首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
铜绿假单胞菌(Pseudomonas aeruginosa)是一种革兰氏阴性条件致病菌,可对免疫功能低下或损伤的患者造成持续性感染。铜绿假单胞菌能成功感染离不开其自身产生的毒力因子,而这些毒力因子大多数都受群体感应系统(quorum sensing,QS)调控。铜绿假单胞菌有4个QS系统,分别为las系统、rhl系统、pqs系统和iqs系统。2-庚基-3-羟基-4-喹诺酮(Pseudomonas quinolone signal,PQS)作为铜绿假单胞菌pqs系统的信号分子,不仅能够调控许多毒力因子的表达,也能够影响一些微生物和宿主的多种生理过程。本文总结了PQS多种生物学功能,如介导QS系统、调控生物被膜形成、介导外膜囊泡产生及铁摄取、调节宿主免疫活性、介导细胞毒性作用,以及提供种群保护等。本文旨在突出铜绿假单胞菌PQS的功能多样性,并为PQS新功能研究和抗菌药物的研发提供指导。  相似文献   

3.
4.
5.
6.
The GntR family regulators are widely distributed in bacteria and play critical roles in metabolic processes and bacterial pathogenicity. In this study, we describe a GntR family protein encoded by PA4132 that we named MpaR (M vfR-mediated P QS and a nthranilate r egulator) for its regulation of Pseudomonas quinolone signal (PQS) production and anthranilate metabolism in Pseudomonas aeruginosa. The deletion of mpaR increased biofilm formation and reduced pyocyanin production. RNA sequencing analysis revealed that the mRNA levels of antABC encoding enzymes for the synthesis of catechol from anthranilate, a precursor of the PQS, were most affected by mpaR deletion. Data showed that MpaR directly activates the expression of mvfR, a master regulator of pqs system, and subsequently promotes PQS production. Accordingly, deletion of mpaR activates the expression of antABC genes, and thus, increases catechol production. We also demonstrated that MpaR represses the rhl quorum-sensing (QS) system, which has been shown to control antABC activity. These results suggested that MpaR function is integrated into the QS regulatory network. Moreover, mutation of mpaR promotes bacterial survival in a mouse model of acute pneumonia infection. Collectively, this study identified a novel regulator of pqs system, which coordinately controls anthranilate metabolism and bacterial virulence in P. aeruginosa.  相似文献   

7.

Pseudomonas aeruginosa depends on its quorum sensing (QS) system for its virulence factors’ production and biofilm formation. Biofilms of P. aeruginosa on the surface of indwelling catheters are often resistant to antibiotic therapy. Alternative approaches that employ QS inhibitors alone or in combination with antibiotics are being developed to tackle P. aeruginosa infections. Here, we have studied the mechanism of action of 3-Phenyllactic acid (PLA), a QS inhibitory compound produced by Lactobacillus species, against P. aeruginosa PAO1. Our study revealed that PLA inhibited the expression of virulence factors such as pyocyanin, protease, and rhamnolipids that are involved in the biofilm formation of P. aeruginosa PAO1. Swarming motility, another important criterion for biofilm formation of P. aeruginosa PAO1, was also inhibited by PLA. Gene expression, mass spectrometric, functional complementation assays, and in silico data indicated that the quorum quenching and biofilm inhibitory activities of PLA are attributed to its ability to interact with P. aeruginosa QS receptors. PLA antagonistically binds to QS receptors RhlR and PqsR with a higher affinity than its cognate ligands N-butyryl-l-homoserine lactone (C4–HSL) and 2-heptyl-3,4-dihydroxyquinoline (PQS; Pseudomonas quinolone signal). Using an in vivo intraperitoneal catheter-associated medaka fish infection model, we proved that PLA inhibited the initial attachment of P. aeruginosa PAO1 on implanted catheter tubes. Our in vitro and in vivo results revealed the potential of PLA as anti-biofilm compound against P. aeruginosa.

  相似文献   

8.
The evolution of host–parasite interactions could be affected by intraspecies variation between different host and parasite genotypes. Here we studied how bacterial host cell‐to‐cell signaling affects the interaction with parasites using two bacteria‐specific viruses (bacteriophages) and the host bacterium Pseudomonas aeruginosa that communicates by secreting and responding to quorum sensing (QS) signal molecules. We found that a QS‐signaling proficient strain was able to evolve higher levels of resistance to phages during a short‐term selection experiment. This was unlikely driven by demographic effects (mutation supply and encounter rates), as nonsignaling strains reached higher population densities in the absence of phages in our selective environment. Instead, the evolved nonsignaling strains suffered relatively higher growth reduction in the absence of the phage, which could have constrained the phage resistance evolution. Complementation experiments with synthetic signal molecules showed that the Pseudomonas quinolone signal (PQS) improved the growth of nonsignaling bacteria in the presence of a phage, while the activation of las and rhl quorum sensing systems had no effect. Together, these results suggest that QS‐signaling can promote the evolution of phage resistance and that the loss of QS‐signaling could be costly in the presence of phages. Phage–bacteria interactions could therefore indirectly shape the evolution of intraspecies social interactions and PQS‐mediated virulence in P. aeruginosa.  相似文献   

9.
10.
11.
12.
13.
The emergence of antibiotic resistance has necessitated new therapeutic approaches for combating persistent bacterial infection. An alternative approach is regulation of bacterial virulence instead of growth suppression, which can readily lead to drug resistance. The virulence of the opportunistic human pathogen Pseudomonas aeruginosa depends on a large number of extracellular factors and biofilm formation. Thirty-one natural and synthetic indole derivatives were screened. 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P.?aeruginosa cells. Moreover, 7FI markedly reduced the production of quorum-sensing (QS)-regulated virulence factors 2-heptyl-3-hydroxy-4(1H)-quinolone, pyocyanin, rhamnolipid, two siderophores, pyoverdine and pyochelin. 7FI clearly suppressed swarming motility, protease activity and the production of a polymeric matrix in P.?aeruginosa. However, unlike natural indole compounds, synthetic 7FI did not increase antibiotic resistance. Therefore, 7FI is a potential candidate for use in an antivirulence approach against persistent P.?aeruginosa infection.  相似文献   

14.
Extracellular DNA (eDNA) is a major constituent of the extracellular matrix of Pseudomonas aeruginosa biofilms and its release is regulated via pseudomonas quinolone signal (PQS) dependent quorum sensing (QS). By screening a P. aeruginosa transposon library to identify factors required for DNA release, mutants with insertions in the twin-arginine translocation (Tat) pathway were identified as exhibiting reduced eDNA release, and defective biofilm architecture with enhanced susceptibility to tobramycin. P. aeruginosa tat mutants showed substantial reductions in pyocyanin, rhamnolipid and membrane vesicle (MV) production consistent with perturbation of PQS-dependent QS as demonstrated by changes in pqsA expression and 2-alkyl-4-quinolone (AQ) production. Provision of exogenous PQS to the tat mutants did not return pqsA, rhlA or phzA1 expression or pyocyanin production to wild type levels. However, transformation of the tat mutants with the AQ-independent pqs effector pqsE restored phzA1 expression and pyocyanin production. Since mutation or inhibition of Tat prevented PQS-driven auto-induction, we sought to identify the Tat substrate(s) responsible. A pqsA::lux fusion was introduced into each of 34 validated P. aeruginosa Tat substrate deletion mutants. Analysis of each mutant for reduced bioluminescence revealed that the primary signalling defect was associated with the Rieske iron-sulfur subunit of the cytochrome bc1 complex. In common with the parent strain, a Rieske mutant exhibited defective PQS signalling, AQ production, rhlA expression and eDNA release that could be restored by genetic complementation. This defect was also phenocopied by deletion of cytB or cytC1. Thus, either lack of the Rieske sub-unit or mutation of cytochrome bc1 genes results in the perturbation of PQS-dependent autoinduction resulting in eDNA deficient biofilms, reduced antibiotic tolerance and compromised virulence factor production.  相似文献   

15.
The primary objective of this study was to ascertain the anti-biofilm and anti-virulence properties of sub-minimum inhibitory concentration (MIC) levels of eugenol against the standard strain PAO1 and two multi-drug resistant P. aeruginosa clinical isolates utilizing quorum sensing inhibition (QSI). Eugenol at 400 μM significantly reduced biofilm formation on urinary catheters and the virulence factors (VF) including extracellular polysaccharides, rhamnolipid, elastase, protease, pyocyanin, and pyoverdine (p < 0.001). Further, eugenol exhibited a marked effect on the production of QS signals (AIs) (p < 0.001) without affecting their chemical integrity. In silico docking studies demonstrated a stable molecular binding between eugenol and QS receptor(s) in comparison with respective AIs. Investigation on reporter strains confirmed the competitive binding of eugenol to a QS receptor (LasR) as the possible QSI mechanism leading to significant repression of QS associated genes besides the VF genes (p < 0.001). This study provides insights, for the first time, into the mechanism of the anti-virulence properties of eugenol.  相似文献   

16.
Pseudomonas quinolone signal (PQS) plays a role in the regulation of virulence genes and it is intertwined in the las/rhl quorum sensing (QS) circuits of Pseudomonas aeruginosa. PQS is synthesized from anthranilate by pqsA-D and pqsH whose expression is influenced by the las/rhl systems. Since anthranilate can be degraded by functions of antABC and catBCA, PQS synthesis might be regulated by the balance between the expression of the pqsA-D/phnAB, pqsH, antABC, and catBCA gene loci. antA and catA are repressed by LasR during log phase and activated by RhlR in late stationary phase, whereas pqsA-E/phnAB is activated by LasR in log phase and repressed by RhlR. QscR represses both but each repression occurs in a different growth phase. This growth phase-differential regulation appears to be accomplished by the antagonistic interplay of LasR, RhlR, and QscR, mediated by two intermediate regulators, AntR and PqsR, and their cofactors, anthranilate and PQS, where the expressions of antR and pqsR and the production of anthranilate and PQS are growth phase-differentially regulated by QS systems. Especially, the anthranilate level increases in an RhlR-dependent manner at late stationary phase. From these results, we suggest that RhlR and LasR regulate the anthranilate metabolism in a mutually antagonistic and growth phase-differential manner by affecting both the expressions and activities of AntR and PqsR, and that QscR also phase-differentially represses both LasR and RhlR functions in this regulation.  相似文献   

17.
18.
The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis‐like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin‐elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca2+ activity as well as Ca2+‐dependent proteolytic processing of μ‐calpain. Pyocyanin further up‐regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin‐induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl‐ester labelling, pyocyanin‐treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis‐inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection.  相似文献   

19.
Abstract

Pseudomonas aeruginosa and Serratia marcescens are prominent members belonging to the group of ESKAPE pathogens responsible for Urinary Tract Infections (UTI) and nosocomial infections. Both the pathogens regulate several virulence factors, including biofilm formation through quorum sensing (QS), an intercellular communication mechanism. The present study describes the anti-biofilm and QS quenching effect of thiazolinyl-picolinamide based palladium(II) complexes against P. aeruginosa and S. marcescens. Palladium(II) complexes showed quorum sensing inhibitory potential in inhibiting swarming motility behaviour, pyocyanin production and other QS mediated virulence factors in both P. aeruginosa and S. marcescens. In addition, the establishment of biofilms was prevented on palladium (II) coated catheters. Overall, the present study demonstrates that thiazolinyl-picolinamide based palladium (II) complexes will be a promising strategy to combat device-mediated UTI infections.  相似文献   

20.
Pseudomonas aeruginosa, an opportunistic life‐threatening human bacterial pathogen, employs quorum‐sensing (QS) signal molecules to modulate virulence gene expression. 2‐(2‐hydroxyphenyl)‐thiazole‐4‐carbaldehyde (IQS) is a recently identified QS signal that integrates the canonical lasR‐type QS of P. aeruginosa and host phosphate stress response to fine‐tune its virulence production for a successful infection. To address the role of IQS in pathogen–host interaction, we here present that IQS inhibits host cell growth and stimulates apoptosis in a dosage‐dependent manner. By downregulating the telomere‐protecting protein POT1 in host cells, IQS activates CHK1, CHK2, and p53 in an Ataxia telangiectasia mutated (ATM)/ATM and RAD3‐related (ATR)‐dependent manner and induces DNA damage response. Overexpression of POT1 in host cells presents a resistance to IQS treatment. These results suggest a pivotal role of IQS in host apoptosis, highlighting the complexity of pathogenesis mechanisms developed by P. aeruginosa during infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号