首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Secondary lymphoid organs (the spleen, lymph nodes and mucosal lymphoid tissues) provide the proper environment for antigen-presenting cells to interact with and activate naive T and B lymphocytes. Although it is generally accepted that secondary lymphoid organs are essential for initiating immune responses to microbial antigens and to skin allografts, the prevailing view has been that the immune response to primarily vascularized organ transplants such as hearts and kidneys does not require the presence of secondary lymphoid tissue. The assumption has been that the immune response to such organs is initiated in the graft itself when recipient lymphocytes encounter foreign histocompatibility antigens presented by the graft's endothelial cells. In contrast to this view, we show here that cardiac allografts are accepted indefinitely in recipient mice that lack secondary lymphoid tissue, indicating that the alloimmune response to a vascularized organ transplant cannot be initiated in the graft itself. Moreover, we demonstrate that the permanent acceptance of these grafts is not due to tolerance but is because of immunologic 'ignorance'.  相似文献   

2.
Xenotransplantation of porcine organs has the potential to help overcome the severe shortage of human tissues and organs available for human transplantation. However, numerous hurdles such as immune-mediated xenograft rejection remain before clinical xenotransplantation.In this study, we elucidated the role of human TNF-α-inducing factor, Interleukin-32 (IL-32), in porcine kidney cells (PK-15) during cell-mediated rejection by examining host cell responses. CD8+ and CD4+ T cells numbers were reduced in the lymph nodes of PK-15/IL-32β injected mice. CD3+ Tcells were in mice injected with control cells but PK-15/IL-32α- and PK-15/IL-32β-injected cell numbers were lower in lymphnodes than un transfected controls. In Mixed lymphocyte reaction cultures, the rates of cell proliferation were increased in both PK-15/IL-32α- and PK-15/IL-32β-injected groups compared to the untransfected control groups. The Stable porcine PK-15 cells expression IL-32α and IL-32β inhibited cytotoxic T lymphocyte (CTLs) after cellular xenograft. Our results suggest that human IL-32α and IL-32β regulates on xenograft rejection in cellular xenotransplantation.  相似文献   

3.
Human CD4+ T cells mediate rejection of porcine xenografts   总被引:4,自引:0,他引:4  
It has previously been demonstrated that xenograft rejection in rodents is dependent on CD4+ T cells. However, because of the lack of an appropriate in vivo model, little is known about the cellular basis of human T cell-mediated rejection of xenografts. In this study, we have evaluated the ability of human T cells to mediate rejection of porcine skin grafts in a novel in vivo experimental system using immunodeficient mice as recipients. Recombinase-activating gene-1-deficient mice (R-) lacking mature B and T cells were grafted with porcine skin and received human lymphocytes stimulated in vitro with irradiated porcine PBMC. Skin grafts on mice given either unseparated, activated human lymphocytes, or NK cell-depleted lymphocyte populations were rejected within 18 days after adoptive cell transfer. In contrast, skin grafts on mice given T cell-depleted human lymphocytes or saline showed no gross or histologic evidence of rejection up to 100 days after adoptive transfer. Purified CD4+ T cells were also able to mediate rejection of porcine skin grafts. These data suggest that human CD4+ T cells are sufficient to induce rejection of porcine xenografts. Thus, strategies directed toward CD4+ T cells may effectively prevent cellular rejection of porcine xenografts in humans.  相似文献   

4.
We have previously shown that pretransplant donor lymphocyte infusion (DLI) together with transient depletion of CD4(+) T cells could induce permanent rat-to-mouse heart graft survival, whereas depleting CD4(+) T cells alone failed to do so. In this study, we investigated the mechanism leading to long-term xenograft survival. We found that peripheral CD4(+) T cells from DLI/anti-CD4-treated mice could mount rat heart graft rejection after adoptive transfer into B6 CD4(-/-) mice. Infusing donor-Ag-loaded mature dendritic cells (DCs) could break long-term cardiac xenograft survival in DLI/anti-CD4-treated mice. Interestingly, when the number and phenotype of graft-infiltrating cells were compared between anti-CD4- and DLI/anti-CD4-treated groups, we observed a significant increase in both the number and suppressive activity of alphabeta-TCR(+)CD3(+)CD4(-)CD8(-) double negative regulatory T cells and decrease in the numbers of CD4(+) and CD8(+) T cells in the xenografts of DLI/anti-CD4-treated mice. Moreover, there was a significant reduction in MHC class II-high DCs within the xenografts of DLI/anti-CD4-treated recipients. DCs isolated from the xenografts of anti-CD4- but not DLI/anti-CD4-treated recipients could stimulate CD4(+) T cell proliferation. Our data indicate that functional anti-donor T cells are present in the secondary lymphoid organs of the mice that permanently accepted cardiac xenografts. Their failure to reject xenografts is associated with an increase in double negative regulatory T cells as well as a reduction in Ag stimulation by DCs found within grafts. These findings suggest that local regulatory mechanisms need to be taken into account to control anti-xenograft T cell responses.  相似文献   

5.
Previous studies have shown that pretransplant donor lymphocyte infusion (DLI) can enhance xenograft survival. However, the mechanism by which DLI induces xenograft survival remains obscure. Using T cell subset-deficient mice as recipients we show that CD4+, but not CD8+, T cells are necessary to mediate the rejection of concordant cardiac xenografts. Adoptive transfer of naive CD4+ T cells induces rejection of accepted cardiac xenografts in CD4-/- mice. This rejection can be prevented by pretransplant DLI in the absence of any other treatment. Furthermore, we demonstrate that DLI activates alphabeta-TCR+CD3+CD4-CD8- double-negative (DN) regulatory T (Treg) cells in xenograft recipients, and that DLI-activated DN Treg cells can inhibit the proliferation of donor-specific xenoreactive CD4+ T cells in vitro. More importantly, adoptive transfer of DLI-activated DN Treg cells from xenograft recipients can suppress the proliferation of xenoreactive CD4+ T cells and their ability to produce IL-2 and IFN-gamma in vivo. Adoptive transfer of DLI-activated DN Treg cells also prevents CD4+ T cell-mediated cardiac xenograft rejection in an Ag-specific fashion. These data provide direct evidence that DLI can activate recipient DN Treg cells, which can induce donor-specific long-term cardiac xenograft survival by suppressing the proliferation and function of donor-specific CD4+ T cells in vivo.  相似文献   

6.
Ocular immune privilege is considered essential in the protection against sight-threatening immune responses, as illustrated by the ability of the ocular environment to permit the growth of tumors that are rejected when implanted at other sites. Although several studies indicate that soluble Ag can drain directly into the spleen when injected into the anterior chamber, the primary site of intraocular tumor Ag presentation to tumor-specific CTLs has not been studied. To gain a better understanding of the mechanism involved in ocular immune privilege, we examined to which lymphoid organs anterior chamber tumor Ags primarily drain. Our data show that intraocular tumor Ag drains exclusively to the submandibular lymph nodes, resulting in activation of tumor-specific CTLs, whereas no Ag drainage was found in spleen. However, these tumor-specific CTLs do not distribute systemically and, as a consequence, intraocular tumor growth is unhampered. A similar lack of CTL efficacy has been observed in mice bearing s.c. tumors, which is converted to a systemic tumoricidal CTL response by administration of agonistic anti-CD40 mAb. In contrast, systemic anti-CD40 treatment of eye tumor-bearing mice did not result in mobilizing tumor-specific CTLs or tumor eradication. Together, these results show that intraocular tumor Ag drains to regional lymph nodes for activation of tumor-specific CTLs. However, the induced tumor-specific immunity is insufficient for tumor clearance, even combined with otherwise highly effective immune intervention protocols.  相似文献   

7.
The differentiation of CD4(+) T cells is regulated by cytokines locally within the compartments of secondary lymphoid organs during adaptive immune responses. Quantitative data about the expression of cytokine mRNAs within the T and B cell zones of lymphoid organs are lacking. In this study, we assessed the expression of multiple cytokine genes within the lymphoid compartments of the spleen of rats after two types of stimulation. First, the spleen was stimulated directly by a blood-derived Ag. Second, the spleen was stimulated indirectly by incoming lymphocytes that had been activated and released during a proceeding immune response at a distant tissue site. Using laser microdissection, we show that the expression of cytokine mRNAs was compartment specific, transient, and preceded cell proliferation after the direct antigenic stimulation. Surprisingly, the indirect stimulation by incoming activated lymphocytes induced similar cytokines in the T cell zone. However, the nonoverlapping expression was lost and IL10 appeared as the major cytokine in all compartments. Thus, tracking two types of immune activation without disturbing the integrity of structures reveals distinct and overlapping events in the compartments of the spleen. This information adds a new dimension to the understanding of immune responses in vivo.  相似文献   

8.
The distribution of 51Cr-labeled lymphoid cells from normal mice and mice immunized against a tumor were compared after intravenous inoculation of the labeled cells into normal syngeneic recipients. Spleen cell preparations from immune donors contained increased percentages of spleen and bone marrow-seeking cells, thus suggesting expansion of these cell populations when immunity to a tumor exists. Homing of labeled normal cells in tumor cell-injected normal animals was somewhat different from that seen in tumor cell-inoculated mice that were immunized against the tumor. In the latter case, accumulations of lymph node and spleen cells in recipient lymph nodes and bone marrow were consistently lower. In contrast, lymphoid cells from animals immunized against the tumor were found to accumulate in virtually the same percentages in lymphoid organs of normal and immune recipients. The behavior of lymphoid cell populations from thymus or bone marrow that consist mainly of precursor cells was unaffected by presence of malignancy and/or tumor immunity.  相似文献   

9.
Delayed xenograft rejection is a major hurdle that needs to be addressed to prolong graft survival in pig-to-primate xenotransplantation. NK cell activation has been implicated in delayed xenograft rejection. Both Ab-dependent and independent mechanisms are responsible for the high susceptibility of porcine cells to human NK cell-mediated cytotoxicity. Previous reports demonstrated a role of Galalpha1,3-Gal Ag in triggering the Ab-independent responses. We hypothesize that expression of CD80 and/or CD86 on porcine cells may also play a role in NK cell activation as human NK cells express a variant of CD28. Our initial analysis showed that porcine endothelial cells and fibroblasts express CD86, but not CD80. Genetic engineering of these cells to express hCD152-hCD59, a chimeric molecule designed to block CD86 in cis, was accompanied by a reduction in susceptibility to human NK cell-mediated cytotoxicity. The use of a specific anti-porcine CD86-blocking Ab and the NK92 and YTS cell lines further confirmed the involvement of CD86 in triggering NK cell-mediated lysis of porcine cells. Maximal protection was achieved when hCD152-hCD59 was expressed in H transferase-transgenic cells, which show reduced Galalpha1,3-Gal expression. In this work, we describe two mechanisms of human NK cell-mediated rejection of porcine cells and demonstrate that genetically modified cells resist Ab-independent NK cell-mediated cytotoxicity.  相似文献   

10.
Elimination of porcine hemopoietic cells by macrophages in mice.   总被引:2,自引:0,他引:2  
The difficulty in achieving donor hemopoietic engraftment across highly disparate xenogeneic species barriers poses a major obstacle to exploring xenograft tolerance induction by mixed chimerism. In this study, we observed that macrophages mediate strong rejection of porcine hemopoietic cells in mice. Depletion of macrophages with medronate-encapsulated liposomes (M-liposomes) markedly improved porcine chimerism, and early chimerism in particular, in sublethally irradiated immunodeficient and lethally irradiated immunocompetent mice. Although porcine chimerism in the peripheral blood and spleen of M-liposome-treated mice rapidly declined after macrophages had recovered and became indistinguishable from controls by wk 5 post-transplant, the levels of chimerism in the marrow of these mice remained higher than those in control recipients at 8 wks after transplant. These results suggest that macrophages that developed in the presence of porcine chimerism were not adapted to the porcine donor and that marrow-resident macrophages did not phagocytose porcine cells. Moreover, M-liposome treatment had no effect on the survival of porcine PBMC injected into the recipient peritoneal cavity, but was essential for the migration and relocation of these cells into other tissues/organs, such as spleen, bone marrow, and peripheral blood. Together, our results suggest that murine reticuloendothelial macrophages, but not those in the bone marrow and peritoneal cavity, play a significant role in the clearance of porcine hemopoietic cells in vivo. Because injection of M-liposomes i.v. mainly depletes splenic macrophages and liver Kupffer cells, the spleen and/or liver are likely the primary sites of porcine cell clearance in vivo.  相似文献   

11.
Porcine endogenous retrovirus (PERV), porcine cytomegalovirus (PCMV), and porcine lymphotropic herpesvirus (PLHV) are common porcine viruses that may be activated with immunosuppression for xenotransplantation. Studies of viral replication or transmission are possible due to prolonged survival of xenografts in baboon recipients from human decay-accelerating factor transgenic or alpha-1,3-galactosyltransferase gene knockout miniature swine. Ten baboons underwent xenotransplantation with transgenic pig organs. Graft survival was 32 to 179 days. Recipient serial samples of peripheral blood mononuclear cells (PBMC) and plasma were analyzed for PCMV, PERV, and PLHV-1 nucleic acids and viral replication using quantitative PCR assays. The PBMC contained PERV proviral DNA in 10 animals, PLHV-1 DNA in 6, and PCMV in 2. PERV RNA was not detected in any PBMC or serum samples. Plasma PLHV-1 DNA was detected in one animal. Pig cell microchimerism (pig major histocompatibility complex class I and pig mitochondrial cytochrome c oxidase subunit II sequences) was present in all recipients with detectable PERV or PLHV-1 (85.5%). Productive infection of PERV or PLHV-1 could not be demonstrated. The PLHV-1 viral load did not increase in serum over time, despite prolonged graft survival and pig cell microchimerism. There was no association of viral loads with the nature of exogenous immune suppression. In conclusion, PERV provirus and PLHV-1 DNA were detected in baboons following porcine xenotransplantation. Viral detection appeared to be due to persistent pig cell microchimerism. There was no evidence of productive infection in recipient baboons for up to 6 months of xenograft function.  相似文献   

12.
The generation of T cell immunity requires the acquisition and presentation of Ag on bone marrow-derived APCs. Dendritic cells (DC) are believed to be the most potent bone marrow-derived APCs, and the only ones that can stimulate naive T cells to productively respond to Ags. Because macrophages (Mphi) are bone marrow-derived APCs that are also found in tissues and lymphoid organs, can acquire and present Ag, and can express costimulatory molecules, we have investigated their potential to stimulate primary T cell responses in vivo. We find that both injected Mphi and DCs can migrate from peripheral tissues or blood into lymphoid organs. Moreover, injection of peptide-pulsed Mphi or DCs into mice stimulates CD8 T cells to proliferate, express effector functions including cytokine production and cytolysis, and differentiate into long-lived memory cells. Mphi and DCs stimulate T cells directly without requiring cross-presentation of Ag on host APCs. Therefore, more than one type of bone marrow-derived APC has the potential to prime T cell immunity. In contrast, another bone marrow-derived cell, the T lymphocyte, although capable of presenting Ag and homing to the T cell areas of lymphoid organs, is unable to stimulate primary responses. Because Mphi can be very abundant cells, especially at sites of infection and inflammation, they have the potential to play an important role in immune surveillance and the initiation of T cell immunity.  相似文献   

13.
To evaluate the priming and trafficking of male Ag-reactive CD4(+) T cells in vivo, we developed an adoptive transfer model, using Marilyn (Mar) TCR transgenic T cells that are specific for the H-Y minor transplantation Ag plus I-A(b). By manipulating donor and recipient strain combinations, we permitted the Mar CD4(+) T cells to respond to the H-Y Ag after processing and presentation by recipient APCs (indirect pathway), or to the male Ag as expressed on donor APCs (direct pathway). Mar CD4(+) T cells responding through the indirect pathway specifically proliferated and expressed activation markers between days 2 and 4 posttransplant, migrated to the graft 2-3 days before cessation of graft heartbeat, and were detected in close proximity to transplant-infiltrating recipient APCs. Intriguingly, adoptively transferred Mar T cells did not respond to male heart or skin grafts placed onto syngeneic MHC class II-deficient female recipients, demonstrating that activation of Mar T cell preferentially occurs through cognate interactions with processed male Ag expressed on recipient APCs. The data highlight the potency of indirect processing and presentation pathways in vivo and underscore the importance of indirectly primed CD4(+) T cells as relevant participants in both the priming and effector phases of acute graft rejection.  相似文献   

14.
Accessory cells present Ag together with costimulatory signals as immunogens and without costimulatory signals as tolerogens. Responsiveness and unresponsiveness are thus alternatives of T cell immune reactions to Ag. Superantigens appear to make an exception; being presented by accessory cells capable of providing costimulatory signals, these Ag induce a strong T cell response but leave T cells unresponsive to a secondary challenge (anergy). We show here that T cell anergy is not a mandatory consequence of superantigen-induced activation. Mls-1- BALB/c recipients of DBA/2 spleen cells mount vigorous Mls-1 responses in vivo but their T cells retain the ability to respond to a subsequent Mls-1 challenge in vitro. We tested the possibility that the inability of DBA/2 spleen cells to inactivate Mls-1-reactive BALB/c T cells was the result of excessive costimulatory activity provided by Mls-1+ DBA/2 B cells. Costimulatory accessory cell activity has been reported to be destroyed by UV light. We exposed superantigen-presenting cells to UV radiation and found that they had lost the ability to stimulate an Mls-1 response without, however, gaining the capacity to render Mls-1-specific T cells anergic. Despite their inability to noticeably stimulate Mls-1-reactive T cells, UV-treated Mls-1+ lymphocytes induced an absolute unresponsiveness in Mls-1- recipients to a second challenge with the superantigen. Our data are in agreement with previous evidence, confirmed here, that BALB/c mice establish immunity against Mls-1+ cells, which causes the accelerated rejection of superantigen-bearing lymphocytes. Thus, our data imply that, whereas it takes stimulatory superantigenic Mtv-7 gene products to induce the activation of superantigen-reactive T cells, nonsuperantigenic Mtv-7 gene products may induce an immune response leading to the elimination of Mtv-7+ lymphoid cells.  相似文献   

15.
16.
Macrophages have been proposed as the major effector cell in T cell-mediated xenograft rejection. To determine their role in this response, NOD-SCID mice were transplanted with fetal pig pancreas (FPP) before reconstitution with CD4(+) T cells from BALB/c mice. Twelve days after CD4(+) T cell reconstitution, purified macrophages (depleted of T cells) were isolated from CD4(+) T cell-reconstituted FPP recipient mice and adoptively transferred to their nonreconstituted counterparts. After adoptive macrophage transfer, FPP recipient mice transferred with macrophages from CD4(+) T cell-reconstituted mice demonstrated xenograft destruction along with massive macrophage infiltration at day 4 and complete graft destruction at day 8 postmacrophage transfer. By contrast, FPP recipients that received macrophages from nonreconstituted mice showed intact FPP xenografts with few infiltrating macrophages at both days 4 and 8 after macrophage transfer. The graft-infiltrating macrophages showed increased expression of their activation markers. Depletion of endogenous macrophages or any remaining CD4(+) T cells did not delay graft rejection in the macrophage-transferred FPP recipients, whereas depletion of transferred macrophages with clodronate liposomes prevented graft rejection. Our results show that macrophages primed by FPP and activated by CD4(+) T cells were attracted from the peripheral circulation and were capable of specific targeting and destruction of FPP xenografts. This suggests that in xenograft rejection, there are macrophage-specific recognition and targeting signals that are independent of those received by T cells.  相似文献   

17.
Yu X  Jiang Y  Lu L  Gong X  Sun X  Xuan Z  Lu L 《PloS one》2012,7(3):e34419
Nerve injuries causing segmental loss require nerve grafting. However, autografts and allografts have limitations for clinical use. Peripheral nerve xenotransplantation has become an area of great interest in clinical surgery research as an alternative graft strategy. However, xenotransplant rejection is severe with cellular immunity, and Th1 cells play an important role in the process. To better understand the process of rejection, we used peripheral nerve xenografts from rats to mice and found that mononuclear cells expressing IFN-γ and IL-17 infiltrated around the grafts, and IFN-γ and IL-17 producing CD4+ and CD8+ T cells increased during the process of acute rejection. The changes of IL-4 level had no significant difference between xenotransplanted group and sham control group. The rejection of xenograft was significantly prevented after the treatment of IL-17 and IFN-γ neutralizing antibodies. These data suggest that Th17 cells contribute to the acute rejection process of peripheral nerve xenotransplant in addition to Th1 cells.  相似文献   

18.
Xenotransplantation of porcine organs carries the risk of reactivation of latent virus in donor and recipient tissues as well as transmission of viruses between species. We have investigated the activation of baboon cytomegalovirus (BCMV) and porcine CMV (PCMV) in a pig-to-primate model of xenotransplantation. Tissues originating from a series of six swine-to-baboon composite thymokidney xenotransplants were investigated. Four immunosuppressed baboons died (survival range, 7 to 27 days) with the graft in situ. Increases in BCMV DNA copy numbers occurred in three (75%) of these baboons and was thought to be responsible for pneumonitis and the death of one animal. In two baboons, disseminated intravascular coagulation was successfully treated by graftectomy and discontinuation of immunosuppression. PCMV was upregulated in five of six xenografts (83%). PCMV infection was associated with ureteric necrosis in one xenograft. Although significantly increased in native tissues, low levels of BCMV and PCMV were also detected in tissues other than that of the native viral host species. The cross-species presence of CMV did not appear to cause clinical or histological signs of invasive disease. Thus, viral infections with clinical disease were restricted to tissues of the native species of each virus. Intensive immune suppression currently required for xenotransplantation results in a significant risk of reactivation of latent infections by BCMV and PCMV. It is not yet known whether viral DNA detected across species lines represents cellular microchimerism, ongoing viral infection, or uptake of free virus. The observation of graft injury by PCMV demonstrates that CMV will be an important pathogen in immunosuppressed xenograft recipients. Strategies must be developed to exclude CMV from porcine organ donors.  相似文献   

19.
Transgenic pigs are promising donor organisms for xenotransplantation as they share many anatomical and physiological characteristics with humans. The most profound barrier to pig‐to‐primate xenotransplantation is the rejection of the grafted organ by a cascade of immune mechanisms commonly referred to as hyperacute rejection (HAR), acute humoral xenograft rejection (AHXR), immune cell‐mediated rejection, and chronic rejection. Various strategies for the genetic modification of pigs facilitate tailoring them to be donors for organ transplantation. Genetically modified pigs lacking alpha‐1,3‐Gal epitopes, the major xenoantigens triggering HAR of pig‐to‐primate xenografts, are considered to be the basis for further genetic modifications that can address other rejection mechanisms and incompatibilities between the porcine and primate blood coagulation systems. These modifications include expression of human complement regulatory proteins, CD39, endothelial protein C receptor, heme oxygenase 1, thrombomodulin, tissue factor pathway inhibitor as well as modulators of the cellular immune system such as human TNF alpha‐related apoptosis inducing ligand, HLA‐E/beta‐2‐microglobulin, and CTLA‐4Ig. In addition, transgenic strategies have been developed to reduce the potential risk of infections by endogenous porcine retroviruses. The protective efficacy of all these strategies is strictly dependent on a sufficiently high expression level of the respective factors with the required spatial distribution. This review provides an overview of the transgenic approaches that have been used to generate donor pigs for xenotransplantation, as well as their biological effects in in vitro tests and in preclinical transplantation studies. A future challenge will be to combine the most important and efficient genetic modifications in multi‐transgenic pigs for clinical xenotransplantation. Mol. Reprod. Dev. 77: 209–221, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Foxp3+ regulatory T cells (Tregs) play a pivotal role in the maintenance of peripheral T cell tolerance and are thought to interact with dendritic cells (DC) in secondary lymphoid organs. We analyzed here the in vivo requirements for selective expansion of Ag-specific Treg vs CD4+CD25- effector T cells and engagement of Ag-specific Treg-DC interactions in secondary lymphoid organs. Using i.v. Ag delivery in the absence of inflammation, we found that CD4+CD25+Foxp3+ Tregs undergo vigorous expansion and accumulate whereas naive CD4+CD25-Foxp3- T cells undergo abortive activation. Quantifying directly the interactions between Tregs and CD11c+ DC, we found that Tregs establish cognate contacts with endogenous CD11c+ DC in spleen and lymph nodes at an early time point preceding their expansion. Importantly, we observed that as few as 10(3) Tregs selectively expanded by i.v. Ag injection are able to suppress B and T cell immune responses in mouse recipients challenged with the Ag. Our results demonstrate that Tregs are selectively mobilized by Ag recognition in the absence of inflammatory signals, and can induce thereafter potent tolerance to defined Ag targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号