首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.  相似文献   

2.
Cui LL  Yang G  Pan J  Zhang C 《Theriogenology》2011,75(5):867-876
Tumor necrosis factor α (TNFα) acts through two receptors, TNFα receptor| (TNFR|) and TNFα‖ (TNFR‖). Tumor necrosis factor α receptor| knockout mice had early senescence and poor fertility, whereas TNFR‖ knockout mice had reproductive performance not different from wild type (WT) mice. In the present study, TNFα knockout mice were used to study the roles of TNFα in female reproduction. The TNFα−/− mice had similar vaginal opening time (PD 27.6 ± 1.8 vs PD 27.7 ± 1.9, respectively, P > 0.05) and exogenous gonadotropin primed TNFα−/− mice shed more ova (28.9 ± 3.75 vs 9.8 ± 0.51, respectively, P = 0.001) compared with WT controls. At 2 mo of age, in 21 d, TNFα−/− mice had more estrous cycles than WT counterparts (6.0 ± 0.25 vs 4.0 ± 0.28, respectively, P < 0.05). Tumor necrosis factor α mutation also influenced ovarian follicular development; TNFα−/− mice had approximately a two-fold larger follicle pool in the early neonatal period (6087 ± 508.15 vs 3440 ± 261.91, respectively, P = 0.004), whereas TNFα knockout affected growth of primordial follicles to the antral stage as well. Moreover, TNFα−/− mice gave birth to 21% more pups than control mice during a 12 mo breeding period (37.38 ± 3.69 vs 22.38 ± 3.53, respectively, P = 0.03). At 1 y of age, the follicular reserve in TNFα−/− mice was more than that in WT mice. These physiological differences in TNFα−/− mice were associated with increased proliferation of granulosa cells and decreased apoptosis of oocytes. This was apparently the first demonstration that in the TNFα−/− mouse model, multiple parameters of ovarian function were altered, and that lack of TNFα increased fertility in mice.  相似文献   

3.
Heterotrimeric G proteins are critical transducers of cellular signaling. Of the four families of G proteins, the physiological function of Gα13 is less well understood. Gα13 gene-deleted mice die at embryonic day ∼9.5. Here, we show that heterozygous Gα13+/− mice display defects in adult angiogenesis. Female Gα13+/− mice showed a higher number of immature follicles and a lower density of blood vessels in the mature corpus luteum compared with Gα13+/+ mice. Furthermore, implanted tumors grew slower in Gα13+/− host mice. These tumor tissues had many fewer blood vessels compared with those from Gα13+/+ host mice. Moreover, bone marrow-derived progenitor cells from Gα13+/+ mice rescued the failed growth of allografted tumors when reconstituted into irradiated Gα13+/− mice. Hence, Gα13 is haploinsufficient for adult angiogenesis in both the female reproductive system and tumor angiogenesis.A structurally diverse repertoire of ligands, from photons to large peptides, activates G protein-coupled receptors to elicit their physiological functions (1). In turn, ligand-bound G protein-coupled receptors function as guanine nucleotide exchange factors, catalyzing the exchange of GDP bound on the Gα subunit with GTP in the presence of Gβγ and causing the dissociation of the Gα subunit from the Gβγ dimer to form two functional units (Gα and Gβγ) (2). Both Gα and Gβγ subunits signal to various cellular pathways. Based on sequence and functional homologies, G proteins are grouped into four families: Gs, Gi, Gq, and G12 (3). Of these four subfamilies of G proteins, the physiological function of the G12 subfamily is less well understood. In this family, there are two members, G12 and G13. Gα12 knock-out mice appear normal (4). Gα13 knock-out mice display embryonic lethality (embryonic day ∼9.5) (5). Gα13−/− mouse embryos have defective vascular systems (5). Endothelial cell-specific deletion of Gα13 also results in vascular defect and embryonic lethality (6). The molecular basis that underlies the vascular defect observed in Gα13−/− mouse embryos has not been defined.Angiogenesis (formation of endothelium-lined blood vessels) is essential for organ growth in the embryo and for repair of wounded tissues in the adult (7, 8). An imbalance in angiogenesis contributes to the pathogenesis of numerous malignant, inflammatory, ischemic, infectious, and immune disorders and cancers (7, 8). Most angiogenesis events take place during embryonic development. In adult tissues, the majority of endothelial cells are quiescent, and angiogenesis occurs only rarely except in a few adult tissues (including ovary) that exhibit periodic and dynamic growth and regression (911). Under pathological conditions such as tumor growth, adult angiogenesis is induced. Tumor angiogenesis is the proliferation of a network of blood vessels that penetrates into cancerous growths (including implanted tumor tissues), supplying nutrients and oxygen and removing waste products. Solid tumors depend on angiogenesis for growth and metastasis in a hostile environment (12). Bone marrow is the origin of endothelial progenitor cells in the adult. Bone marrow-derived endothelial progenitor cells are mobilized into peripheral blood and recruited to the foci of pathophysiological neovascularization and re-endothelialization, thereby contributing to vascular regeneration (13). Vascular endothelial growth factor (VEGF),2 the most critical factor for angiogenesis, is an important factor for the mobilization of endothelial progenitor cells from bone marrow (7, 8). Bone marrow transplantation experiments have demonstrated the incorporation of bone marrow-derived endothelial progenitor cells into foci of pathological neovascularization such as growing tumors, healing wounds, ischemic skeletal and cardiac muscles, and cornea receiving micropocket surgery (1421).Here, we show that heterozygous Gα13+/− mice display defects in adult angiogenesis. We found that female Gα13+/− mice show a higher number of immature follicles and a lower density of blood vessels in the mature corpus luteum compared with Gα13+/+ mice. Furthermore, implanted tumors grew slower in Gα13+/− host mice. These tumor tissues had many fewer blood vessels compared with those from Gα13+/+ host mice. We also down-regulated Gα13 in endothelial cells by RNA interference and show that defective migration and tube formation in response to VEGF likely contribute to the impaired angiogenesis. Moreover, bone marrow-derived cells from Gα13+/+ mice rescued the failed growth of allografted tumors when reconstituted into irradiated Gα13+/− mice. Our results demonstrate that Gα13 is haploinsufficient for adult angiogenesis in both the female reproductive system and tumor angiogenesis. This role in adult angiogenesis provides a suitable system to further investigate the biochemical and physiological functions of Gα13. Moreover, Gα13 inhibition could be explored for anticancer drug development.  相似文献   

4.
We consider a dynamical model of cancer growth including three interacting cell populations of tumor cells, healthy host cells and immune effector cells. The tumor–immune and the tumor–host interactions are characterized to reproduce experimental results. A thorough dynamical analysis of the model is carried out, showing its capability to explain theoretical and empirical knowledge about tumor development. A chemotherapy treatment reproducing different experiments is also introduced. We believe that this simple model can serve as a foundation for the development of more complicated and specific cancer models.  相似文献   

5.
While 3-D tissue models have received increasing attention over the past several decades in the development of traditional anti-cancer therapies, their potential application for the evaluation of advanced drug delivery systems such as nanomedicines has been largely overlooked. In particular, new insight into drug resistance associated with the 3-D tumor microenvironment has called into question the validity of 2-D models for prediction of in vivo anti-tumor activity. In this work, a series of complementary assays was established for evaluating the in vitro efficacy of docetaxel (DTX) -loaded block copolymer micelles (BCM+DTX) and Taxotere® in 3-D multicellular tumor spheroid (MCTS) cultures. Spheroids were found to be significantly more resistant to treatment than monolayer cultures in a cell line dependent manner. Limitations in treatment efficacy were attributed to mechanisms of resistance associated with properties of the spheroid microenvironment. DTX-loaded micelles demonstrated greater therapeutic effect in both monolayer and spheroid cultures in comparison to Taxotere®. Overall, this work demonstrates the use of spheroids as a viable platform for the evaluation of nanomedicines in conditions which more closely reflect the in vivo tumor microenvironment relative to traditional monolayer cultures. By adaptation of traditional cell-based assays, spheroids have the potential to serve as intermediaries between traditional in vitro and in vivo models for high-throughput assessment of therapeutic candidates.  相似文献   

6.
7.
8.
9.
Hock AK  Vousden KH 《Cell》2012,149(6):1183-1185
p53 is a key tumor suppressor protein that has numerous functions. Its primary mode of action has generally been ascribed to the induction of cell-cycle arrest, apoptosis, or senescence upon stress. Li et al. challenge this dogma with evidence that all three of these programs are dispensable for p53's tumor suppressive role.  相似文献   

10.
Ductal carcinoma in situ (DCIS) is an early stage noninvasive breast cancer that originates in the epithelial lining of the milk ducts, but it can evolve into comedo DCIS and ultimately, into the most common type of breast cancer, invasive ductal carcinoma. Understanding the progression and how to effectively intervene in it presents a major scientific challenge. The extracellular matrix (ECM) surrounding a duct contains several types of cells and several types of growth factors that are known to individually affect tumor growth, but at present the complex biochemical and mechanical interactions of these stromal cells and growth factors with tumor cells is poorly understood. Here we develop a mathematical model that incorporates the cross-talk between stromal and tumor cells, which can predict how perturbations of the local biochemical and mechanical state influence tumor evolution. We focus on the EGF and TGF-β signaling pathways and show how up- or down-regulation of components in these pathways affects cell growth and proliferation. We then study a hybrid model for the interaction of cells with the tumor microenvironment (TME), in which epithelial cells (ECs) are modeled individually while the ECM is treated as a continuum, and show how these interactions affect the early development of tumors. Finally, we incorporate breakdown of the epithelium into the model and predict the early stages of tumor invasion into the stroma. Our results shed light on the interactions between growth factors, mechanical properties of the ECM, and feedback signaling loops between stromal and tumor cells, and suggest how epigenetic changes in transformed cells affect tumor progression.  相似文献   

11.
This paper is concerned with early development of transformed epithelial cells (TECs) in the presence of fibroblasts in the tumor micro-environment. These two types of cells interact by means of cytokines such as transforming growth factor (TGF-β) and epidermal growth factor (EGF) secreted, respectively, by the TECs and the fibroblasts. As this interaction proceeds, TGF-β induces fibroblasts to differentiate into myofibroblasts which secrete EGF at a larger rate than fibroblasts. We monitor the entire process in silico, in a setup which mimics experiments in a Tumor Chamber Invasion Assay, where a semi-permeable membrane coated by extracellular matrix (ECM) is placed between two chambers, one containing TECs and another containing fibroblasts. We develop a mathematical model, based on a system of PDEs, that includes the interaction between TECs, fibroblasts, myofibroblasts, TGF-β, and EGF, and we show how model parameters affect tumor progression. The model is used to generate several hypotheses on how to slow tumor growth and invasion. In an Appendix, it is proved that the mathematical model has a unique global in-time solution.  相似文献   

12.
OBJECTIVE: Our study aimed to monitor the trastuzumab therapy response of murine tumor xenograft model with human epidermal growth factor receptor 2 (Her-2)–positive breast cancer using ultrasound targeted apoptosis imaging. METHODS: We prepared targeted apoptosis ultrasound probes by nanobubble (NB) binding with Annexin V. In vitro, we investigated the binding rate of NB–Annexin V with breast cancer apoptotic cells after the trastuzumab treatment. In vivo, tumor-bearing mice underwent ultrasound targeted imaging over 7 days. After imaging was completed, the tumors were excised to determine Her-2 and caspase-3 expression by immunohistochemistry (IHC). The correlation between parameters of imaging and histologic results was then analyzed. RESULTS: For seeking the ability of targeted NB binding with apoptotic tumor cells (Her-2 positive), we found that binding rate in the treatment group was higher than that of the control group in vitro (P = .001). There were no differences of tumor sizes in all groups over the treatment process in vivo (P = .98). However, when using ultrasound imaging to visualize tumors by targeted NB in vivo, we observed that the mean and peak intensities from NBs gradually increased in the treatment group after trastuzumab therapy (P = .001). Furthermore, these two parameters were significantly associated with caspase-3 expression of tumor excised samples (P = .0001). CONCLUSION: Ultrasound targeted apoptosis imaging can be a non-invasive technique to evaluate the early breast tumor response to trastuzumab therapy.  相似文献   

13.
Two of the signature genetic events that occur in human gliomas, EGFR amplification and IDH mutation, are poorly represented in experimental models in vitro. EGFR amplification, for example, occurs in 40 to 50% of GBM, and yet, EGFR amplification is rarely preserved in cell cultures derived from human tumors. To analyze the fate of EGFR amplified and IDH mutated cells in culture, we followed the development over time of cultures derived from human xenografts in nude rats enriched for tumor cells with EGFR amplification and of cultures derived from patient samples with IDH mutations, in serum monolayer and spheroid suspension culture, under serum and serum free conditions. We observed under serum monolayer conditions, that nestin positive or nestin and SMA double positive rat stromal cells outgrew EGFR amplified tumor cells, while serum spheroid cultures preserved tumor cells with EGFR amplification. Serum free suspension culture exhibited a more variable cell composition in that the resultant cell populations were either predominantly nestin/SOX2 co-expressing rat stromal cells or human tumor cells, or a mixture of both. The selection for nestin/SMA positive stromal cells under serum monolayer conditions was also consistently observed in human oligodendrogliomas and oligoastrocytomas with IDH mutations. Our results highlight for the first time that serum monolayer conditions can select for stromal cells instead of tumor cells in certain brain tumor subtypes. This result has an important impact on the establishment of new tumor cell cultures from brain tumors and raises the question of the proper conditions for the growth of the tumor cell populations of interest.  相似文献   

14.
We propose a spatially distributed continuous model for the spheroid response to radiation, in which the oxygen distribution is represented by means of a diffusion-consumption equation and the radiosensitivity parameters depend on the oxygen concentration. The induction of lethally damaged cells by a pulse of radiation, their death, and the degradation of dead cells are included. The compartments of lethally damaged cells and of dead cells are subdivided into different subcompartments to simulate the delays that occur in cell death and cell degradation, with a gain in model flexibility. It is shown that, for a single irradiation and under the hypothesis of a sufficiently small spheroid radius, the model can be reformulated as a linear stationary ordinary differential equation system. For this system, the parameter identifiability has been investigated, showing that the set of unknown parameters can be univocally identified by exploiting the response of the model to at least two different radiation doses. Experimental data from spheroids originated from different cell lines are used to identify the unknown parameters and to test the predictive capability of the model with satisfactory results.  相似文献   

15.
With the aim to develop beneficial tracers for cerebral tumors, we tested two novel 5-iodo-2′-deoxyuridine (IUdR) derivatives, diesterified at the deoxyribose residue. The substances were designed to enhance the uptake into brain tumor tissue and to prolong the availability in the organism. We synthesized carrier added 5-[125I]iodo-3′,5′-di-O-acetyl-2′-deoxyuridine (Ac2[125I]IUdR), 5-[125I]iodo-3′,5′-di-O-pivaloyl-2′-deoxyuridine (Piv2[125I]IUdR) and their respective precursor molecules for the first time. HPLC was used for purification and to determine the specific activities. The iodonucleoside tracer were tested for their stability against human thymidine phosphorylase. DNA integration of each tracer was determined in 2 glioma cell lines (Gl261, CRL2397) and in PC12 cells in vitro. In mice, we measured the relative biodistribution and the tracer uptake in grafted brain tumors. Ac2[125I]IUdR, Piv2[125I]IUdR and [125I]IUdR (control) were prepared with labeling yields of 31–47% and radiochemical purities of >99% (HPLC). Both diesterified iodonucleoside tracers showed a nearly 100% resistance against degradation by thymidine phosphorylase. Ac2[125I]IUdR and Piv2[125I]IUdR were specifically integrated into the DNA of all tested tumor cell lines but to a less extend than the control [125I]IUdR. In mice, 24 h after i.p. injection, brain radioactivity uptakes were in the following order Piv2[125I]IUdR>Ac2[125I]IUdR>[125I]IUdR. For Ac2[125I]IUdR we detected lower amounts of radioactivities in the thyroid and stomach, suggesting a higher stability toward deiodination. In mice bearing unilateral graft-induced brain tumors, the uptake ratios of tumor-bearing to healthy hemisphere were 51, 68 and 6 for [125I]IUdR, Ac2[125I]IUdR and Piv2[125I]IUdR, respectively. Esterifications of both deoxyribosyl hydroxyl groups of the tumor tracer IUdR lead to advantageous properties regarding uptake into brain tumor tissue and metabolic stability.  相似文献   

16.
17.
18.
19.

Objective

Increasing evidence suggests that, when used in combination, tumor necrosis factor-α (TNF-α) synergizes with traditional chemotherapeutic drugs to exert a heightened antitumor effect. The present study investigated the antitumor efficacy of recombinant mutated human TNF-α specifically targeted to the tumor vasculature (RGD-rmhTNF-α) combined with the chemotherapeutic agent doxorubicin in 2 murine allografted tumor models.

Methods

Mice bearing hepatoma or sarcoma allografted tumors were treated with various doses of RGD-rmhTNF-α alone or in combination with doxorubicin (2 mg/kg). We then evaluated tumor growth and tumor vessel permeability as well as intratumoral levels of RGD-rmhTNF-α and doxorubicin.

Results

RGD-rmhTNF-α treatment enhanced the permeability of the tumor vessels and increased intratumoral doxorubicin levels. In addition, intratumoral RGD-rmhTNF-α levels were significantly higher than that of rmhTNF-α. In both of the tested tumor models, administering RGD-rmhTNF-α in combination with doxorubicin resulted in an enhanced antitumor response compared to either treatment alone. Double-agent combination treatment of doxorubicin with 50,000 IU/kg RGD-rmhTNF-α induced stronger antitumor effects on H22 allografted tumor-bearing mice than the single doxorubicin agent alone. Moreover, doxorubicin with 10,000 IU/kg RGD-rmhTNF-α synergized to inhibit tumor growth in S180 allografted tumor-bearing mice.

Conclusions

These results suggest that targeted delivery of low doses of RGD-rmhTNF-α into the tumor vasculature increases the antitumor efficacy of chemotherapeutic drugs.  相似文献   

20.
Wilms’ tumor gene 1 (WT1) plays complex roles in tumorigenesis, acting as tumor suppressor gene or an oncogene depending on the cellular context. WT1 expression has been variably reported in both benign and malignant peripheral nerve sheath tumors (MPNSTs) by means of immunohistochemistry. The aim of the present study was to characterize its potential pathogenetic role in these relatively uncommon malignant tumors. Firstly, immunohistochemical analyses in MPNST sNF96.2 cell line showed strong WT1 staining in nuclear and perinuclear areas of neoplastic cells. Thus, we investigated the effects of silencing WT1 by RNA interference. Through Western Blot analysis and proliferation assay we found that WT1 knockdown leads to the reduction of cell growth in a time- and dose-dependent manner. siWT1 inhibited proliferation of sNF96.2 cell lines likely by influencing cell cycle progression through a decrease in the protein levels of cyclin D1 and inhibition of Akt phosphorylation compared to the control cells. These results indicate that WT1 knockdown attenuates the biological behavior of MPNST cells by decreasing Akt activity, demonstrating that WT1 is involved in the development and progression of MPNSTs. Thus, WT1 is suggested to serve as a potential therapeutic target for MPNSTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号