首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α3β1 integrin has been considered to be a mysterious adhesion molecule due to the pleiotropy in its ligand-binding specificity. However, recent studies have identified laminin isoforms as high-affinity ligands for this integrin, and demonstrated that α3β1 integrin plays a number of essential roles in development and differentiation, mainly by mediating the establishment and maintenance of epithelial tissues. Furthermore, α3β1 integrin is also implicated in many other biological phenomena, including cell growth and apoptosis, angiogenesis and neural functions. This integrin receptor forms complexes with various other membrane proteins, such as the transmembrane-4 superfamily proteins (tetraspanins), cytoskeletal proteins and signaling molecules. Recently, lines of evidence have been reported showing that complex formation regulates integrin functions in cell adhesion and migration, signal transduction across cell membranes, and cytoskeletal organization. In addition to these roles in physiological processes, α3β1 integrin performs crucial functions in various pathological processes, especially in wound healing, tumor invasion and metastasis, and infection by pathogenic microorganisms.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

2.
3.
Previously we found that α3β1 integrin–deficient neonatal mice develop micro-blisters at the epidermal–dermal junction. These micro-blisters were associated with poor basement membrane organization. In the present study we have investigated the effect of α3β1-deficiency on other keratinocyte integrins, actin-associated proteins and F-actin organization. We show that the absence of α3β1 results in an increase in stress fiber formation in keratinocytes grown in culture and at the basal face of the basal keratinocytes of α3-null epidermis. Moreover, we see a higher concentration of actin-associated proteins such as vinculin, talin, and α-actinin at focal contact sites in the α3-deficient keratinocytes. These changes in focal contact composition were not due to a change in steady-state levels of these proteins, but rather to reorganization due to α3β1 deficiency. Apart from the loss of α3β1 there is no change in expression of the other integrins expressed by the α3-null keratinocytes. However, in functional assays, α3β1 deficiency allows an increase in fibronectin and collagen type IV receptor activities. Thus, our findings provide evidence for a role of α3β1 in regulating stress fiber formation and as a trans-dominant inhibitor of the functions of the other integrins in mouse keratinocytes. These results have potential implications for the regulation of keratinocyte adhesion and migration during wound healing.  相似文献   

4.
α4 integrins (α4β1 and α4β7) have been shown to mediate both cell-matrix adhesion to fibronectin and cell-cell adhesion to VCAM-1. These interactions have been suggested to contribute to hematopoiesis, lymphocyte homing, recruitment of inflammatory cells, neural crest cell migration and myogenesis. We report here the cloning of chicken α4 cDNA and its use to define the patterns of expression of α4 mRNA and protein in early chicken embryos (19–22 somite pairs), a stage at which neural crest cells can be examined at various points in their migration and somitic development and differentiation can also be observed at various stages. We observe widespread expression of both α4 mRNA and protein, although the patterns of steady state expression do not conform precisely. Many neural crest cells contain significant levels of α4 mRNA. Some neural crest cells express α4 protein but its expression is transient and/or limited to a subset of these cells. α4 is strongly expressed at both mRNA and protein levels by somitic cells and their derivatives in the sclerotome, dermatome and myotome and is also expressed in neural tube, otic placode, heart, gut endoderm and some other tissues. Comparison with the distributions of fibronectin shows that, although some α4 expression occurs in locations consistent with a role in cell-matrix adhesion to fibronectin, α4 is also expressed in other places where fibronectin is low or absent and a role for α4 in cell-cell interactions appears more likely.  相似文献   

5.
Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many features with human Alport patients, including the retention of collagen α1α2α1(IV) in GBMs, effacement of podocyte foot processes, gradual loss of glomerular barrier properties, and progression to renal failure. To learn more about the pathogenesis of Alport disease, we undertook a discovery proteomics approach to identify proteins that were differentially expressed in glomeruli purified from Alport and wild-type mouse kidneys. Pairs of cy3- and cy5-labeled extracts from 5-week old Alport and wild-type glomeruli, respectively, underwent 2-dimensional difference gel electrophoresis. Differentially expressed proteins were digested with trypsin and prepared for mass spectrometry, peptide ion mapping/fingerprinting, and protein identification through database searching. The intermediate filament protein, vimentin, was upregulated ∼2.5 fold in Alport glomeruli compared to wild-type. Upregulation was confirmed by quantitative real time RT-PCR of isolated Alport glomeruli (5.4 fold over wild-type), and quantitative confocal immunofluorescence microscopy localized over-expressed vimentin specifically to Alport podocytes. We next hypothesized that increases in vimentin abundance might affect the basement membrane protein receptors, integrins, and screened Alport and wild-type glomeruli for expression of integrins likely to be the main receptors for GBM type IV collagen and laminin. Quantitative immunofluorescence showed an increase in integrin α1 expression in Alport mesangial cells and an increase in integrin α3 in Alport podocytes. We conclude that overexpression of mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM.  相似文献   

6.
The adult midbrain contains 75 % of all dopaminergic neurons in the CNS. Within the midbrain, these neurons are divided into three anatomically and functionally distinct clusters termed A8, A9 and A10. The A9 group plays a functionally non-redundant role in the control of voluntary movement, which is highlighted by the motor syndrome that results from their progressive degeneration in the neurodegenerative disorder, Parkinson’s disease. Despite 50 years of investigation, treatment for Parkinson’s disease remains symptomatic, but an intensive research effort has proposed delivering neurotrophic factors to the brain to protect the remaining dopaminergic neurons, or using these neurotrophic factors to differentiate dopaminergic neurons from stem cell sources for cell transplantation. Most neurotrophic factors studied in this context have been members of the transforming growth factor β (TGFβ) superfamily. In recent years, an intensive research effort has focused on understanding the function of these proteins in midbrain dopaminergic neuron development and their role in the molecular architecture that regulates the development of this brain region, with the goal of applying this knowledge to develop novel therapies for Parkinson’s disease. In this review, the current evidence showing that TGFβ superfamily members play critical roles in the regulation of midbrain dopaminergic neuron induction, differentiation, target innervation and survival during embryonic and postnatal development is analysed, and the implications of these findings are discussed.  相似文献   

7.
The platelet integrin αIIbβ3 binds to a KQAGDV motif at the fibrinogen γ-chain C terminus and to RGD motifs present in loops in many extracellular matrix proteins. These ligands bind in a groove between the integrin α and β-subunits; the basic Lys or Arg side chain hydrogen bonds to the αIIb-subunit, and the acidic Asp side chain coordinates to a metal ion held by the β3-subunit. Ligand binding induces headpiece opening, with conformational change in the β-subunit. During this opening, RGD slides in the ligand-binding pocket toward αIIb, with movement of the βI-domain β1-α1 loop toward αIIb, enabling formation of direct, charged hydrogen bonds between the Arg side chain and αIIb. Here we test whether ligand interactions with β3 suffice for stable ligand binding and headpiece opening. We find that the AGDV tetrapeptide from KQAGDV binds to the αIIbβ3 headpiece with affinity comparable with the RGDSP peptide from fibronectin. AGDV induced complete headpiece opening in solution as shown by increase in hydrodynamic radius. Soaking of AGDV into closed αIIbβ3 headpiece crystals induced intermediate states similarly to RGDSP. AGDV has very little contact with the α-subunit. Furthermore, as measured by epitope exposure, AGDV, like the fibrinogen γ C-terminal peptide and RGD, caused integrin extension on the cell surface. Thus, pushing by the β3-subunit on Asp is sufficient for headpiece opening and ligand sliding, and no pulling by the αIIb subunit on Arg is required.  相似文献   

8.
The dental epithelium and extracellular matrix interact to ensure that cell growth and differentiation lead to the formation of teeth of appropriate size and quality. To determine the role of fibronectin in differentiation of the dental epithelium and tooth formation, we analyzed its expression in developing incisors. Fibronectin mRNA was expressed during the presecretory stage in developing dental epithelium, decreased in the secretory and early maturation stages, and then reappeared during the late maturation stage. The binding of dental epithelial cells derived from postnatal day-1 molars to a fibronectin-coated dish was inhibited by the RGD but not RAD peptide, and by a β1 integrin-neutralizing antibody, suggesting that fibronectin-β1 integrin interactions contribute to dental epithelial-cell binding. Because fibronectin and β1 integrin are highly expressed in the dental mesenchyme, it is difficult to determine precisely how their interactions influence dental epithelial differentiation in vivo. Therefore, we analyzed β1 integrin conditional knockout mice (Intβ1lox-/lox-/K14-Cre) and found that they exhibited partial enamel hypoplasia, and delayed eruption of molars and differentiation of ameloblasts, but not of odontoblasts. Furthermore, a cyst-like structure was observed during late ameloblast maturation. Dental epithelial cells from knockout mice did not bind to fibronectin, and induction of ameloblastin expression in these cells by neurotrophic factor-4 was inhibited by treatment with RGD peptide or a fibronectin siRNA, suggesting that the epithelial interaction between fibronectin and β1 integrin is important for ameloblast differentiation and enamel formation.  相似文献   

9.
10.
High-risk neuroblastoma is associated with an overall survival rate of 30–50%. Neuroblastoma-expressed cell adhesion receptors of the integrin family impact cell adhesion, migration, proliferation and survival. Integrin α4 is essential for neural crest cell motility during development, is highly expressed on leukocytes, and is critical for transendothelial migration. Thus, cancer cells that express this receptor may exhibit increased metastatic potential. We show that α4 expression in human and murine neuroblastoma cell lines selectively enhances in vitro interaction with the alternatively spliced connecting segment 1 of fibronectin, as well as vascular cell adhesion molecule-1 and increases migration. Integrin α4 expression enhanced experimental metastasis in a syngeneic tumor model, reconstituting a pattern of organ involvement similar to that seen in patients. Accordingly, antagonism of integrin α4 blocked metastasis, suggesting adhesive function of the integrin is required. However, adhesive function was not sufficient, as mutants of integrin α4 that conserved the matrix-adhesive and promigratory function in vitro were compromised in their metastatic capacity in vivo. Clinically, integrin α4 is more frequently expressed in non-MYNC amplified tumors, and is selectively associated with poor prognosis in this subset of disease. These results reveal an unexpected role for integrin α4 in neuroblastoma dissemination and identify α4 as a potential prognostic indicator and therapeutic target.  相似文献   

11.
Loss of function mutations in GPR56, which encodes a G protein-coupled receptor, cause a specific human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Studies from BFPP postmortem brain tissue and Gpr56 knockout mice have previously showed that GPR56 deletion leads to breaches in the pial basement membrane (BM) and neuronal ectopias during cerebral cortical development. Since α3β1 integrin also plays a role in pial BM assembly and maintenance, we evaluated whether it functions together with GPR56 in regulating the same developmental process. We reveal that loss of α3 integrin enhances the cortical phenotype associated with Gpr56 deletion, and that neuronal overmigration through a breached pial BM occurs earlier in double knockout than in Gpr56 single knockout mice. These observations provide compelling evidence of the synergism of GPR56 and α3β1 integrin in regulating the development of cerebral cortex.  相似文献   

12.
α1-Antitrypsin (AAT) is a 52-kDa circulating serine protease inhibitor. Production of AAT by the liver maintains 0.9–1.75 mg/mL circulating levels. During acute-phase responses, circulating AAT levels increase more than fourfold. In individuals with one of several inherited mutations in AAT, low circulating levels increase the risk for lung, liver and pancreatic destructive diseases, particularly emphysema. These individuals are treated with lifelong weekly infusions of human plasma–derived AAT. An increasing amount of evidence appears to suggest that AAT possesses not only the ability to inhibit serine proteases, such as elastase and proteinase-3 (PR-3), but also to exert antiinflammatory and tissue-protective effects independent of protease inhibition. AAT modifies dendritic cell maturation and promotes T regulatory cell differentiation, induces interleukin (IL)-1 receptor antagonist and IL-10 release, protects various cell types from cell death, inhibits caspases-1 and -3 activity and inhibits IL-1 production and activity. Importantly, unlike classic immunosuppressants, AAT allows undeterred isolated T-lymphocyte responses. On the basis of preclinical and clinical studies, AAT therapy for nondeficient individuals may interfere with disease progression in type 1 and type 2 diabetes, acute myocardial infarction, rheumatoid arthritis, inflammatory bowel disease, cystic fibrosis, transplant rejection, graft versus host disease and multiple sclerosis. AAT also appears to be antibacterial and an inhibitor of viral infections, such as influenza and human immunodeficiency virus (HIV), and is currently evaluated in clinical trials for type 1 diabetes, cystic fibrosis and graft versus host disease. Thus, AAT therapy appears to have advanced from replacement therapy, to a safe and potential treatment for a broad spectrum of inflammatory and immune-mediated diseases.  相似文献   

13.
14.
In eukaryotes, class I α-mannosidases are involved in early N-glycan processing reactions and in N-glycan–dependent quality control in the endoplasmic reticulum (ER). To investigate the role of these enzymes in plants, we identified the ER-type α-mannosidase I (MNS3) and the two Golgi-α-mannosidase I proteins (MNS1 and MNS2) from Arabidopsis thaliana. All three MNS proteins were found to localize in punctate mobile structures reminiscent of Golgi bodies. Recombinant forms of the MNS proteins were able to process oligomannosidic N-glycans. While MNS3 efficiently cleaved off one selected α1,2-mannose residue from Man9GlcNAc2, MNS1/2 readily removed three α1,2-mannose residues from Man8GlcNAc2. Mutation in the MNS genes resulted in the formation of aberrant N-glycans in the mns3 single mutant and Man8GlcNAc2 accumulation in the mns1 mns2 double mutant. N-glycan analysis in the mns triple mutant revealed the almost exclusive presence of Man9GlcNAc2, demonstrating that these three MNS proteins play a key role in N-glycan processing. The mns triple mutants displayed short, radially swollen roots and altered cell walls. Pharmacological inhibition of class I α-mannosidases in wild-type seedlings resulted in a similar root phenotype. These findings show that class I α-mannosidases are essential for early N-glycan processing and play a role in root development and cell wall biosynthesis in Arabidopsis.N-glycosylation is a major co- and posttranslational modification of proteins in eukaryotic cells. The biosynthesis of protein N-linked glycans starts in the endoplasmic reticulum (ER) when the oligosaccharyltransferase complex catalyzes the transfer of the Glc3Man9GlcNAc2 oligosaccharide from the lipid-linked precursor to Asn residues (N-X-S/T) of nascent polypeptide chains. Subsequent N-glycan processing involves a series of highly coordinated step-by-step enzymatic conversions occurring in the ER and Golgi apparatus (Kornfeld and Kornfeld, 1985). In the first trimming reactions, α-glucosidases I (GCSI) and GCSII cleave off three glucose residues from Glc3Man9GlcNAc2 to generate Man9GlcNAc2 (Figure 1A). The next steps of the pathway are the removal of four α1,2-linked mannose residues to provide the Man5GlcNAc2 substrate for the formation of complex N-glycans in the Golgi apparatus. In mammals, these mannose trimming reactions are catalyzed by class I α-mannosidases (glycosyl hydrolase family 47 of the Carbohydrate Active Enzymes database; http://www.cazy.org/). These enzymes are inverting glycosyl hydrolases that are highly specific for α1,2-mannose residues, require Ca2+ for catalytic activity, and are sensitive to inhibition by pyranose analogs such as 1-deoxymannojirimycin and kifunensine (Lipari et al., 1995; Gonzalez et al., 1999). Class I α-mannosidases are conserved through eukaryotic evolution and do not share sequence homology with class II α-mannosidases, such as Golgi α-mannosidase II and the catabolic lysosomal and cytoplasmic α-mannosidases (Gonzalez et al., 1999; Herscovics, 2001).Open in a separate windowFigure 1.Cartoon of Important Oligosaccharide Structures.(A) Man9GlcNAc2 oligosaccharide (Man9): the substrate for ER-MNSI.(B) Man8GlcNAc2 isomer Man8.1 according to Tomiya et al. (1991): the product of ER-MNSI and substrate for Golgi-MNSI.(C) Man5GlcNAc2 (Man5.1): the product of the mannose trimming reactions.The linkage of the sugar residues is indicated.[See online article for color version of this figure.]The mammalian class I α-mannosidase family consists of three protein subgroups, which have been distinguished based on their sequence similarity and proposed function: ER-α1,2-mannosidases I (ER-MNSIs), Golgi-α-mannosidases I (Golgi-MNSIs), and ER degradation-enhancing α-mannosidase (EDEM)-like proteins (Mast and Moremen, 2006). In humans, there is a single ER-MNSI, which cleaves the terminal mannose residue from the b-branch of the Man9GlcNAc2 oligosaccharide to create the Man8GlcNAc2 isomer Man8.1 (Figure 1B). Subsequently, Golgi-MNSI (three isoforms, Golgi-MNSIA, Golgi-MNSIB, and Golgi-MNSIC, are present in humans) catalyze the removal of the remaining three α1,2-linked mannose residues to generate Man5GlcNAc2 (Figure 1C). The three human EDEM proteins are not directly involved in N-glycan processing but play a role in ER-associated degradation of glycoproteins (Mast et al., 2005; Hirao et al., 2006; Olivari et al., 2006).The formation of the Man8GlcNAc2 isomer (Man8.1), which is catalyzed by ER-MNSI, is the last N-glycan processing step that is conserved in yeast and mammals. Apart from its N-glycan processing function, ER-MNSI plays a key role in ER-mediated quality control of glycoproteins in yeasts and mammals (Mast and Moremen, 2006; Lederkremer, 2009). It has been proposed that ER-MNSI cooperates with mammalian EDEM1 to 3 or the yeast α1,2-mannosidase HTM1 to generate the signal that marks misfolded glycoproteins for degradation through the ER-associated protein degradation (ERAD) pathway. This quality control process, which finally leads to retrotranslocation to the cytoplasm and hydrolysis by the 26S proteasome, serves to prevent the secretion of aberrantly folded cargo proteins and is required to maintain protein homeostasis in the ER. Initially it was proposed that the Man8GlcNAc2 isomer Man8.1 (Figure 1B) flags aberrantly folded glycoproteins for degradation; however, recent evidence suggests that further mannose trimming to Man7GlcNAc2 in yeast and Man5-6GlcNAc2 in mammals is required to trigger ERAD (Avezov et al., 2008; Clerc et al., 2009). In addition, these mannose cleavage reactions serve also to release glycoproteins from the calnexin/calreticulin quality control cycle (Caramelo and Parodi, 2008).Unlike for animals and yeast, much less is known about the biological function of plant class I α-mannosidases. Processing mannosidases have been purified and characterized from mung bean (Vigna radiata) seedlings and castor bean (Ricinus communis) cotyledons (Forsee, 1985; Szumilo et al., 1986; Kimura et al., 1991). These preparations were a mixture of different α-mannosidases, and no evidence for ER-MNSI-like activity was provided. A putative Golgi-α-mannosidase I has been cloned from soybean (Glycine max) (Nebenführ et al., 1999). A green fluorescent protein (GFP)-tagged fusion protein of the soybean enzyme has been shown to reside in the cis-stacks of the Golgi apparatus (Nebenführ et al., 1999; Saint-Jore-Dupas et al., 2006), but its role in N-glycan processing and its enzymatic properties have not been reported so far. Thus, the involvement of class I α-mannosidases in N-glycan processing as well as in glycoprotein quality control in plants is still unclear, and the existence of a plant ER-MNSI has so far been inferred only from the presence of Man8GlcNAc2 oligosaccharides on ER-resident glycoproteins (Pagny et al., 2000).Here, we report the molecular cloning and biochemical characterization of the enzymes accounting for ER-MNSI and Golgi-MNSI activities in Arabidopsis thaliana. We also demonstrate that disruption of these genes leads to severe cell expansion defects in roots as well as to distinct cell wall alterations. Hence, the identification of the Arabidopsis ER-type and Golgi class I α-mannosidases not only establishes the molecular basis for the missing steps in the plant N-glycan processing pathway but also provides unprecedented insights into the role of N-glycans in plant development.  相似文献   

15.
Integrins affect the motility of multiple cell types to control cell survival, growth, or differentiation, which are mediated by cell-cell and cell-extracellular matrix interactions. We reported previously that the α9 integrin splicing variant, SFα9, promotes WT α9 integrin-dependent adhesion. In this study, we introduced a new murine α4 integrin splicing variant, α4B, which has a novel short cytoplasmic tail. In inflamed tissues, the expression of α4B, as well as WT α4 integrin, was up-regulated. Cells expressing α4B specifically bound to VCAM-1 but not other α4 integrin ligands, such as fibronectin CS1 or osteopontin. The binding of cells expressing WT α4 integrin to α4 integrin ligands is inhibited by coexpression of α4B. Knockdown of α4B in metastatic melanoma cell lines results in a significant increase in lung metastasis. Expression levels of WT α4 integrin are unaltered by α4B, with α4B acting as a regulatory subunit for WT α4 integrin by a dominant-negative effect or inhibiting α4 integrin activation.  相似文献   

16.
The Integrin β1 family is the major receptors of the Extracellular matrix (ECM), and the synthesis and degradation balance of ECM is seriously disrupted during Osteoarthritis (OA). In this scenario, integrins modify their pattern expression and regulate chondrocyte differen-tiation in the articular cartilage. Members of the Transforming growth factor beta (Tgf-β) Su-perfamily, such as Growth differentiation factor 5 (Gdf-5) and Bone morphogenetic protein 7 (Bmp-7), play a key role in joint formation and could regulate the integrin expression during chondrocyte differentiation and osteoarthritis progression in an experimental OA rat model. Decrease of α5 integrin expression in articular cartilage was related with chondrocyte dedif-ferentiation during OA progression, while increase of α1, α2, and α3 integrin expression was related with fibrous areas in articular cartilage during OA. Hypertrophic chondrocytes expressedαV integrin and was increased in the articular cartilage of rats with OA. Integrin expression during chondrocyte differentiation was also analyzed in a micromass culture system of mouse embryo mesenchymal cells, micromass cultures was treated with Gdf-5 or Bmp-7 for 4 and 6 days, respectively. Gdf-5 induced the expression of theα5 sub-unit, while Bmp-7 induced the expression of the αV sub-unit. This suggests a switch in signaling for prehypertrophic chondrocyte differentiation towards hypertrophy, where Gdf-5 could maintain the articular chondrocyte phenotype and Bmp-7 would induce hypertrophy. Decrease of Ihh expression during late stages of OA in rat model suggest that the ossification in OA rat knees and endochondral ossification could be activated by Bmp-7 and αV integrin in absence of Ihh. Thus, chondrocyte phenotype in articular cartilage is similar to prehypetrophic chondrocyte in growth plate, and is preserved due to the presence of Indian hedgehog (Ihh), Gdf-5 and α5 integrin to maintain articular cartilage and prevent hy-pertrophy.  相似文献   

17.

Background

Integrins are a group of transmembrane signaling proteins that are important in biological processes such as cell adhesion, proliferation and migration. Integrins are α/β hetero-dimers and there are 24 different integrins formed by specific combinations of 18 α and 8 β subunits in humans. Generally, each of these subunits has a large extracellular domain, a single pass transmembrane segment and a cytosolic tail (CT). CTs of integrins are important in bidirectional signal transduction and they associate with a large number of intracellular proteins.

Principal Findings

Using NMR spectroscopy, we determined the 3-D structure of the full-length α4 CT (Lys968-Asp999) and characterize its interactions with the adaptor protein paxillin. The α4 CT assumes an overall helical structure with a kink in its membrane proximal region. Residues Gln981-Asn997 formed a continuous helical conformation that may be sustained by potential ionic and/or hydrogen bond interactions and packing of aromatic-aliphatic side-chains. 15N-1H HSQC NMR experiments reveal interactions of the α4 CT C-terminal region with a fragment of paxillin (residues G139-K277) that encompassed LD2-LD4 repeats. Residues of these LD repeats including their adjoining linkers showed α4 CT binding-induced chemical shift changes. Furthermore, NMR studies using LD-containing peptides showed predominant interactions between LD3 and LD4 of paxillin and α4 CT. Docked structures of the α4 CT with these LD repeats suggest possible polar and/or salt-bridge and non-polar packing interactions.

Significance

The current study provides molecular insights into the structural diversity of α CTs of integrins and interactions of integrin α4 CT with the adaptor protein paxillin.  相似文献   

18.
Lens fiber formation and morphogenesis requires a precise orchestration of cell– extracellular matrix (ECM) and cell–cell adhesive changes in order for a lens epithelial cell to adopt a lens fiber fate, morphology, and migratory ability. The cell–ECM interactions that mediate these processes are largely unknown, and here we demonstrate that fibronectin1 (Fn1), an ECM component, and integrin α5, its cellular binding partner, are required in the zebrafish lens for fiber morphogenesis. Mutations compromising either of these proteins lead to cataracts, characterized by defects in fiber adhesion, elongation, and packing. Loss of integrin α5/Fn1 does not affect the fate or viability of lens epithelial cells, nor does it affect the expression of differentiation markers expressed in lens fibers, although nucleus degradation is compromised. Analysis of the intracellular mediators of integrin α5/Fn1 activity focal adhesion kinase (FAK) and integrin-linked kinase (ILK) reveals that FAK, but not ILK, is also required for lens fiber morphogenesis. These results support a model in which lens fiber cells use integrin α5 to migrate along a Fn-containing substrate on the apical side of the lens epithelium and on the posterior lens capsule, likely activating an intracellular signaling cascade mediated by FAK in order to orchestrate the cytoskeletal changes in lens fibers that facilitate elongation, migration, and compaction.  相似文献   

19.
The β2 integrins and intercellular adhesion molecule-1 (ICAM-1) are important for monocyte migration through inflammatory endothelium. Here we demonstrate that the integrin αvβ3 is also a key player in this process. In an in vitro transendothelial migration assay, monocytes lacking β3 integrins revealed weak migratory ability, whereas monocytes expressing β3 integrins engaged in stronger migration. This migration could be partially blocked by antibodies against the integrin chains αL, β2, αv, or IAP, a protein functionally associated with αvβ3 integrin. Transfection of β3 integrin chain cDNA into monocytes lacking β3 integrins resulted in expression of the αvβ3 integrin and conferred on these cells an enhanced ability to transmigrate through cell monolayers expressing ICAM-1. These monocytes also engaged in αLβ2-dependent locomotion on recombinant ICAM-1 which was enhanced by αvβ3 integrin occupancy. Antibodies against IAP were able to revert this αvβ3 integrin-dependent cell locomotion to control levels. Finally, adhesion assays revealed that occupancy of αvβ3 integrin could decrease monocyte binding to ICAM-1.In conclusion, we show that αvβ3 integrin modulates αLβ2 integrin-dependent monocyte adhesion to and migration on ICAM-1. This could represent a novel mechanism to promote monocyte motility on vascular ICAM-1 and initiate subsequent transendothelial migration.  相似文献   

20.
In addition to its well-characterized role in the lens, αB-crystallin performs other functions. Methylglyoxal (MGO) can alter the function of the basement membrane of retinal pigment epithelial (RPE) cells. Thus, if MGO is not efficiently detoxified, it can induce adverse reactions in RPE cells. In this study, we examined the mechanisms underlying the anti-apoptotic activity of αB-crystallin in the human retinal pigment epithelial cell line ARPE-19 following MGO treatment using various assays, including nuclear staining, flow cytometry, DNA electrophoresis, pulse field gel electrophoresis, western blot analysis, confocal microscopy and co-immunoprecipitation assays. To directly assess the role of phosphorylation of αB-crystallin, we used site-directed mutagenesis to convert relevant serine residues to alanine residues. Using these techniques, we demonstrated that MGO induces apoptosis in ARPE-19 cells. Silencing αB-crystallin sensitized ARPE-19 cells to MGO-induced apoptosis, indicating that αB-crystallin protects ARPE-19 cells from MGO-induced apoptosis. Furthermore, we found that αB-crystallin interacts with the caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in untreated control ARPE-19 cells and that MGO treatment caused the dissociation of these caspase subtypes from αB-crystallin; transfection of S19A, S45A or S59A mutants caused the depletion of αB-crystallin from the nuclei of untreated control RPE cells leading to the release of caspase subtypes. Additionally, transfection of these mutants enhanced MGO-induced apoptosis in ARPE-19 cells, indicating that phosphorylation of nuclear αB-crystallin on serine residues 19, 45 and 59 plays a pivotal role in preventing apoptosis in ARPE-19 cells. Taken together, these results suggest that αB-crystallin prevents caspase activation by physically interacting with caspase subtypes in the cytoplasm and nucleus, thereby protecting RPE cells from MGO-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号