首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Metastatic melanoma remains an incurable disease, and there is a great need for novel therapeutic modalities. We have recently identified melanin as a target for radionuclide therapy of melanoma and demonstrated the feasibility of this approach using a 188-rhenium ( (188)Re)-radiolabeled melanin-binding decapeptide to fungal melanin known as 4B4. Although the results indicated that radiolabeled melanin-binding decapeptide had activity against melanoma, that peptide also manifested high kidney uptake and this might become a concern during clinical trials. We hypothesized that by identifying peptides with different amino acid composition against tumor melanin we might be able to decrease their kidney uptake. Using the Heptapeptide Ph.D.-7 Phage Display Library, we identified three heptapeptides that bind to human tumor melanin. These peptides were radiolabeled with (188)Re via HYNIC ligand, and their comprehensive biodistribution in A2058 human metastatic melanoma tumor-bearing nude mice was compared to that of (188)Re-4B4 decapeptide. While tumor uptake of heptapeptides was quite similar to that of (188)Re-4B4 decapeptide, there was dramatically less uptake in the kidneys at both 3 h (6% ID/g vs 38%) and 24 h (2% ID/g vs 15%) postinjection. Administration of one of the generated heptapeptides, (188)Re-HYNIC-AsnProAsnTrpGlyProArg, to A2058 human metastatic melanoma-bearing nude mice resulted in significant retardation of the tumor growth. Immunofluorescence showed that in spite of their relatively small size heptapeptides were not able to penetrate through the membranes of viable melanoma cells and bound only to extracellular melanin, which provides assurance that they will be safe to healthy melanin-containing tissues during radionuclide therapy. Thus, these heptapeptides appear to have potentially significant advantages for targeted therapy of melanoma relative to existing melanin-binding peptides.  相似文献   

2.
Lanreotide was labelled with 188Re obtained from 188W/188Re generator, using stannous ion as reducing agent, ascorbic acid as stabilizers and hydroxy ethylidene bisphosphonate (HEDP) as intermediary ligand at different molar ratios, pH and incubation times. Best yields (>95%) were obtained using molar ratios SnF2/lanreotide, ascorbic/lanreotide and HEDP/lanreotide of 40, 12 and 260, respectively, pH 1-2 with an incubation at 100 degrees C for 30 min. Quality control evaluation and stability of the radiolabel compound was done by the following selected methods: chromatography in Whatman 3 MM with MEK and NaCl 0.15 M as solvents, ITLC-SG with ethanol-HCl 0.01N (90:10); reverse phase extraction cartridge (Sep-pak C18, Waters Associated) and RP-HPLC with radiometric and UV detection (220 nm) using MCH-5 n-capp column with linear gradient from 90% H2O (TFA 0.1%): 10% ACN (TFA 0.1%) up to 10% H2O (TFA 0.1%):90% ACN (TFA 0.1%) in 30 min, at flow 1 ml/min. Biodistribution in normal mice showed that 188Re-lanreotide is excreted mainly through the hepatobiliary system: more than 70% I.D. is present in gallbladder and intestines at 2 hr post injection. The stability of the 188Re-peptide bond by cysteine challenge test at 37 degrees C, during 2 and 24 hr of incubation time, reveals that approximately 300 and 100 molar ratio cys/peptide is required to displace 50% of the 188Re from the complex. In vitro stability of 188Re-lanreotide at room temperature (Rt) was demonstrated during 24 hr Future works must be done in order to investigate its binding capacity to somatostatin receptors.  相似文献   

3.
The purpose of this study was to evaluate the human MC1 receptor-mediated melanoma targeting properties of two metal cyclized alpha-MSH peptide analogues, (188)Re-(Arg(11))CCMSH and (188)Re-CCMSH. Initially, the presence and density of the MC1 receptor were determined on a bank of human melanoma cell lines. All eight human melanoma cell lines tested in this study displayed the MC1 receptor at a density of 900 to 5700 receptors per cell. Receptor affinity and biodistribution properties of (188)Re-(Arg(11))CCMSH and (188)Re-CCMSH were evaluated in a cultured TXM13 human melanoma-xenografted Scid mouse model. Biodistribution results demonstrated that 3.06 +/- 0.68 %ID/g of (188)Re-(Arg(11))CCMSH accumulated in the tumors 1 h postinjection and greater than 65% of the activity at 1 h postinjection remained in the tumors at 4 h after dose administration. Whole body clearance of (188)Re-(Arg(11))CCMSH was very rapid, with approximately 82% of injected dose cleared through urinary system at 4 h postinjection. There was very little activity in blood and major organs such as liver, lung, and muscle except for the kidney. (188)Re-CCMSH exhibited similar tumor uptake and retention in TXM13 human melanoma-xenografted Scid mice as (188)Re-(Arg(11))CCMSH. However, the kidney uptake value of (188)Re-CCMSH was two times higher than that of (188)Re-(Arg(11))CCMSH. The results of this study indicate that the MC1 receptor is present on the surface of a large number of human melanoma cells, which makes the MC1 receptor a good imaging or therapeutic target. Moreover, the biodistribution properties of (188)Re-(Arg(11))CCMSH and (188)Re-CCMSH highlight their potential as therapeutic agents for human melanoma.  相似文献   

4.
Two kit preparations of the organometallic precursor [(188)Re(H(2)O)(3)(CO)(3)](+) in aqueous media are presented. Method A uses gaseous carbon monoxide and amine borane (BH(3).NH(3)) as the reducing agent. In method B CO(g) is replaced by K(2)[H(3)BCO(2)] that releases carbon monoxide during hydrolysis. Both procedures afford the desired precursor in yields >85% after 10 min at 60 degrees C. HPLC and TLC analyses revealed 7 +/- 3% of unreacted (188)ReO(4)(-) and <5% of colloidal (188)ReO(2). Solutions of up to 14 GBq/mL Re-188 have been successfully carbonylated with these two methods. The syntheses of two tailor-made bifunctional ligand systems for the precursor [(188)Re(H(2)O)(3)(CO)(3)](+) are presented. The tridentate chelates consist of a bis[imidazol-2-yl]methylamine or an iminodiacetic acid moiety, respectively. Both types of ligand systems have been prepared with alkyl spacers of different length and a pendent primary amino or carboxylic acid functionality, enabling the amidic linkage to biomolecules. The tridentate coordination of the ligands to the rhenium-tricarbonyl core could be elucidated on the macroscopic level by X-ray structure analyses and 1D and 2D NMR experiments of two representative model complexes. On the nca level, the ligands allow labeling yields >95% with [(188)Re(H(2)O)(3)(CO)(3)](+) under mild reaction conditions (PBS buffer, 60 degrees C, 60 min) at ligand concentrations between 5 x 10(-4) M and 5 x 10(-5) M. Thus, specific activities of 22-220 GBq pe micromol of ligand could be achieved. Incubation of the corresponding Re-188 complexes in human serum at 37 degrees C revealed stabilities between 80 +/- 4% and 45 +/- 10% at 24 h, respectively, and 63 +/- 3% and 34 +/- 3% at 48 h postincubation in human serum depending on the chelating system. Decomposition product was mainly (188)ReO(4)(-). The routine kit-preparation of the precursor [(188)Re(H(2)O)(3)(CO)(3)](+) in combination with tailor-made ligand systems enables the organometallic labeling of biomolecules with unprecedented high specific activities.  相似文献   

5.
The aim of this study was to localize (99m)Tc and (188)Re radionuclides to tumors, using a bispecific antibody (bsMAb) in a two-step approach where the radionuclides are attached to novel peptides incorporating moieties recognized by one arm of the bsMAb. A chemically cross-linked human/murine bsMAb, hMN-14 x 734 (Fab' x Fab'), anti-carcinoembryonic antigen [CEA] x anti-indium-DTPA was prepared as a prelude to constructing a fully humanized bsMAb for future clinical application. N,N'-o-Phenylenedimaleimide was used to cross-link the Fab' fragments of the two antibodies at their hinge regions. This construct was shown to be >92% pure and fully reactive with CEA and a divalent (indium)DTPA-peptide. For pretargeting purposes, a peptide, IMP-192 [Ac-Lys(In-DTPA)-Tyr-Lys(In-DTPA)-Lys(TscG-Cys-)-NH(2) ?TscG = 3-thiosemicarbazonylglyoxyl?], with two indium-DTPAs and a chelate for selectively binding (99m)Tc or (188)Re, was synthesized. IMP-192 was formulated in a "single dose" kit and later radiolabeled with (99m)Tc (94-99%) at up to 1836 Ci/mmol and with (188)Re (97%) at 459-945 Ci/mmol of peptide. [(99m)Tc]IMP-192 was shown to be stable by extensive in vitro and in vivo testing and had no specific uptake in the tumor with minimal renal uptake. The biodistribution of the hMN-14 x murine 734 bsMAb was compared alone and in a pretargeting setting to a fully murine anti-CEA (F6) x 734 bsMAb that was reported previously [Gautherot, E., Bouhou, J., LeDoussal, J.-M., Manetti, C., Martin, M., Rouvier, E., and Barbet, J. (1997) Therapy for colon carcinoma xenografts with bispecific antibody-targeted, iodine-131-labeled bivalent hapten. Cancer 80 (Suppl.), 2618-2623]. Both bsMAbs maintained their integrity and dual binding specificity in vivo, but the hMN-14 x m734 was cleared more rapidly from the blood. This coincided with an increased uptake of the hMN-14 x m734 bsMAb in the liver and spleen, suggesting an active reticuloendothelial cell recognition mechanism of this mixed species construct in naive mice. Animals bearing GW-39 human colonic cancer xenografts were injected with bsMAb (15 microg) and after allowing 24 or 72 h for the bsMAb constructs to clear from the blood (hMN-14 and murine F6 x 734, respectively), [(188)Re]IMP-192 (7 microCi) or [(99m)Tc]IMP-192 (10 microCi) was injected at a bsMAb:peptide ratio of 10:1. Tumor uptake of [(99m)Tc] or [(188)Re]IMP-192 was 12.6 +/- 5.2 and 16.9 +/- 5.5% ID/g at 3 h postinjection, respectively. Tumor/nontumor ratios were between 5.6 and 23 to 1 for every major organ, indicating that early imaging with (99m)Tc will be possible. Radiation absorbed doses showed a 4.8-, 7.2-, and a 12.6 to 1.0 tumor to blood, kidney, and liver ratios when (188)Re was used. Although this new bsMAb pretargeting approach requires further optimization, it already shows very promising targeting results for both radioimmunodetection and radioimmunotherapy of colorectal cancer.  相似文献   

6.
We employed a Pseudomonas aeruginosa mouse pneumonia model to evaluate the ability of a murine monoclonal antibody (MAb) specific for the O-side chain of P. aeruginosa Fisher Immunotype-1 lipopolysaccharide (LPS) to achieve and sustain therapeutic levels in plasma and lung tissue, reduce bacterial populations in the lung, and prevent pneumonia-associated mortality. An IgG3 MAb (Y1-5A4) administered to mice i.v. over a dose range of 125-1,000 micrograms/mouse produced plasma and lung tissue levels at 2 hr of 61-507 micrograms/ml and 4.3-150 micrograms/g, respectively. The 1,000 micrograms MAb dose reduced bacterial counts in lung tissue (log10 cfu/g +/- S.D.) and blood (log10 cfu/ml +/- S.D.) 20 hr post-treatment (18 hr post-challenge) from 10.00 +/- 0.66 to 7.66 +/- 0.91 (P less than 0.01) and from 4.39 +/- 0.81 to less than 3.0, respectively. Administration of MAb to mice in doses of 125-500 micrograms 2 hr prior to a 3 x 50% lethal bacterial challenge produced significant protection against death, with a calculated 50% protective dose of 167 micrograms. Protection was noted following administration of 1,000 micrograms of MAb up to 6 hr after bacterial challenge (P less than 0.05, compared with untreated control). Histological examination of lung tissue from infected mice revealed less acute inflammation, necrosis, and hemorrhage in MAb-treated compared with untreated control animals and greater localization of Pseudomonas antigen within the phagocytic cells in alveolar space. These findings document the in vivo therapeutic efficacy of an LPS-specific IgG MAb in a murine model of acute P. aeruginosa pneumonia, based in part upon the achievability of effective MAb concentrations in plasma and lung tissue.  相似文献   

7.
Vascular immunotargeting is a mean for a site-selective delivery of drugs and genes to endothelium. In this study, we compared recognition of pulmonary and systemic vessels in rats by candidate carrier monoclonal antibodies (MAbs) to endothelial antigens platelet endothelial cell adhesion molecule (PECAM)-1 (CD31), intercellular adhesion molecule (ICAM)-1 (CD54), Thy-1.1 (CD90.1), angiotensin-converting enzyme (ACE; CD143), and OX-43. Tissue immunostaining showed that endothelial cells were Thy-1.1 positive in capillaries but negative in large vessels. In the lung, anti-ACE MAb provided a positive staining in 100% capillaries vs. 5-20% capillaries in other organs. Other MAbs did not discriminate between pulmonary and systemic vessels. We determined tissue uptake after infusion of 1 microg of (125)I-labeled MAbs in isolated perfused lungs (IPL) or intravenously in intact rats. Uptake in IPL attained 46% of the injected dose (ID) of anti-Thy-1.1 and 20-25% ID of anti-ACE, anti-ICAM-1, and anti-OX-43 (vs. 0.5% ID of control IgG). However, after systemic injection at this dose, only anti-ACE MAb 9B9 displayed selective pulmonary uptake (16 vs. 1% ID/g in other organs). Anti-OX-43 displayed low pulmonary (0.5% ID/g) but significant splenic and cardiac uptake (7 and 2% ID/g). Anti-Thy-1.1 and anti-ICAM-1 displayed moderate pulmonary (4 and 6% ID/g, respectively) and high splenic and hepatic uptake (e.g., 18% ID/g of anti-Thy-1.1 in spleen). The lung-to-blood ratio was 5, 10, and 15 for anti-Thy-1.1, anti-ACE, and anti-ICAM-1, respectively. PECAM antibodies displayed low pulmonary uptake in perfusion (2% ID) and in vivo (3-4% ID/g). However, conjugation with streptavidin (SA) markedly augmented pulmonary uptake of anti-PECAM in perfusion (10-54% ID, depending on an antibody clone) and in vivo (up to 15% ID/g). Therefore, ACE-, Thy-1.1-, ICAM-1-, and SA-conjugated PECAM MAbs are candidate carriers for pulmonary targeting. ACE MAb offers a high selectivity of pulmonary targeting in vivo, likely because of a high content of ACE-positive capillaries in the lungs.  相似文献   

8.
Tong Q  Zheng L  Kang Q  Dodd-O J  Langer J  Li B  Wang D  Li D 《FEBS letters》2006,580(9):2207-2215
Hypoxia-induced mitogenic factor (HIMF), also known as FIZZ1 (found in inflammatory zone), plays important roles in lung inflammation. We found that intraperitoneal injection of lipopolysaccharide (LPS) induced intensive HIMF production exclusively in mouse lung, but not in the heart, liver, spleen or kidney. This HIMF production, at least partly, contributes to LPS-induced vascular cell adhesion molecule-1 (VCAM-1) upregulation and mononuclear cell sequestration to lung parenchyma, while protecting alveolar type II cells from LPS-resulted decrease in surfactant protein-C production and cell death. These data indicate that HIMF participates in LPS-induced acute lung injury and inflammation through modulating VCAM-1 and SP-C expression.  相似文献   

9.
Degradation of serum amyloid A (SAA) was studied in isolated perfused livers of mice treated with either a single injection of casein to induce an acute phase response or with 14 daily casein injections to maintain chronic inflammation. Littermates administered sterile saline served as controls. Radioiodinated SAA and apolipoprotein A-I, reconstituted with high-density lipoproteins in vivo, were studied in parallel. Degradation was monitored by appearance of acid-soluble radioactivity in the perfusate. Induction of an acute phase response reduced hepatic catabolism of SAA by 14% (from 8.6 +/- 1.2% to 7.4 +/- 1.1%/g liver in 3 hr, P less than 0.05, n = 16). The acute phase response had no effect on apolipoprotein A-I degradation or bile production. Livers from animals receiving 14 daily injections of casein were 31% less active than control livers at degrading SAA (8.1 +/- 1.6%/g/3 hr for treated group vs. 11.7 +/- 2.3%/g/3 hr for control group, P less than 0.025). Apolipoprotein A-I degradation was decreased but differences were not statistically significant and bile production was the same in both treatment groups. However, livers from treated animals were larger (mean weight 1.8 g) than those from controls (1.5 g) (P less than 0.05), although amyloid fibrils were not detected by Congo red stain. The size of the degradation products was analyzed by column chromatography. Elution profiles of perfusates from livers of chronically inflamed animals contained a peak corresponding to the molecular weight of amyloid A which was not present in perfusates from control liver. We conclude that hepatic catabolism of SAA is decreased both early and late in an inflammatory response and intermediate degradation products corresponding in size to amyloid A are released into the circulation following prolonged inflammation.  相似文献   

10.
Monoclonal antibody (MAb) G10 labels a single high mol. wt. (HMW) band on Western blots of microtubule preparations from 2 day old rat brain. The G10 antigen is thermolabile and co-migrates with microtubule-associated protein (MAP)1 from young rat brain on low percentage (5%) polyacrylamide-SDS gels. The G10 antigen decreases by about five times from birth to adulthood in the rat cerebellum. The same single band is labelled on Western blots of homogenates of whole neonatal rat brain but no labelling is found using neonatal or adult kidney, lung or liver. We have therefore identified a brain-specific MAP1, designated MAP1(x). Immunofluorescence microscopy using MAb G10 on parasagittal sections of rat cerebella shows labelling of the newly formed molecular layer in 6 day old rats. Only a narrow band close to the pial surface is labelled in 18 day old animals, which disappears in the adult. Labelling of the cerebellar white matter found in young rats also disappears. Neurones but not flat cells in cerebellar cultures label with MAb G10. All staining patterns are consistent with an axonal distribution of the antigen. MAP1(x) may be part of a developmentally regulated microtubule structure.  相似文献   

11.
The radiolanthanides 149Pm, 166Ho, and 177Lu have decay characteristics suitable for radioimmunotherapy (RIT) of cancer. N-Hydroxysulfosuccinimidyl DOTA (DOTA-OSSu) and methoxy-DOTA (MeO-DOTA) were conjugated to the anti-TAG-72 monoclonal antibody CC49 for radiolabeling with 149Pm, 166Ho, and 177Lu. While both DOTA conjugates could be labeled to high specific activity with 177Lu, MeO-DOTA afforded superior conjugate stability, radiolabeling, and radiochemical purity. Pilot biodistributions in nude mice bearing LS174T human colon carcinoma xenografts demonstrated that MeO-DOTA afforded higher tumor uptake and lower kidney retention of 177Lu than DOTA-OSSu. The in vitro stability of 149Pm-, 166Ho-, and 177Lu-MeO-DOTA-CC49 was evaluated using serum and hydroxyapatite assays. Serum stability of radiolanthanide-labeled MeO-DOTA-CC49 followed a trend based on the coordination energies of the radiometals, with 177Lu showing the highest stability after 96 to 168 h at 37 C. In contrast, MeO-DOTA-CC49 labeled with all three radiolanthanides was >92% stable to hydroxyapatite challenge for 168 h at 37 C. Comprehensive biodistributions of 149Pm-, 166Ho-, and 177Lu-MeO-DOTA-CC49 were obtained in LS174T-bearing nude mice. Maximum tumor uptakes were 100.0% ID/g for 149Pm at 96 h, 69.5% ID/g for 166Ho at 96 h, and 132.4% ID/g for 177Lu at 168 h. Normal organ uptakes were generally low, except in the liver, spleen, and kidney at early time points. By 96 to 168 h postinjection, nontarget organ uptake decreased to approximately 7% ID/g (kidney), 12% ID/g (spleen), and 20% ID/g (liver) for each radiolanthanide. When labeled with 149Pm, 166Ho, and 177Lu, MeO-DOTA-CC49 has potential for RIT of colorectal cancer and other carcinomas.  相似文献   

12.
Site-specific enzymatic reactions with microbial transglutaminase (mTGase) lead to a homogenous species of immunoconjugates with a defined ligand/antibody ratio. In the present study, we have investigated the influence of different numbers of 1,4,7,10-tetraazacyclododecane-N-N′-N′′-N′′′-tetraacetic acid (DOTA) chelats coupled to a decalysine backbone on the in vivo behavior of the chimeric monoclonal anti-L1CAM antibody chCE7agl. The enzymatic conjugation of (DOTA)1-decalysine, (DOTA)3-decalysine or (DOTA)5-decalysine to the antibody heavy chain (via Gln295/297) gave rise to immunoconjugates containing two, six or ten DOTA moieties respectively. Radiolabeling of the immunoconjugates with 177Lu yielded specific activities of approximately 70 MBq/mg, 400 MBq/mg and 700 MBq/mg with increasing numbers of DOTA chelates. Biodistribution experiments in SKOV3ip human ovarian cancer cell xenografts demonstrated a high and specific accumulation of radioactivity at the tumor site for all antibody derivatives with a maximal tumor accumulation of 43.6±4.3% ID/g at 24 h for chCE7agl-[(DOTA)-decalysine]2, 30.6±12.0% ID/g at 24 h for chCE7agl-[(DOTA)3-decalysine]2 and 49.9±3.1% ID/g at 48 h for chCE7agl-[(DOTA)5-decalysine)]2. The rapid elimination from the blood of chCE7agl-[(DOTA)-decalysine]2 (1.0±0.1% ID/g at 24 h) is associated with a high liver accumulation (23.2±4.6% ID/g at 24 h). This behavior changed depending on the numbers of DOTA moieties coupled to the decalysine peptide with a slower blood clearance (5.1±1.0 (DOTA)3 versus 11.7±1.4% ID/g (DOTA)5, p<0.005 at 24 h) and lower radioactivity levels in the liver (21.4±3.4 (DOTA)3 versus 5.8±0.7 (DOTA)5, p<0.005 at 24 h). We conclude that the site-specific and stoichiometric uniform conjugation of the highly DOTA-substituted decalysine ((DOTA)5-decalysine) to an anti-tumor antibody leads to the formation of immunoconjugates with high specific activity and excellent in vivo behavior and is a valuable option for radioimmunotherapy and potentially antibody-drug conjugates (ADCs).  相似文献   

13.
Carrier-free31Silicon (31Si) prepared by neutron activation, was injected in the form of31Si-labeled silicic acid into five albino male rats, and the organ and tissue distribution of labeled silicic acid was determined at sacrifice after 30 min. The kidney was found to contain 0.85% of the injected dose (ID) per gram of tissue; skin had 0.3% ID/G; testes 0.29; bone 0.26; liver 0.22; and brain 0.13. When expressed as % ID/organ, voluntary muscle had 14.6%; skin 10.8; bone 3.4; liver 1.6; kidneys 1.5; testes 0.8, and brain 0.2. These results indicate the need for further research into silicon metabolism in kidney, skin, bone, and brain.  相似文献   

14.
目的研究温敏型壳聚糖(chitonsan CS)介入核素188Re内照射对小鼠移植性肝癌(H22)的抑制作用。方法建立小鼠肝癌(H22)模型后随机分成7组,即模型对照组、188Re(0.1mCi)组、188Re-S(0.1mCi)组、188Re+CS(0.1mCi)组、188 Re+CS(0.2mCi)组、188 Re+硫胶体+壳聚糖(188 Re-S+CS 0.1mCi)组和188 Re-S+CS(0.2mCi)组。各组动物瘤内分别注射相应试药,测定肿瘤抑制率。结果 188Re+CS组和188Re-S+CS组肿瘤生长速度减慢,肿瘤生长延迟,肿瘤抑制率在治疗后6 d最高,抑制率分别为67.35%和67.81%。结论温敏型壳聚糖介入核素188Re内照射对小鼠肝癌(H22)具有一定的抑制作用。  相似文献   

15.
The integrin receptor alpha(v)beta(3) is overexpressed on the endothelial cells of growing tumors and on some tumor cells themselves. Radiolabeled alpha(v)beta(3) antagonists have demonstrated potential application as tumor imaging agents and as radiotherapeutic agents. This report describes the total synthesis of eight new HYNIC and DOTA conjugates of receptor alpha(v)beta(3) antagonists belonging to the quinolin-4-one class of peptidomimetics, and their radiolabeling with (99m)Tc (for HYNIC) and (111)In (for DOTA). Tethering of the radionuclide-chelator complexes was achieved at two different sites on the quinolin-4-one molecule. All such derivatives maintained high affinity for receptor alpha(v)beta(3) and high selectivity versus receptors alpha(IIb)beta(3), alpha(v)beta(5), alpha(5)beta(1). Biodistribution of the radiolabeled compounds was evaluated in the c-neu Oncomouse mammary adenocarcinoma model. DOTA conjugate (111)In-TA138 presented the best biodistribution profile. Tumor uptake at 2 h postinjection was 9.39% of injected dose/g of tissue (%ID/g). Activity levels in selected organs was as follows: blood, 0.54% ID/g; liver, 1.94% ID/g; kidney, 2.33% ID/g; lung, 2.74% ID/g; bone, 1.56% ID/g. A complete biodistribution analysis of (111)In-TA138 and the other radiolabeled compounds of this study are presented and discussed. A scintigraphic imaging study with (111)In-TA138 showed a clear delineation of the tumors and rapid clearance of activity from nontarget tissues.  相似文献   

16.
Recombinant streptavidin (rSAv) is of interest as a carrier of alpha-emitting radionuclides in pretargeting protocols for cancer therapy. Due to the inherently high kidney localization of rSAv, modification of this protein is required before it can be useful in pretargeting. Previous studies (Wilbur, D. S., Hamlin, D. K. et al. (1998) Bioconjugate Chem. 9, 322-330) have shown that succinylation of rSAv using succinic anhydride decreases the kidney localization appreciably. In continuing studies, the biotin binding characteristics and biodistribution in mice of rSAv modified by reaction with succinic anhydride (amine modification) or 1,2-cyclohexanedione (arginine modification) have been compared. Modification of rSAv was conducted using 5-50 mol equiv of succinic anhydride and 60-200 mol equiv of 1,2-cyclohexanedione. Most studies were conducted using rSAv modified with the highest quantities of reagents. Succinylation of rSAv did not alter binding with biotin derivatives, but a small increase in the biotin derivative dissociation rate was noted for arginine-modified rSAv. Amino acid analysis of 1,2-cyclohexanedione-treated rSAv indicated about 40% of the arginine residues, or an average of 1.6 residues per subunit, were modified, whereas none of the lysine residues were modified. IEF analyses showed that the pI of the arginine-modified rSAv was 5.3-6, whereas the pI for the succinylated rSAv was approximately 4. Electrospray mass spectral analyses indicated that one to three conjugates of 1,2-cyclohexanedione, and two to three conjugates of succinic anhydride, were obtained per subunit. Both modification reactions resulted in greatly decreasing the kidney localization of rSAv (normally 20-25% ID/g at 4, 24, and 48 h pi). However, the kidney concentration for the succinylated rSAv continued to decrease (5% ID/g to 1.5% ID/g) from 4 to 48 h pi, whereas the concentration (5% ID/g) remained constant over that period of time for the arginine-modified rSAv. In contrast to this, the liver concentration appeared to be slightly higher (3% ID/g vs 2% ID/g) at the later time points for the succinylated rSAv. When less than 50 mol equiv of succinic anhydride were employed in the modification of rSAv, a correlation between increasing kidney localization with decreasing equivalents reacted was observed. Although the differences in the two modified rSAv are not substantial, succinylated rSAv appears to have more favorable properties for pretargeting studies.  相似文献   

17.
Low doses of -cysteine (CYS), cysteinyl-glycine (CYSGLY) and reduced glutathione (GSH) activated by γ-glutamyl transpeptidase (GGT) were mutagenic in strain IC203 (oxyR), whereas higher doses were required to observe a weak mutagenicity in the oxyR+ strain WP2 uvrA/pKM101 (denoted IC188). This indicates that thiol mutagenesis is suppressed by OxyR-regulated antioxidant defenses and confirms its oxidative character. The mutagenesis by low doses of CYS, CYSGLY and GSH+GGT detected in IC203 was abolished by rat liver S9, through the activity of catalase, as well as by the metal chelator diethyldithiocarbamate (DETC), supporting the dependence of this mutagenesis on H2O2 production, probably in thiol autoxidation reactions in which transition metals are involved. Surprisingly, low DETC concentrations greatly potentiate the mutagenicity of low CYS doses. Mutagenesis by high doses of CYS and CYSGLY occurred in both IC203 and IC188 in the presence of liver S9, and was resistant to inhibition by catalase, although it was prevented by DETC. Mutagenesis by GSH activated by rat kidney S9, rich in GGT, was detected in IC203 and IC188 only at high doses since catalase and glutathione peroxidase, both present in kidney S9, might inhibit its induction by low GSH doses. In the presence of liver S9, almost deficient in GGT, GSH was not mutagenic. The mutagenicity of a high GSH dose occurring in the presence either of GGT plus liver S9 or of kidney S9 was weakly prevented by DETC.  相似文献   

18.
Summary The cell-wall components in ectomycorrhizae ofCorylus avellana andTuber magnatum have been investigated by using immunocytochemistry and enzyme/lectin-gold techniques. Observations were performed in differentiated regions of hazel roots in the presence and absence of the ectomycorrhizal fungus. The results provided new information on the location of specific components in both the host and the fungal wall. The cellobiohydrolase I (CBH I)-gold complex and the monoclonal antibody (MAb) CCRC-M1 revealed cellulose and xyloglucans, respectively, in the host wall. MAb JIM 5, which detected un-esterified pectins, labelled only the material occurring at the junctions between three cells, while no labelling was found after treatment with MAb JIM 7, which detected methyl-esterified pectins. MAb CCRC-M7, which recognized an arabinosylated -(1,6)-galactan epitope, weakly labelled tissue sections. MAb MAC 266, which detects a carbohydrate epitope on membrane and soluble glycoproteins, labelled the wall domain adjacent to the plasmamembrane. In the presence of the fungus, host walls were swollen and sometimes degraded. The labelling pattern of uninfected tissue was maintained, but abundant distribution of gold granules was found after CBH I and JIM 5 labelling. None of the probes labelled the cementing electron-dense material between the hyphae in the fungal mantle and in the Hartig net. The probes for fungal walls, i.e., wheat germ agglutinin (WGA) and concanavalin A (Con A) and a polyclonal antibody, revealed the presence of chitin, high-mannose side chains of glycoproteins and -1,3-glucans. Con A alone led to a labelling over the triangular electron-dense material, suggesting that this cementing material may contain a fungal wall component.  相似文献   

19.

Background

During inflammation, adhesion molecules regulate recruitment of leukocytes to inflamed tissues. It is reported that vascular cell adhesion molecule-1 (VCAM-1) activates extracellular regulated kinases 1 and 2 (ERK1/2), but the mechanism for this activation is not known. Pharmacological inhibitors of ERK1/2 partially inhibit leukocyte transendothelial migration in a multi-receptor system but it is not known whether VCAM-1 activation of ERK1/2 is required for leukocyte transendothelial migration (TEM) on VCAM-1.

Methodology/Principal Findings

In this study, we identified a mechanism for VCAM-1 activation of ERK1/2 in human and mouse endothelial cells. VCAM-1 signaling, which occurs through endothelial cell NADPH oxidase, protein kinase Cα (PKCα), and protein tyrosine phosphatase 1B (PTP1B), activates endothelial cell ERK1/2. Inhibition of these signals blocked VCAM-1 activation of ERK1/2, indicating that ERK1/2 is activated downstream of PTP1B during VCAM-1 signaling. Furthermore, VCAM-1-specific leukocyte migration under physiological laminar flow of 2 dynes/cm2 was blocked by pretreatment of endothelial cells with dominant-negative ERK2 K52R or the MEK/ERK inhibitors, PD98059 and U0126, indicating for the first time that ERK regulates VCAM-1-dependent leukocyte transendothelial migration.

Conclusions/Significance

VCAM-1 activation of endothelial cell NADPH oxidase/PKCα/PTP1B induces transient ERK1/2 activation that is necessary for VCAM-1-dependent leukocyte TEM.  相似文献   

20.
Affibody molecules have received significant attention in the fields of molecular imaging and drug development. However, Affibody scaffolds display an extremely high renal uptake, especially when modified with chelators and then labeled with radiometals. This unfavorable property may impact their use as radiotherapeutic agents in general and as imaging probes for the detection of tumors adjacent to kidneys in particular. Herein, we present a simple and generalizable strategy for reducing the renal uptake of Affibody molecules while maintaining their tumor uptake. Human serum albumin (HSA) was consecutively modified by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester (DOTA-NHS ester) and the bifunctional cross-linker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (Sulfo-SMCC). The HER2 Affibody analogue, Ac-Cys-Z(HER2:342), was covalently conjugated with HSA, and the resulting bioconjugate DOTA-HSA-Z(HER2:342) was further radiolabeled with ??Cu and 111In and evaluated in vitro and in vivo. Radiolabeled DOTA-HSA-Z(HER2:342) conjugates displayed a significant and specific cell uptake into SKOV3 cell cultures. Positron emission tomography (PET) investigations using ??Cu-DOTA-HSA-Z(HER2:342) were performed in SKOV3 tumor-bearing nude mice. High tumor uptake values (>14% ID/g at 24 and 48 h) and high liver accumulations but low kidney accumulations were observed. Biodistribution studies and single-photon emission computed tomography (SPECT) investigations using 111In-DOTA-HSA-Z(HER2:342) validated these results. At 24 h post injection, the biodistribution data revealed high tumor (16.26% ID/g) and liver (14.11% ID/g) uptake but relatively low kidney uptake (6.06% ID/g). Blocking studies with coinjected, nonlabeled Ac-Cys-Z(HER2:342) confirmed the in vivo specificity of HER2. Radiolabeled DOTA-HSA-Z(HER2:342) Affibody conjugates are promising SPECT and PET-type probes for the imaging of HER2 positive cancer. More importantly, DOTA-HSA-Z(HER2:342) is suitable for labeling with therapeutic radionuclides (e.g., ??Y or 1??Lu) for treatment studies. The approach of using HSA to optimize the pharmacokinetics and biodistribution profile of Affibodies may be extended to the design of many other targeting molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号