cells accumulated [1,5-14C]citrate at two to three times the rate of uninduced cells. Only the Vmax was affected by induction, and the Km for whole cells remained at 67 microM citrate for the chromosomal strain and 120 microM citrate for the plasmid-conferred system. There was no detectable accumulation of radioactivity with [6-14C]citrate, because of rapid metabolism and the release of 14CO2. Energy-dependent citrate transport was found with membrane vesicles obtained from both the chromosome-conferred and the plasmid Cit+ systems. The vesicle systems were inhibited by valinomycin and carbonyl cyanide m-chloro-phenylhydrazone but not by nigericin and monensin. In contrast to whole cells, the vesicle systems were resistant to Hg2+ and showed identical kinetics with [1,5-14C]citrate and [6-14C]citrate. H+ appeared to be important for citrate transport in whole cells and membranes. Monovalent cations such as Na+ and K+, divalent cations such as Mg2+ and Mn2+, and anions such as PO4(3-), SO4(2-), and NO3- were not required. The two systems differed in inhibition by citrate analogs.  相似文献   

7.
Na,K-ATPase mediates net electrogenic transport by extruding three Na+ ions and importing two K+ ions across the plasma membrane during each reaction cycle. We mutated putative cation coordinating amino acids in transmembrane hairpin M5-M6 of rat Na,K-ATPase: Asp776 (Gln, Asp, Ala), Glu779 (Asp, Gln, Ala), Asp804 (Glu, Asn, Ala), and Asp808 (Glu, Asn, Ala). Electrogenic cation transport properties of these 12 mutants were analyzed in two-electrode voltage-clamp experiments on Xenopus laevis oocytes by measuring the voltage dependence of K+-stimulated stationary currents and pre-steady-state currents under electrogenic Na+/Na+ exchange conditions. Whereas mutants D804N, D804A, and D808A hardly showed any Na+/K+ pump currents, the other constructs could be classified according to the [K+] and voltage dependence of their stationary currents; mutants N776A and E779Q behaved similarly to the wild-type enzyme. Mutants E779D, E779A, D808E, and D808N had in common a decreased apparent affinity for extracellular K+. Mutants N776Q, N776D, and D804E showed large deviations from the wild-type behavior; the currents generated by mutant N776D showed weaker voltage dependence, and the current-voltage curves of mutants N776Q and D804E exhibited a negative slope. The apparent rate constants determined from transient Na+/Na+ exchange currents are rather voltage-independent and at potentials above -60 mV faster than the wild type. Thus, the characteristic voltage-dependent increase of the rate constants at hyperpolarizing potentials is almost absent in these mutants. Accordingly, dislocating the carboxamide or carboxyl group of Asn776 and Asp804, respectively, decreases the extracellular Na+ affinity.  相似文献   

8.
The role of N-linked glycosylation in the biological activity of the measles virus (MV) fusion (F) protein was analyzed by expressing glycosylation mutants with recombinant vaccinia virus vectors. There are three potential N-linked glycosylation sites located on the F2 subunit polypeptide of MV F, at asparagine residues 29, 61, and 67. Each of the three potential glycosylation sites was mutated separately as well as in combination with the other sites. Expression of mutant proteins in mammalian cells showed that all three sites are used for the addition of N-linked oligosaccharides. Cell surface expression of mutant proteins was reduced by 50% relative to the wild-type level when glycosylation at either Asn-29 or Asn-61 was abolished. Despite the similar levels of cell surface expression, the Asn-29 and Asn-61 mutant proteins had different biological activities. While the Asn-61 mutant was capable of inducing syncytium formation, the Asn-29 mutant protein did not exhibit any significant cell fusion activity. Inactivation of the Asn-67 glycosylation site also reduced cell surface transport of mutant protein but had little effect on its ability to cause cell fusion. However, when the Asn-67 mutation was combined with mutations at either of the other two sites, cleavage-dependent activation, cell surface expression, and cell fusion activity were completely abolished. Our data show that the loss of N-linked oligosaccharides markedly impaired the proteolytic cleavage, stability, and biological activity of the MV F protein. The oligosaccharide side chains in MV F are thus essential for optimum conformation of the extracellular F2 subunit that is presumed to bind cellular membranes.  相似文献   

9.
The gene of the sodium-dependent citrate transport system from Klebsiella pneumoniae (citS) is located on plasmid pES3 (Schwarz, E., and Oesterhelt, D. (1985) EMBO J. 4, 1599-1603) and encodes a 446-amino acid protein. Transport of citrate via this citrate transport protein (CitS) is dependent on the presence of sodium ions and is inhibited by magnesium ions. The delta pH (pH gradient across the membrane) is the major driving force for uptake. It is postulated that, in analogy with the proton-dependent citrate carrier (CitH) of K. pneumoniae (van der Rest, M. E., Abee, T., Molenaar, D., and Konings, W. N. (1990) Eur. J. Biochem. 195, 71-77), only one of the protonated species of citrate is recognized by CitS and that citrate is translocated across the membrane in symport with protons and sodium ions. The hydrophobicity profile of CitS suggests that the protein is very hydrophobic and contains 12 membrane-spanning segments. These segments are not centered around a hydrophilic core as has been suggested for other transport proteins, but the protein is asymmetrical with seven transmembrane segments in front of a large hydrophilic loop and five after this loop. The amino acid sequence is highly similar to a citrate transport system of Lactococcus lactis subsp. lactis var. diacetylactis (CitP) (David, S., van der Rest, M. E., Driessen, A. J. M., Simons, G., and de Vos, W. M. (1990) J. Bacteriol. 172, 5789-5794) and less similar to CitH of K. pneumoniae. We conclude that the citS gene of K. pneumoniae encodes a sodium-dependent citrate transport system that belongs to a novel subclass of transport proteins.  相似文献   

10.
The genome of Bacillus subtilis contains two genes that code for membrane proteins that belong to the 2-hydroxycarboxylate transporter family. Here we report the functional characterization of one of the two, yxkJ, which codes for a transporter protein named CimHbs. The gene was cloned and expressed in Escherichia coli and complemented the citrate-negative phenotype of wild-type E. coli and the malate-negative phenotype of the E. coli strain JRG4008, which is defective in malate uptake. Subsequent uptake studies in whole cells expressing CimHbs clearly demonstrated the citrate and malate transport activity of the protein. Immunoblot analysis showed that CimHbs is a 48-kDa protein that is well expressed in E. coli. Studies with right-side-out membrane vesicles demonstrated that CimHbs is an electroneutral proton-solute symporter. No indications were found for the involvement of Na(+) ions in the transport process. Inhibition of the uptake catalyzed by CimHbs by divalent metal ions, together with the lack of effect on transport by the chelator EDTA, showed that CimHbs translocates the free citrate and malate anions. Among a large set of substrates tested, only malate, citramalate, and citrate competitively inhibited citrate transport catalyzed by CimHbs. The transporter is strictly stereoselective, recognizing only the S enantiomers of malate and citramalate. Remarkably, though citramalate binds to the transporter, it is not translocated.  相似文献   

11.
NorM is a member of the multidrug and toxic compound extrusion (MATE) family and functions as a Na+/multidrug antiporter in Vibrio parahaemolyticus, although the underlying mechanism of the Na+/multidrug antiport is unknown. Acidic amino acid residues Asp32, Glu251, and Asp367 in the transmembrane region of NorM are conserved in one of the clusters of the MATE family. In this study, we investigated the role(s) of acidic amino acid residues Asp32, Glu251, and Asp367 in the transmembrane region of NorM by site-directed mutagenesis. Wild-type NorM and mutant proteins with amino acid replacements D32E (D32 to E), D32N, D32K, E251D, E251Q, D367A, D367E, D367N, and D367K were expressed and localized in the inner membrane of Escherichia coli KAM32 cells, while the mutant proteins with D32A, E251A, and E251K were not. Compared to cells with wild-type NorM, cells with the mutant NorM protein exhibited reduced resistance to kanamycin, norfloxacin, and ethidium bromide, but the NorM D367E mutant was more resistant to ethidium bromide. The NorM mutant D32E, D32N, D32K, D367A, and D367K cells lost the ability to extrude ethidium ions, which was Na+ dependent, and the ability to move Na+, which was evoked by ethidium bromide. Both E251D and D367N mutants decreased Na+-dependent extrusion of ethidium ions, but ethidium bromide-evoked movement of Na+ was retained. In contrast, D367E caused increased transport of ethidium ions and Na+. These results suggest that Asp32, Glu251, and Asp367 are involved in the Na+-dependent drug transport process.  相似文献   

12.
A prominent region of the Na(+)-dependent citrate carrier (CitS) from Klebsiella pneumoniae is the highly conserved loop X-XI, which contains a putative citrate binding site. To monitor potential conformational changes within this region by single-molecule fluorescence spectroscopy, the target cysteines C398 and C414 of the single-Cys mutants (CitS-sC398, CitS-sC414) were selectively labeled with the thiol-reactive fluorophores AlexaFluor 546/568 C(5) maleimide (AF(546), AF(568)). While both single-cysteine mutants were catalytically active citrate carriers, labeling with the fluorophore was only tolerated at C398. Upon citrate addition to the functional protein fluorophore conjugate CitS-sC398-AF(546), complete fluorescence quenching of the majority of molecules was observed, indicating a citrate-induced conformational change of the fluorophore-containing domain of CitS. This quenching was specific for the physiological substrate citrate and therefore most likely reflecting a conformational change in the citrate transport mechanism. Single-molecule studies with dual-labeled CitS-sC398-AF(546/568) and dual-color detection provided strong evidence for a homodimeric association of CitS.  相似文献   

13.
CzcD from Ralstonia metallidurans and ZitB from Escherichia coli are prototypes of bacterial members of the cation diffusion facilitator (CDF) protein family. Expression of the czcD gene in an E. coli mutant strain devoid of zitB and the gene for the zinc-transporting P-type ATPase zntA rendered this strain more zinc resistant and caused decreased accumulation of zinc. CzcD, purified as an amino-terminal streptavidin-tagged protein, bound Zn2+, Co2+, Cu2+, and Ni2+ but not Mg2+, Mn2+, or Cd2+, as shown by metal affinity chromatography. Histidine residues were involved in the binding of 2 to 3 mol of Zn2+ per mol of CzcD. ZitB transported 65Zn2+ in the presence of NADH into everted membrane vesicles with an apparent Km of 1.4 microM and a Vmax of 0.57 nmol of Zn2+ min(-1) mg of protein(-1). Conserved amino acyl residues that might be involved in binding and transport of zinc were mutated in CzcD and/or ZitB, and the influence on Zn2+ resistance was studied. Charged or polar amino acyl residues that were located within or adjacent to membrane-spanning regions of the proteins were essential for the full function of the proteins. Probably, these amino acyl residues constituted a pathway required for export of the heavy metal cations or for import of counter-flowing protons.  相似文献   

14.
We have replaced asparagine residues at the subunit interface of yeast triosephosphate isomerase (TIM) using site-directed mutagenesis in order to elucidate the effects of substitutions on the catalytic activity and conformational stability of the enzyme. The mutant proteins were expressed in a strain of Escherichia coli lacking the bacterial isomerase and purified by ion-exchange and immunoadsorption chromatography. Single replacements of Asn-78 by either Thr or Ile residues had little effect on the enzyme's catalytic efficiency, while the single replacement Asn-78----Asp-78 and the double replacement Asn-14/Asn-78----Thr-14/Ile-78 appreciably lowered kcat for the substrate D-glyceraldehyde 3-phosphate. The isoelectric point of the mutant Asn-78----Asp-78 was equivalent to that of wild-type yeast TIM that had undergone a single, heat-induced deamidation, and this mutant enzyme was less resistant than wild-type TIM to denaturation and inactivation caused by elevated temperature, denaturants, tetrabutylammonium bromide, alkaline pH, and proteases.  相似文献   

15.
The double mutant, Val-177/Asn-322, was investigated with regard to its ability to transport H+ and galactosides. In downhill lactose transport assays, the wild-type strain had a Km value for lactose uptake of 0.9 mM and a Vmax of 0.65 mumol lactose/min.mg protein while the mutant had a significantly higher Km value of 1.9 mM but a similar Vmax of 0.49 mumol/min.mg protein. In spite of its moderate ability to transport lactose downhill, the Val-177/Asn-322 mutant exhibited the striking property of being completely defective in the uphill accumulation of lactose or methyl-beta-D-thiogalactopyranoside. Direct measurements of H+ transport, however, showed that the mutant's defect in active accumulation is not due to a defect in the ability to transport H+ with lactose or methyl-beta-D-thiogalactopyranoside. The Val-177/Asn-322 mutant strain had a H+:lactose stoichiometry of 0.84 which was similar to that measured in the wild-type strain (0.68). These results are discussed with regard to the role His-322 plays in H+ transport, active accumulation of sugars, and sugar recognition.  相似文献   

16.
The highly conserved amino acids of rat Na,K-ATPase, Thr-774 in the transmembrane helices M5, Val-920 and Gln-923 in M8, and Glu-953 and Glu-954 in M9, the side chains of which appear to be in close proximity, were mutated, and the resulting proteins, T774A, E953A/K, and E954A/K, V920E and Q923N/E/D/L, were expressed in HeLa cells. Ouabain-resistant cell lines were obtained from T774A, V920E, E953A, and E954A, whereas Q923N/E/D/L, E953K, and E954K could only be transiently expressed as fusion proteins with an enhanced green fluorescent protein. The apparent K0.5 values for Na+, as estimated by the Na+-dependent phosphoenzyme formation (K0.5(Na,EP)) or Na,K-ATPase activity (K(0.5)(Na,ATPase)), were increased by around 2 approximately 8-fold in the case of T774A, V920E, and E954A. The apparent K0.5 values for K+, as estimated by the Na,K-ATPase (K0.5(K,ATPase)) or p-nitrophenylphosphatase activity (K0.5(K,pNPPase)), were affected only slightly by the 3 mutations, except that V920E showed a 1.7-fold increase in the K0.5(K,ATPase). The apparent K0.5 values for ATP (K0.5(EP)), as estimated by phosphorylation (a high affinity ATP effect), were increased by 1.6 approximately 2.6-fold in the case of T774A, V920E, and E954A. Those estimated by Na,K-ATPase activity (K0.5(ATPase)) and ATP-induced inhibition (K(i,0.5)(pNPPase)) of K-pNPPase activity (low affinity ATP effects) were, respectively, increased by 1.8-fold and unchanged in the case of T774A but decreased by 2- and 4.8-fold in the case of V920E and were slightly changed and increased by 1.7-fold in the case of E954A. The E953A showed little significant change in the apparent affinities. These results suggest that Gln-923 in M8 is crucial for the active transport of Na+ and/or K+ across membranes and that the side chain oxygen atom of Thr-774 in M5, the methyl group(s) of Val-920 in M8, and the carboxyl oxygen(s) of Glu-954 in M9 mainly play some role in the transport of Na+ and also in the high and low affinity ATP effects rather than the transport of K+.  相似文献   

17.
By subjecting the lac y gene of Escherichia coli to oligonucleotide-directed, site-specific mutagenesis, Cys148 in the lac permease has been replaced with a Gly residue [Trumble, W. R., Viitanen, P. V., Sarkar, H. K., Poonian, M. S., & Kaback, H. R. (1984) Biochem. Biophys. Res. Commun. 119, 860]. Recombinant plasmids bearing wild-type or mutated lac y were constructed and used to transform E. coli T184. Steady-state levels of lactose accumulation, the apparent Km for lactose under energized conditions, and the KD for p-nitrophenyl alpha-D-galactopyranoside are comparable in right-side-out vesicles containing wild-type or mutant permease. In contrast, the Vmax for lactose transport in vesicles containing mutant permease is significantly decreased. Although antibody binding studies reveal that vesicles from the mutant contain almost as much permease as wild-type vesicles, surprisingly only about one-fourth of the altered molecules bind p-nitrophenyl alpha-D-galactopyranoside with high affinity. Mutant permease is less sensitive to inactivation by N-ethylmaleimide, although the alkylating agent is still capable of completely inhibiting transport activity. Importantly, beta-galactosyl 1-thio-beta-D-galactopyranoside affords complete protection of wild-type permease against N-ethylmaleimide but has no protective effect whatsoever in the mutant. The rate of inactivation of wild-type and mutant permeases by N-ethylmaleimide is increased at alkaline pH and by the presence of a proton electrochemical gradient (interior negative and alkaline), and these phenomena are exaggerated in vesicles containing mutant permease. Finally, p-(chloromercuri)benzenesulfonate, which completely displaces bound p-nitrophenyl alpha-D-galactopyranoside from wild-type permease, does not affect binding in the mutant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To examine the role of the glycans of human immunodeficiency virus type 1 transmembrane glycoprotein gp41, conserved glycosylation sites within the env sequence (Asn-621, Asn-630, and Asn-642) were mutated to Gln. The mutated and control wild-type env genes were introduced into recombinant vaccinia virus and used to infect BHK-21 or CD4+ CEM cells. Mutated gp41 appeared as a 35-kDa band in a Western blot (immunoblot), and it comigrated with the deglycosylated form of wild-type gp41. Proteolytic cleavage of the recombinant wild-type and mutant forms of the gp160 envelope glycoprotein precursor was analyzed by pulse-chase experiments and enzyme-linked immunosorbent assay: gp160 synthesis was similar whether cells were infected with control or mutated env-expressing recombinant vaccinia virus, but about 10-fold less cleaved gp120 and gp41 was produced by the mutated construct than the control construct. The rates of gp120-gp41 cleavage at each of the two potential sites appeared to be comparable in the two constructs. By using a panel of antibodies specific for gp41 and gp120 epitopes, it was shown that the overall immunoreactivities of control and mutated gp41 proteins were similar but that reactivity to epitopes at the C and N termini of gp120, as present on gp160 produced by the mutated construct, was enhanced. This was no longer observed for cleaved gp120 in supernatants. Both gp120 proteins, from control and mutated env, were expressed on the cell surface under a cleaved form and could bind to membrane CD4, as determined by quantitative immunofluorescence assay. In contrast, and despite sufficient expression of env products at the cell membrane, gp41 produced by the mutated construct was unable to induce membrane fusion. Therefore, while contradictory results reported in the literature suggest that gp41 individual glycosylation sites are dispensable for the bioactivity and conformation of env products, it appears that such is not the case when the whole gp41 glycan cluster is removed.  相似文献   

19.
A strain of Escherichia coli of bovine origin able to use tricarboxylates as single carbon source is described. Tricarboxylate utilization (Cit+) and fluorocitrate sensitivity (FCs) could be transferred conjugatively to E. coli K12 and were not plasmid borne. No evidence was found for tct gene products of Salmonella typhimurium. A citrate-inducible outer membrane protein of 21-22 kilodaltons (kd) was found only in Cit+ strains. A protein (21-22kd) protein was also found in wild-type E. coli K12 and in fluorocitrate-resistant mutants of Cit+ strains, but it was present in a cryptic form no longer inducible by citrate. Fluorocitrate-resistant mutants of Cit+ strains were still able to transport citrate by a fluorocitrate-insensitive system. High levels of the 22-kd protein correlated with reduced growth induction times on citrate and with the ability to effectively transport citrate.  相似文献   

20.
Bacterial flagellar motors use specific ion gradients to drive their rotation. It has been suggested that the electrostatic interactions between charged residues of the stator and rotor proteins are important for rotation in Escherichia coli. Mutational studies have indicated that the Na(+)-driven motor of Vibrio alginolyticus may incorporate interactions similar to those of the E. coli motor, but the other electrostatic interactions between the rotor and stator proteins may occur in the Na(+)-driven motor. Thus, we investigated the C-terminal charged residues of the stator protein, PomA, in the Na(+)-driven motor. Three of eight charge-reversing mutations, PomA(K203E), PomA(R215E), and PomA(D220K), did not confer motility either with the motor of V. alginolyticus or with the Na(+)-driven chimeric motor of E. coli. Overproduction of the R215E and D220K mutant proteins but not overproduction of the K203E mutant protein impaired the motility of wild-type V. alginolyticus. The R207E mutant conferred motility with the motor of V. alginolyticus but not with the chimeric motor of E. coli. The motility with the E211K and R232E mutants was similar to that with wild-type PomA in V. alginolyticus but was greatly reduced in E. coli. Suppressor analysis suggested that R215 may participate in PomA-PomA interactions or PomA intramolecular interactions to form the stator complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号