首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability of homogeneous glycogen phosphorylase kinase (Phk) from rabbit skeletal muscle to phosphorylate bovine brain myelin basic protein (MBP) was investigated. Phk could incorporate a maximum of 1.9 mol phosphate/mol MBP. The apparent Km and Vmax for Phk phosphorylation of MBP were 27 microM and 90 nmol/min per mg enzyme, respectively. Properties of MBP phosphorylation by Phk are similar to those of phosphorylase as a substrate. Only serine residues of MBP are phosphorylated by Phk. Phosphorylation sites of MBP by Phk are not identical to those by cAMP-dependent protein kinases.  相似文献   

2.
Rat liver glycogen synthase bound to the glycogen particle was partially purified by repeated high-speed centrifugation. This synthase preparation was labeled with 32P by incubations with cAMP-dependent protein kinase and cAMP-independent synthase (casein) kinase-1 in the presence of [γ-32P]ATP. The phosphorylated synthase was separated from other proteins in the glycogen pellet by immunoprecipitation with rabbit anti-rat liver glycogen synthase serum. Analysis of the immunoprecipitates by sodium dodecyl sulfate-gel electrophoresis showed that synthase subunits of Mr 85,000 and 80,000 were present in varying proportions. The 32P-labeled synthase in the immunoprecipitate was digested with trypsin, and the resulting peptides were analyzed by isoelectric focusing. Synthase bound to the glycogen particle was phosphorylated by cAMP-dependent protein kinase at more sites and by cAMP-independent synthase (casein) kinase-1 at less sites than when the homogeneous synthase was incubated with these kinases. Phosphorylation of synthase in the glycogen pellet by either cAMP-dependent protein kinase or cAMP-independent synthase (casein) kinase-1 did not cause a significant inactivation as has been observed when the homogeneous synthase was incubated with these kinases. Inactivation of synthase in the glycogen pellet, however, can be achieved by the combination of both kinases. This inactivation appears to result from the phosphorylation of a new site by cAMP-independent synthase (casein) kinase-1 neighboring a site previously phosphorylated by cAMP-dependent protein kinase.  相似文献   

3.
4.
5.
6.
7.
In addition to acetyl-CoA carboxylase and HMG-CoA reductase, the AMP-activated protein kinase phosphorylates glycogen synthase, phosphorylase kinase, hormone-sensitive lipase and casein. A number of other substrates for the cyclic AMP-dependent protein kinase, e.g., L-pyruvate kinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, are not phosphorylated at significant rates. Examination of the sites phosphorylated on acetyl-CoA carboxylase, hormone-sensitive lipase, glycogen synthase and phosphorylase kinase suggests a consensus recognition sequence in which the serine residue phosphorylated by the AMP-activated protein kinase has a hydrophobic residue on the N-terminal side (i.e., at -1) and at least one arginine residue at -2, -3 or -4. Substrates for cyclic AMP-dependent protein kinase which lack the hydrophobic residue at -1 are not substrates for the AMP-activated protein kinase.  相似文献   

8.
A rapid method for purifying glycogen synthase a from rat liver was developed and the enzyme was tested as a substrate for nine different protein kinases, six of which were isolated from rat liver. The enzyme was phosphorylated on a 17-kDa CNBr fragment to approximately 1 phosphate/87-kDa subunit by phosphorylase b kinase from muscle or liver with a decrease in the activity ratio (-Glc-6-P/+Glc-6-P) from 0.95 to 0.6. Calmodulin-dependent glycogen synthase kinase from rabbit liver produced a similar phosphorylation pattern, but a smaller activity change. The catalytic subunit of beef heart cAMP-dependent protein kinase incorporated greater than 1 phosphate/subunit initially into a 17-kDa CNBr peptide and then into a 27-30-kDa CNBr peptide, with an activity ratio decrease to 0.5. Glycogen synthase kinases 3, 4, and 5 and casein kinase 1 were purified from rat liver. Glycogen synthase kinase 3 rapidly phosphorylated liver glycogen synthase to 1.5 phosphate/subunit with incorporation of phosphate into 3 CNBr peptides and a decrease in the activity ratio to 0.3. Glycogen synthase kinase 4 produced a pattern of phosphorylation and inactivation of liver synthase which was very similar to that caused by phosphorylase b kinase. Glycogen synthase kinase 5 incorporated 1 phosphate/subunit into a 24-kDa CNBr peptide, but did not alter the activity of the synthase. Casein kinase 1 phosphorylated and inactivated liver synthase with incorporation of phosphate into a 24-kDa CNBr peptide. This kinase and glycogen synthase kinase 4 were more active against muscle glycogen synthase. Calcium-phospholipid-dependent protein kinase from brain phosphorylated liver and muscle glycogen synthase on 17- and 27-kDa CNBr peptides, respectively. However, there was no change in the activity ratio of either enzyme. The following conclusions are drawn. 1) Liver glycogen synthase a is subject to multiple site phosphorylation. 2) Phosphorylation of some sites does not per se control activity of the enzyme under the assay conditions used. 3) Liver contains most, if not all, of the protein kinases active on glycogen synthase previously identified in skeletal muscle.  相似文献   

9.
10.
Muscle glycogen phosphorylase kinase [EC 2.7.1.38] has the ability to phosphorylate five fractions of calf thymus histone. H1 histone is the most preferable substrate, and maximally about 1.3 mol of phosphate is incorporated into every mole of this histone. This reaction absolutely depends on CA2+, and the molecular activity is about one third of that of cyclic AMP-dependent protein kinase (protein kinase A). The affinity of phosphorylase kinase for H1 histone is higher than that of protein kinase A. Calmodulin stimulates this histone phosphorylation. Analysis of the N-bromosuccinimide-bisected fragments of fully phosphorylated H1 histone has revealed that the enzyme phosphorylates mostly seryl residues in both amino- and carboxyl-terminal portions, although phosphorylation of the carboxyl-terminal portion is twice as much as that of the amino-terminal portion. Fingerprint analysis indicates that the phosphorylation sites in H1 histone for this enzyme are different from the sites phosphorylated by protein kinase A. This catalytic activity also differs from that of a newly found multifunctional protein kinase which may be activated by the simultaneous presence of Ca2+ and phospholipid.  相似文献   

11.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

12.
1. Glycogen synthase from rabbit skeletal muscle was phosphorylated by phosphorylase kinase to yield synthase b2. 2. Dephosphorylation and activation of synthase b2 by the catalytic subunits of protein phosphatase-1 (PP-1c) and protein phosphatase-2A (PP-2Ac) was studied. The apparent Km of PP-1c and PP-2Ac were 3.3 microM and 6.2 microM, respectively. The apparent Vmax of PP-1c was about two times larger than that of PP-2Ac. 3. Ligands with phosphate moiety (AMP, glucose-6-P at high concentration) caused an inhibition in dephosphorylation by both phosphatases. Spermine inhibited the dephosphorylation by PP-1c and stimulated the action of PP-2Ac. Therefore it can be employed to distinguish the phosphatases using synthase b2 as substrate.  相似文献   

13.
Purified rabbit liver glycogen synthase was found to be a substrate for six different protein kinases: (i) cyclic AMP-dependent protein kinase, (ii) two Ca2+-stimulated protein kinases, phosphorylase kinase (from muscle) and a calmodulin-dependent glycogen synthase kinase, and (iii) three members of a Ca2+ and cyclic nucleotide independent class, PC0.7, FA/GSK-3, and casein kinase-1. Greatest inactivation accompanied phosphorylation by cyclic AMP-dependent protein kinase (to 0.5-0.7 phosphate/subunit, +/- glucose-6-P activity ratio reduced from approximately 1 to 0.6) or FA/GSK-3 (to approximately 1 phosphate/subunit, activity ratio, 0.46). Phosphorylation by the combination FA/GSK-3 plus PC0.7 was synergistic, and more extensive inactivation was achieved. The phosphorylation reactions just described caused significant reductions in the Vmax of the glycogen synthase with little effect on the S0.5 (substrate concentration corresponding to Vmax/2). Phosphorylase kinase achieved a lesser inactivation, to an activity ratio of 0.75 at 0.6 phosphate/subunit. PC0.7 acting alone, casein kinase-1, and the calmodulin-dependent protein kinase did not cause inactivation of liver glycogen synthase with the conditions used. Analysis of CNBr fragments of phosphorylated glycogen synthase indicated that the phosphate was distributed primarily between two polypeptides, with apparent Mr = 12,300 (CB-I) and 16,000-17,000 (CB-II). PC0.7 and casein kinase-1 displayed a decided specificity for CB-II, and the calmodulin-dependent protein kinase was specific for CB-I. The other protein kinases were able, to some extent, to introduce phosphate into both CB-I and CB-II. Studies using limited proteolysis indicated that CB-II was located at a terminal region of the subunit. CB-I contains a minimum of one phosphorylation site and CB-II at least three sites. Liver glycogen synthase is therefore potentially subject to the same type of multisite regulation as skeletal muscle glycogen synthase although the muscle and liver enzymes display significant differences in both structural and kinetic properties.  相似文献   

14.
A procedure was developed for determination of glycogen synthase and phosphorylase activities in liver after various in vivo physiological treatments. Liver samples were obtained from anaesthetised rats by freeze-clamping in situ. Other procedures were shown to stimulate the activity of phosphorylase and depress the activity of glycogen in the liver. The direction of glycogen metabolism appears to be regulated by the relative proportions of the two enzymes, as shown by a strong positive correlation between total activities and active forms of phosphorylase and synthase. The enzyme activities responded as expected to stimuli such as insulin and glucose, which depressed phosphorylase and increased synthase activity, and glucagon, which increased phosphorylase and decreased synthase activity. In fasted animals approximately 50% of each enzyme was in the active form, which suggests the existence of a potential futile cycle for glycogen metabolism. The role for such a cycle in the regulation of glycogen synthesis and degradation is discussed.  相似文献   

15.
We have purified a calmodulin-dependent glycogen synthase kinase from livers of normal and phosphorylase kinase-deficient (gsd/gsd) rats. No differences between normal and gsd/gsd rats were apparent in either (a) the ability of liver extracts to phosphorylate exogenous glycogen synthase in a Ca2+- and calmodulin-dependent manner or (b) the purification of the calmodulin-dependent synthase kinase. Although extracts from rat liver, when compared to rabbit liver extracts, had a significantly reduced ability to phosphorylate exogenous synthase, the calmodulin-dependent synthase kinase could be purified from rat liver using a protocol identical to that described for rabbit liver. Moreover, the synthase kinase purified from rat liver had properties very similar to those of the rabbit liver enzyme. The enzyme was completely dependent on calmodulin for activity against glycogen synthase, was unable to phosphorylate phosphorylase b, catalyzed the rapid incorporation of 0.4 mol phosphate/mol of glycogen synthase subunit, selectively phosphorylated sites 1b and 2 in the glycogen synthase molecule, had a Stokes' radius of about 70 Å, and appeared to be composed of subunits of Mr 56,000 and 57,000. These observations led us to conclude that (1) calmodulin-dependent glycogen synthase kinase is distinct from other kinases previously described and (2) the rat liver kinase and the rabbit liver kinase are very similar enzymes.  相似文献   

16.
Glycogen synthase stimulated the autophosphorylation and autoactivation of phosphorylase kinase from rabbit skeletal muscle. This stimulation was additive to that by glycogen and the reaction was dependent on Ca2+. The effect by glycogen synthase was maximum within the activity ratio (the activity of enzyme without glucose-6-P divided by the activity with 10 mM glucose-6-P) of 0.3 and over 0.3 it was rather inhibitory. The results suggest that autophosphorylation of phosphorylase kinase in the presence of glycogen synthase on glycogen particles may be an important regulatory mechanism of glycogen metabolism in skeletal muscle.  相似文献   

17.
Liver glycogen phosphorylase associated with the glycogen pellet was activated by a MgATP-dependent process. This activation was reduced by 90% by ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid, not affected by the inhibitor of the cAMP-dependent protein kinase, and increased 2.5-fold by the catalytic subunit of cAMP-dependent protein kinase. Low levels of free Ca2+ (8 x 10(-8) M) completely prevented the effects of the chelator. The activation of phosphorylase by MgATP was shown not to be due to formation of AMP. DEAE-cellulose chromatography of the glycogen pellet separated phosphorylase from phosphorylase kinase. The isolated phosphorylase was no longer activated by MgATP in the presence or absence of the catalytic subunit of cAMP-dependent protein kinase. The isolated phosphorylase kinase phosphorylated and activated skeletal muscle phosphorylase b and the activation was increased 2- to 3-fold by the catalytic subunit of cAMP-dependent protein kinase. Mixing the isolated phosphorylase and phosphorylase kinase together restored the effects of MgATP and the catalytic subunit of cAMP-dependent protein kinase on phosphorylase activity. These findings demonstrate that the phosphorylase kinase associated with liver glycogen has regulatory features similar to those of muscle phosphorylase kinase.  相似文献   

18.
The effects of weaning on the level of glycogen and the activities of glycogen synthase and phosphorylase were determined in rat liver. Glycogen levels in rat liver increased at the start of the weaning period and reached a plateau on postnatal day 20. The active form of glycogen synthase increased until postnatal day 19 and then declined. Total glycogen synthase (active + inactive) remained high during the suckling period and declined to a new low level during the weaning period. The activity ratio (active/total) increased from day 16 to days 18-22 and then decreased to the same level as found during the suckling period. At the onset of weaning the active form of phosphorylase decreased, whereas total phosphorylase initially increased and then decreased after postnatal day 20. Both forms of phosphorylase increased again at the end of the weaning period. The activity ratio decreased at the start of weaning and remained low throughout the rest of the weaning period. The effects of premature weaning were similar to those observed in normally weaned animals, but the changes occurred sooner and were more pronounced.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号