首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The expression of different connexin genes (cx26, cx32, cx37, cx43) that code for the protein subunits of gap junctions, was investigated in various uterine tissues during the estrous cycle of nonpregnant rats, in pregnant rats at decidualization and at term. Connexin gene expression was studied at the mRNA level by Northern blot hybridization and at the protein level by immunocytochemistry. In gap junctions from uterine epithelium, stroma, or myometrium, connexin 26 and/or connexin 43 are much more abundant than connexins 32 and 37. The expression of connexin 26 and 43 appears to be modulated by maternal steroid hormones. High expression of these connexins is found in developing decidual cells by day 7 to 8 post coitum; furthermore, coexpression of connexins 26 and 43 in myometrium is observed just before delivery on day 21 post coitum. In both the decidua and the myometrium, the connexin 26 protein appears to be distributed in lower abundance than connexin 43. In uterine epithelium only connexin 26 is expressed throughout all of the reproductive phases investigated. The enhanced expression of this gene correlates with higher levels of maternal estrogen both in the proestrus/estrus phase and at term. The distinct spatial and temporal pattern of expression of connexins 26 and 43 in different uterine tissues suggests a physiological role for these proteins during embryo implantation and subsequent contraction of the uterus at birth.  相似文献   

4.
5.
Gap junctions are composed of connexins and are critical for the maintenance of the differentiated state. Consistently, connexin expression is impaired in most cancer cells, and forced expression of connexins following cDNA transfection reverses the tumor phenotype. We have found that the restoration of density inhibition of human pancreatic cancer cells by the antiproliferative somatostatin receptor 2 (sst2) is due to overexpression of endogenous connexins Cx26 and Cx43 and consequent formation of functional gap junctions. Immunoblotting along with protein metabolic labeling and mRNA monitoring revealed that connexin expression is enhanced at the level of translation but is not sensitive to the inhibition of cap-dependent translation initiation. Furthermore, we identified a new internal ribosome entry site (IRES) in the Cx26 mRNA. The activity of Cx26 IRES and that of the previously described Cx43 IRES are enhanced in density-inhibited cells. These data indicate that the restoration of functional gap junctions is likely a critical event in the antiproliferative action of the sst2 receptor. We further suggest that the existence of IRESes in connexin mRNAs permits connexin expression in density-inhibited or differentiated cells, where cap-dependent translation is generally reduced.  相似文献   

6.
DNAs coding for seven murine connexins (Cx) (Cx26, Cx31, Cx32, Cx37, Cx40, Cx43, and Cx45) are functionally expressed in human HeLa cells that were deficient in gap junctional communication. We compare the permeabilities of gap junctions comprised of different connexins to iontophoretically injected tracer molecules. Our results show that Lucifer yellow can pass through all connexin channels analyzed. On the other hand, propidium iodide and ethidium bromide penetrate very poorly or not at all through Cx31 and Cx32 channels, respectively, but pass through channels of other connexins. 4,6 Diamidino-2-phenylindole (DAPI) dihydrochloride shows less transfer among Cx31 or Cx43 transfectants. Neurobiotin is weakly transferred among Cx31 transfectants. Total junctional conductance in Cx31 or Cx45 transfected cells is only about half as high as in other connexin transfectants analyzed and does not correlate exactly with any of the tracer permeabilities. Permeability through different connexin channels appears to be dependent on the molecular structure of each tracer, i.e. size, charge and possibly rigidity. This supports the hypothesis that different connexin channels show different permeabilities to second messenger molecules as well as metabolites and may fulfill in this way their specific role in growth control and differentiation of cell types. In addition, we have investigated the function of heterotypic gap junctions after co-cultivation of two different connexin transfectants, one of which had been prelabeled with fluorescent dextran beads. Analysis of Lucifer yellow transfer reveals that HeLa cells expressing Cx31 (beta-type connexin) do not communicate with any other connexin transfectant tested but only with themselves. Two other beta-type connexin transfectants, HeLa-Cx26 and -Cx32, do not transmit Lucifer yellow to any of the alpha-type connexins analyzed. Among alpha- type connexins, Cx40 does not communicate with Cx43. Thus, connexins differ in their ability to form functional heterotypic gap junctions among mammalian cells.  相似文献   

7.
Ilimaquinone (IQ) and brefeldin A (BFA) disrupt the Golgi complex structure and block protein transport to the plasma membrane, and inhibit gap junctional communication. HeLa cells expressing rat connexin26, 32, or 43, or mouse connexin31, 36, 45, or 57, were used to study the response patterns of gap junctional communication (dye transfer) to ilimaquinone, brefeldin, and the potent protein kinase C (PKC) activator 12-O-tetradecanoylphorbol-13-acetate (TPA). 12-O-Tetradecanoylphorbol-13-acetate (followed for 2 h) caused dose- and time-dependent decreases in communication for five of seven connexins, the unresponsive being connexin45 and 57. Brefeldin (followed for 6 h) caused dose- and time-dependent decreases in communication for six of seven connexins, the exception being connexin26. These results are consistent with Golgi-mediated transport to the cell membrane for all connexins except connexin26. In contrast, ilimaquinone (followed for 6 h) caused a rapid (15-30 min) and nearly complete inhibition of dye transfer through connexin43 channels. For the other connexins, there was a slow and weak response for connexin26, 31, and 32, reaching 65-70% of control communication level, while connexin36, 45, and 57 were unresponsive. Thus, among the tested connexins, ilimaquinone has a strong specificity for connexin43, and the mechanism appears independent of the Golgi complex and of protein kinase C.  相似文献   

8.
The timing of appearance of mRNAs encoding gap junction proteins was examined during development of the rat and mouse brain. Complementary DNAs (cDNAs) specific for the mRNA for the liver-type gap junction protein, connexin32, and the heart-type gap junction protein, connexin43, were used to probe Northern blots of total RNA isolated from the forebrain and hindbrain of mice and rats at various times before and after birth. Prior to postnatal day 10, connexin32 mRNA is detectable only at low levels. By postnatal days 10 to 16, a sharp increase occurs in the level of this mRNA. This increase is detectable first in the hindbrain, and subsequently in the forebrain. In contrast, connexin43 mRNA is readily detectable at birth, and the level of this mRNA also increases during subsequent development. The developmental appearance of the gap junction proteins, connexin32 and connexin43, was similar to that of their respective mRNAs. These results indicate that the genes encoding connexin32 and connexin43 are differentially expressed during neural development.  相似文献   

9.
10.
The timing of appearance of mRNAs encoding gap junction proteins was examined during development of the rat and mouse brain. Complementary DNAs (cDNAs) specific for the mRNA for the liver-type gap junction protein, connexin32, and the heart-type gap junction protein, connexin43, were used to probe Northern blots of total RNA isolated from the forebrain and hindbrain of mice and rats at various times before and after birth. Prior to postnatal day 10, connexin32 mRNA is detectable only at low levels. By postnatal days 10 to 16, a sharp increase occurs in the level of this mRNA. This increase is detectable first in the hindbrain, and subsequently in the forebrain. In contrast, connexin43 mRNA is readily detectable at birth, and the level of this mRNA also increases during subsequent development. The developmental appearance of the gap junction proteins, connexin32 and connexin43, was similar to that of their respective mRNAs. These results indicate that the genes encoding connexin32 and connexin43 are differentially expressed during neural development.  相似文献   

11.
The diversity of connexin genes encoding gap junctional proteins.   总被引:24,自引:0,他引:24  
The multigene family of connexins is larger than previously anticipated. Ten different connexin homologous sequences have been characterized in the mouse genome, five of which are probably the mouse analogues of the known rat connexins26, -31, -32, -43, and -46. Since the additional 5 sequences have been isolated as cDNAs or hybridize specifically to distinct mRNA species, they most likely represent functional connexin genes. Since seven of the genomic connexin sequences have been shown to contain no intron in the coding sequence, this may apply to all mammalian connexin genes. Some of the structural features based on amino acid sequences deduced from cDNA or genomic sequences and the RNA expression pattern of the new connexins are compared with previously described connexins. The structural diversity of the connexin genes suggests that they fulfill different functions coordinated with, and perhaps required for, different programs of cellular differentiation.  相似文献   

12.
The connexins are a family of proteins that form the intercellular membrane channels of gap junctions. Genes encoding 13 different rodent connexins have been cloned and characterized to date. Connexins vary both in their distribution among adult cell types and in the properties of the channels that they form. In order to explore the functional significance of connexin diversity, several mouse connexin-encoding genes have been disrupted by homologous recombination in embryonic stem cells. Although those experiments have illuminated specific physiological roles for individual connexins, the results have also raised the possibility that connexins may functionally compensate for one another in cells where they are coexpressed. In the present study, we have tested this hypothesis by interbreeding mice carrying null mutations in the genes (Gjb1 and Gja1) encoding connexin32 (beta 1 connexin) and connexin43 (alpha 1 connexin), respectively. We found that fetuses lacking both connexins survive to term but, as expected, the pups die soon thereafter from the cardiac abnormality caused by the absence of connexin43. A survey of the major organ systems of the doubly mutant fetuses, including the thyroid gland, developing teeth, and limbs where these two connexins are coexpressed, failed to reveal any morphological abnormalities not already seen in connexin43 deficient fetuses. Furthermore, the production of thyroxine by doubly mutant thyroids was confirmed by immunocytochemistry. We conclude that, at least as far as the prenatal period is concerned, the normal development of those three organs in fetuses lacking connexin43 cannot simply be explained by the additional presence of connexin32 and vice-versa. Either gap junctional coupling is dispensable in embryonic and fetal cells in which these two connexins are coexpressed, or coupling is provided by yet another connexin when both are absent.  相似文献   

13.
14.
目的探讨复方861对大鼠肝脏卵圆细胞分化的影响,了解其在肝纤维化治疗过程中促进肝细胞再生的可能机制。方法不同浓度(1.95,3.90,7.81,15.62,31.25,62.50,125,250,500,1000μg/mL)的复方861在无血清培养条件下作用于WB-F344细胞24 h,MTT法分析法检测细胞生长情况。500μg/mL复方861在无血清条件下作用WB-F344细胞72 h后,通过RT-PCR观察CK-19、AFP、ALB、αmRNA表达的变化。以同期未作处理的WB-F344作为空白对照组。结果 WB-F344细胞经过不同复方861作用后,除1000μg/mL外,各组细胞生长均未受到抑制,500μg/mL时细胞生存活性最佳。无血清条件下作用72 h后,半定量RT-PCR发现861组AFP mRNA的表达显著增加,CK-19 mRNA的表达显著减少,同时发现861组有ALB mRNA的表达。结论复方861可能诱导WB-F344细胞主要向肝细胞方向分化。  相似文献   

15.
16.
Gap junctional intercellular communication (GJIC) is considered to play a key role in the maintenance of tissue independence and homeostasis in multicellular organisms by controlling the growth of GJIC-connected cells. Gap junction channels are composed of connexin molecules and, so far, more than a dozen different connexin genes have been shown to be expressed in mammals. Reflecting the importance of GJIC in various physiological functions, deletion of different connexin genes from mice results in various disorders, including cancers, heart malformation or conduction abnormality, cataract, etc. The possible involvement of aberrant GJIC in abnormal cell growth and carcinogenesis has long been postulated and recent studies in our own and other laboratories have confirmed that expression and function of connexin genes play an important role in cell growth control. Thus, almost all malignant cells show altered homologous and/or heterologous GJIC and are often associated with aberrant expression or localization of connexins. Aberrant localization of connexins in some tumour cells is associated with lack of function of cell adhesion molecules, suggesting the importance of cell-cell recognition for GJIC. Transfection of connexin genes into tumorigenic cells restores normal cell growth, supporting the idea that connexins form a family of tumour-suppressor genes. Some studies also show that specific connexins may be necessary to control growth of specific cell types. We have produced various dominant-negative mutants of Cx26, Cx32 and Cx43 and showed that some of them prevent the growth control exerted by the corresponding wild-type genes. However, we have found that connexins 32, 37 and 43 genes are rarely mutated in tumours. In some of these studies, we noted that connexin expression per se, rather than GJIC level, is more closely related to growth control, suggesting that connexins may have a GJIC-independent function. We have recently created a transgenic mouse strain in which a mutant Cx32 is specifically overexpressed in the liver. Studies with such mice indicate that Cx32 plays a key role in liver regeneration after partial hepatectomy. A decade ago, we proposed a method to enhance killing of cancer cells by diffusion of therapeutic agents through GJIC. Recently, we and others have shown that GJIC is responsible for the bystander effect seen in HSV-tk/ganciclovir gene therapy. Thus, connexin genes can exert dual effects in tumour control: tumour suppression and a bystander effect for cancer therapy.  相似文献   

17.
18.
Formation of gap junctions by expression of connexins in Xenopus oocyte pairs   总被引:34,自引:0,他引:34  
K I Swenson  J R Jordan  E C Beyer  D L Paul 《Cell》1989,57(1):145-155
RNAs coding for connexins 32, 43, and the putative lens gap junction protein MP26 were tested for their ability to induce cell-cell coupling in Xenopus oocyte pairs. Large, voltage-insensitive conductances developed when connexin32 and 43 RNA-injected oocytes were paired both with themselves and with each other. Oocyte pairs injected with water manifested small conductances, which were symmetrically voltage-dependent. MP26 RNA-injected pairs displayed no conductances above control values. Unexpectedly, connexin43/water oocyte pairs developed high, asymmetrically voltage-dependent conductances, a property not displayed by the connexin32/water pairs. In single oocytes, these proteins remained intracellular until pairing, at which time the connexins, but not MP26, concentrated at the appositional areas.  相似文献   

19.
The gap junctional intercellular communication-deficient mouse skin papilloma cell line P3/22 expresses Cx43 but not E-cadherin. The E-cadherin gene-transfected cells (P3E1) communicate in a calcium-dependent manner and they were used to study how E-cadherin restores the function of connexins. At low calcium, Cx43 molecules remain in the cytoplasm of P3E1 cells and appear at cell-cell contact areas only in high-calcium medium. While Cx43 is unphosphorylated in P3E1 cells in low-calcium medium, two phosphorylated bands appeared at high calcium. However, when Cx26, which has no C-terminal tail that can undergo phosphorylation, was expressed in P3E1 cells, this connexin also moved to the plasma membrane after the calcium shift and partly colocalized with Cx43, suggesting that C-terminal phosphorylation is not essential for E-cadherin-mediated intracellular transport of connexins. In low calcium, both Cx26 and Cx43 remained and colocalized in the endoplasmic reticulum. As early as 30 min after the shift to high-calcium medium, both Cx43 and Cx26 began to accumulate in the Golgi apparatus. Intracellular movement of connexins to the cytoplasmic membrane at high calcium was effectively blocked by cytochalasin D and brefeldin A. These results suggest that E-cadherin junction formation at high calcium leads to formation of actin cables, which directly or indirectly transport connexins from the cytoplasm to the cell-cell contact membranes via the Golgi apparatus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号