首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Interferon-beta (IFN-β) is a cytokine with anti-viral, anti-proliferative, and immunomodulatory effects. In this study, we investigated the effects of IFN-β on the induction of autophagy and the relationships among autophagy, growth inhibition, and apoptosis induced by IFN-β in human glioma cells. We found that IFN-β induced autophagosome formation and conversion of microtubule associated protein 1 light chain 3 (LC3) protein, whereas it inhibited cell growth through caspase-dependent cell apoptosis. The Akt/mTOR signaling pathway was involved in autophagy induced by IFN-β. A dose- and time-dependent increase of p-ERK 1/2 expression was also observed in human glioma cells treated with IFN-β. Autophagy induced by IFN-β was suppressed when p-ERK1/2 was impaired by treatment with U0126. We also demonstrated that suppression of autophagy significantly enhanced growth inhibition and cell apoptosis induced by IFN-β, whereas inhibition of caspase-dependent cell apoptosis impaired autophagy induced by IFN-β. Collectively, these findings indicated that autophagy induced by IFN-β was associated with the Akt/mTOR and ERK 1/2 signaling pathways, and inhibition of autophagy could enhance the growth inhibitory effects of IFN-β and increase apoptosis in human glioma cells. Together, these findings support the possibility that autophagy inhibitors may improve IFN-β therapy for gliomas.  相似文献   

2.
3.
Aimβ-catenin signaling is a major oncogenic pathway in hepatocellular carcinoma (HCC). Since β-catenin phosphorylation by glycogen synthase kinase 3β (GSK3β) and casein kinase 1ε (CK1ε) results in its degradation, mutations affecting these phosphorylation sites cause β-catenin stabilization. However, the relevance of missense mutations in non-phosphorylation sites in exon 3 remains unclear. The current study explores significance of such mutations in addition to addressing the clinical and biological implications of β-catenin activation in human HCC.MethodsGene alteration in exon3 of CTNNB1, gene expression of β-catenin targets such as glutamate synthetase (GS), axin2, lect2 and regucalcin (RGN), and protein expression of β-catenin were examined in 125 human HCC tissues.ResultsSixteen patients (12.8%) showed conventional missense mutations affecting codons 33, 37, 41, and 45. Fifteen additional patients (12.0%) had other missense mutations in codon 32, 34, and 35. Induction of exon3 mutation caused described β-catenin target gene upregulation in HCC cell line. Interestingly, conventional and non-phosphorylation site mutations were equally associated with upregulation of β-catenin target genes. Nuclear localization of β-catenin was associated with poor overall survival (p = 0.0461). Of these patients with nuclear β-catenin localization, loss of described β-catenin target gene upregulation showed significant poorer overall survival than others (p = 0.0001).ConclusionThis study suggests that both conventional and other missense mutations in exon 3 of CTNNB1 lead to β-catenin activation in human HCC. Additionally, the mechanism of nuclear β-catenin localization without upregulation of described β-catenin target genes might be of clinical importance depending on distinct mechanism.  相似文献   

4.
Human neural progenitor cells (hNPCs) form a new prospect for replacement therapies in the context of neurodegenerative diseases. The Wnt/[Formula: see text]-catenin signaling pathway is known to be involved in the differentiation process of hNPCs. RVM cells form a common cell model of hNPCs for in vitro investigation. Previous observations in RVM cells raise the question of whether observed kinetics of the Wnt/[Formula: see text]-catenin pathway in later differentiation phases are subject to self-induced signaling. However, a concern when investigating RVM cells is that experimental results are possibly biased by the asynchrony of cells w.r.t. the cell cycle. In this paper, we present, based on experimental data, a computational modeling study on the Wnt/[Formula: see text]-catenin signaling pathway in RVM cell populations asynchronously distributed w.r.t. to their cell cycle phases. Therefore, we derive a stochastic model of the pathway in single cells from the reference model in literature and extend it by means of cell populations and cell cycle asynchrony. Based on this, we show that the impact of the cell cycle asynchrony on wet-lab results that average over cell populations is negligible. We then further extend our model and the thus-obtained simulation results provide additional evidence that self-induced Wnt signaling occurs in RVM cells. We further report on significant stochastic effects that directly result from model parameters provided in literature and contradict experimental observations.  相似文献   

5.
6.
7.
8.
9.
10.
In neural stem cells, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promote cell proliferation and self-renewal. In the bFGF- and EGF-responsive neural stem cells, β1-integrin also plays important roles in crucial cellular processes, including proliferation, migration, and apoptosis. The cross-talk of the signaling pathways mediated by these growth factors and β1-integrin, however, has not been fully elucidated. Here we report a novel molecular mechanism through which bFGF or EGF promotes the proliferation of mouse neuroepithelial cells (NECs). In the NECs, total β1-integrin expression levels and proliferation were dose-dependently increased by bFGF but not by EGF. EGF rather than bFGF strongly induced the increase of β1-integrin localization on the NEC surface. bFGF- and EGF-induced β1-integrin up-regulation and proliferation were inhibited after treatment with a mitogen-activated protein kinase kinase inhibitor, U0126, which indicates the dependence on the mitogen-activated protein kinase pathway. Involvement of β1-integrin in bFGF- and EGF-induced proliferation was confirmed by the finding that NEC proliferation and adhesion to fibronectin-coated dishes were inhibited by knockdown of β1-integrin using small interfering RNA. On the other hand, apoptosis was induced in NECs treated with RGD peptide, a small β1-integrin inhibitor peptide with the Arg-Gly-Asp motif, but it was independent of β1-integrin expression levels. Those results suggest that regulation of β1-integrin expression/localization is involved in cellular processes, such as proliferation, induced by bFGF and EGF in NECs. The mechanism underlying the proliferation through β1-integrin would not be expected to be completely identical, however, for bFGF and EGF.  相似文献   

11.
12.
Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm) are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150) and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis.  相似文献   

13.
14.
15.

Background/Objective

IFNs are a group of cytokines that possess potent antiviral and antitumor activities, while β-catenin pathway is a proliferative pathway involved in carcinogenesis. Interaction between these two pathways has not been well elaborated in hepatocellular carcinoma (HCC).

Methods

HCC cell lines, HepG2 and Huh7, were used in this study. β-catenin protein levels and corresponding signaling activities were observed by flow cytometry and luciferase assay, respectively. Cell proliferation was quantified by counting viable cells under microscope, and apoptosis by TUNEL assay. DKK1 and GSK3β levels were determined by flow cytometry. Secreted DKK1 was tested by ELISA. FLUD, S3I and aDKK1 were used to inhibit STAT1, STAT3 and DKK1 activities, respectively.

Results

Our findings show that all three types of IFNs, IFNα, IFNγ and IFNλ, are capable of inhibiting β-catenin signaling activity in HepG2 and Huh7 cells, where IFNγ was the strongest (p<0.05). They expressed suppression of cellular proliferation and induced apoptosis. IFNγ expressed greater induction ability when compared to IFNα and IFNλ (p<0.05). All tested IFNs could induce DKK1 activation but not GSK3β in HepG2 and Huh7 cells. IFNs induced STAT1 and STAT3 activation but by using specific inhibitors, we found that only STAT3 is vital for IFN-induced DKK1 activation and apoptosis. In addition, DKK1 inhibitor blocked IFN-induced apoptosis. The pattern of STAT3 activation by different IFNs is found consistent with the levels of apoptosis with the corresponding IFNs (p<0.05).

Conclusions

In hepatocellular carcinoma, all three types of IFNs are found to induce apoptosis by inhibiting β-catenin signaling pathway via a STAT3- and DKK1-dependent pathway. This finding points to a cross-talk between different IFN types and β-catenin signaling pathways which might be carrying a biological effect not only on HCC, but also on processes where the two pathways bridge.  相似文献   

16.
17.
18.
19.
The ubiquitously expressed family of α-actinins bridges actin filaments to stabilize adhesions, a process disrupted during growth factor-induced migration of cells. During the dissolution of the actin cytoskeleton, actinins are phosphorylated on tyrosines, although the consequences of this are unknown. We expressed the two isoforms of human α-actinin in murine fibroblasts that express human epidermal growth factor receptor (EGFR) and found that both α-actinin 1 (ACTN1) and α-actinin 4 (ACTN4) were phosphorylated on tyrosine residues after stimulation with EGF, although ACTN4 was phosphorylated to the greater extent. This required the activation of Src protein-tyrosine kinase and p38-MAPK (and phosphoinositide trisphosphate kinase in part) but not MEK/ERK or Rac1, as determined by inhibitors. The EGF-induced phosphorylation sites of ACTN4 were mapped to tyrosine 4, the major site, and tyrosine 31, the minor one. Truncation mutagenesis showed that the C-terminal domains of ACTN4 (amino acids 300–911), which cross-link the actin binding head domains, act as an inhibitory domain for both actin binding and EGF-mediated phosphorylation. These two properties were mutually exclusive; removal of the C terminus enhanced actin binding of ACTN4 mutants while limiting EGF-induced phosphorylation, and conversely EGF-stimulated phosphorylation of ACTN4 decreased its affinity to actin. Interestingly, a phosphomimetic of tyrosine 265 (which can be found in carcinoma cells and lies near the K255E mutation that causes focal segmental glomerulosclerosis) demonstrated increased actin binding activity and susceptibility of ACTN4 to calpain-mediated cleavage; this variant also retarded cell spreading. Remarkably, either treatment of cells with low concentrations of latrunculin A, which has been shown to depolymerize F-actin, or the deletion of the actin binding domain (100–252 amino acids) of ACTN4Y265E restored EGF-induced phosphorylation. An F-actin binding assay in vitro showed that Y4E/Y31E, a mimetic of diphosphorylated ACTN4, bound F-actin slightly compared with wild type (WT). Importantly, the EGF-mediated phosphorylation of ACTN4 at tyrosine 4 and 31 significantly inhibited multinucleation of proliferating NR6WT fibroblasts that overexpress ACTN4. These results suggest that EGF regulates the actin binding activity of ACTN4 by inducing tyrosyl-directed phosphorylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号