首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bradykinin-related peptides (kinins) are well known to contribute to leukocyte recruitment to inflammatory foci; however, a role of these universal pro-inflammatory mediators in the first step of this process, i.e. the leukocyte adhesion to endothelial cells, is not well understood. In this work we found that bradykinin and des-Arg10-kallidin enhance the adhesion of polymorphonuclear bloods cells (PMN) to fibrinogen and fibronectin. Also, the PMN adherence to endothelial cells of HMEC-1 line strongly increased after stimulation by kinins, particularly des-Arg10-kallidin, or when PMN were co-stimulated with bradykinin and interleukin-1β. These effects were attenuated after PMN treatment with a specific inhibitor of carboxypeptidases, which convert kinins to their des-Arg metabolites. The kinin peptides were also able to change the Mac-1 integrin expression on the PMN surface. These results suggest a regulatory effect of kinins on leukocyte adhesion to endothelial wall, providing new aspects of the leukocyte infiltration into inflamed tissues.  相似文献   

2.
In terms of infection incidence, the yeast Candida parapsilosis is the second after Candida albicans as causative agent of candidiases in humans. The major virulence factors of C. parapsilosis are secreted aspartic proteases (SAPPs) which help the pathogen to disseminate, acquire nutrients and dysregulate the mechanisms of innate immunity of the host. In the current work we characterized the action of two major extracellular proteases of C. parapsilosis, SAPP1 and SAPP2, on human kininogens, proteinaceous precursors of vasoactive and proinflammatory bradykinin-related peptides, collectively called the kinins. The kininogens, preferably the form with lower molecular mass, were effectively cleaved by SAPPs, with the release of two uncommon kinins, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin. While optimal at acidic pH (4–5), the kinin release yield was only 2–3-fold lower at neutral pH. These peptides were able to interact with cellular kinin receptors of B2 subtype and to stimulate the human endothelial cells HMEC-1 to increased secretion of proinflammatory interleukins (ILs), IL-1β and IL-6. The analysis of the stability of SAPP-generated kinins in plasma suggested that they are biologically equivalent to bradykinin, the best agonist of B2 receptor subtype and can be quickly converted to des-Arg9-bradykinin, the agonist of inflammation-inducible B1 receptors.  相似文献   

3.
Previous studies have shown that polymorphonuclear leukocyte (PMN) adherence to endothelial cells (EC) induces transient increases in EC cytosolic free calcium concentration ([Ca2+]i) that are required for PMN transit across the EC barrier (Huang, A.J., J.E. Manning, T.M. Bandak, M.C. Ratau, K.R. Hanser, and S.C. Silverstein. 1993. J. Cell Biol. 120:1371–1380). To determine whether stimulation of [Ca2+]i changes in EC by leukocytes was induced by the same molecules that mediate leukocyte adherence to EC, [Ca2+]i was measured in Fura2-loaded human EC monolayers. Expression of adhesion molecules by EC was induced by a pretreatment of the cells with histamine or with Escherichia coli lipopolysaccharide (LPS), and [Ca2+]i was measured in single EC after the addition of mAbs directed against the EC adhesion proteins P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), or platelet/endothelial cell adhesion molecule-1 (PECAM-1). Both anti–P- and anti–E-selectin mAb, as well as anti–VCAM-1 mAb, induced transient increases in EC [Ca2+]i that were comparable to those induced by 200 μM histamine. In contrast, no effect was obtained by mAbs directed against the endothelial ICAM-1 or PECAM-1. PMN adherence directly stimulated increases in [Ca2+]i in histamine- or LPS-treated EC. mAbs directed against leukocyte CD18 or PECAM-1, the leukocyte counter-receptors for endothelial ICAM-1 and PECAM-1, respectively, did not inhibit PMN-induced EC activation. In contrast, mAb directed against sialyl Lewis x (sLex), a PMN ligand for endothelial P- and E-selectin, completely inhibited EC stimulation by adherent PMN. Changes in EC [Ca2+]i were also observed after adherence of peripheral blood monocytes to EC treated with LPS for 5 or 24 h. In these experiments, the combined addition of mAbs to sLex and VLA-4, the leukocyte counter-receptor for endothelial VCAM-1, inhibited [Ca2+]i changes in the 5 h–treated EC, whereas the anti–VLA-4 mAb alone was sufficient to inhibit [Ca2+]i changes in the 24 h-treated EC. Again, no inhibitory effect was observed with an anti-CD18 or anti–PECAM-1 mAb. Of note, the conditions that induced changes in EC [Ca2+]i, i.e., mAbs directed against endothelial selectins or VCAM-1, and PMN or monocyte adhesion to EC via selectins or VCAM-1, but not via ICAM-1 or PECAM-1, also induced a rearrangement of EC cytoskeletal microfilaments from a circumferential ring to stress fibers. We conclude that, in addition to their role as adhesion receptors, endothelial selectins and VCAM-1 mediate endothelial stimulation by adhering leukocytes.  相似文献   

4.

Background

Kinins, with bradykinin and des-Arg9-bradykinin being the most important ones, are pro-inflammatory peptides released after tissue injury including stroke. Although the actions of bradykinin are in general well characterized; it remains controversial whether the effects of bradykinin are beneficial or not. Kinin-B2 receptor activation participates in various physiological processes including hypotension, neurotransmission and neuronal differentiation. The bradykinin metabolite des-Arg9-bradykinin as well as Lys-des-Arg9-bradykinin activates the kinin-B1 receptor known to be expressed under inflammatory conditions. We have investigated the effects of kinin-B1 and B2 receptor activation on N-methyl-D-aspartate (NMDA)-induced excitotoxicity measured as decreased capacity to produce synaptically evoked population spikes in the CA1 area of rat hippocampal slices.

Principal Findings

Bradykinin at 10 nM and 1 µM concentrations triggered a neuroprotective cascade via kinin-B2 receptor activation which conferred protection against NMDA-induced excitotoxicity. Recovery of population spikes induced by 10 nM bradykinin was completely abolished when the peptide was co-applied with the selective kinin-B2 receptor antagonist HOE-140. Kinin-B2 receptor activation promoted survival of hippocampal neurons via phosphatidylinositol 3-kinase, while MEK/MAPK signaling was not involved in protection against NMDA-evoked excitotoxic effects. However, 100 nM Lys-des-Arg9-bradykinin, a potent kinin-B1 receptor agonist, reversed bradykinin-induced population spike recovery. The inhibition of population spikes recovery was reversed by PD98059, showing that MEK/MAPK was involved in the induction of apoptosis mediated by the B1 receptor.

Conclusions

Bradykinin exerted protection against NMDA-induced excitotoxicity which is reversed in the presence of a kinin-B1 receptor agonist. As bradykinin is converted to the kinin-B1 receptor metabolite des-Arg9-bradykinin by carboxypeptidases, present in different areas including in brain, our results provide a mechanism for the neuroprotective effect in vitro despite of the deleterious effect observed in vivo.  相似文献   

5.
This article describes various adhesion molecules and reviews evidence to support a mechanistic role for adhesion molecules in the process of cancer metastasis. A variety of evidence supports the involvement of specific adhesion molecules in metastasis.
  1. For example, some cancer cells metastasize to specific organs, irrespective of the first organ encountered by the circulating cancer cells. This ability to colonize a specific organ has been correlated with the preferential adhesion of the cancer cells to endothelial cells derived from the target organ. This suggests that cancer cell/endothelial cell adhesion is involved in cancer cell metastasis and that adhesion molecules are expressed on the endothelium in an organ-specific manner.
  2. Further, inclusion of peptides that inhibit cell adhesion, such as the YIGSR- or RGD-containing peptides, is capable of inhibiting experimental metastasis.
  3. Metastasis can be enhanced by acute or chronic inflammation of target vessels, or by treatment of animals with inflammatory cytokines, such as interleukin-1. In vitro, cancer cell/endothelial cell adhesion can be enhanced by pretreating the endothelial cell monolayer with cytokines, such as interleukin-1 or tumor necrosis factor-α. This suggests that, in addition to organ-specific adhesion molecules, a population of inducible endothelial adhesion molecules is involved and is relevant to metastasis.
  4. Further support for this model is found in the comparison to leukocyte/endothelial adhesion during leukocyte trafficking. Convincing evidence exists, both in vivo and in vitro, to demonstrate an absolute requirement for leukocyte/endothelial adhesion before leukocyte extravasation can occur. The relevance of this comparison to metastasis is reinforced by the observation that some of the adhesion molecules involved in leukocyte/endothelial adhesion are also implicated in cancer cell/endothelial adhesion. The involvement of adhesion molecules suggests a potential therapy for metastasis based on interrupting adhesive interactions that would augment other treatments for primary tumors.
  相似文献   

6.
Since adhesion of neutrophils (PMN) to endothelial cells may influence PMN activation responses, we examined whether adhesion of PMN to TNF alpha-activated human umbilical vein endothelial cells (HUVEC) stimulates leukotriene B4 (LTB4) production. Endothelial adhesivity towards PMN increased after HUVEC pretreatment with TNF alpha for 4 h. LTB4 production increased markedly in response to stimulation with arachidonic acid (20 microM) when PMN were added to the hyperadhesive HUVEC. In contrast, stimulation of PMN in suspension did not potentiate LTB4 production. LTB4 production persisted when PMN were applied to TNF alpha-pretreated HUVEC fixed with 1% paraformaldehyde excluding the possibility that metabolic activity of endothelium participates in this response. PMN adhesion to plastic and gelatin also enhanced LTB4 indicating that adhesion was a critical event in inducing LTB4 production. We used monoclonal antibodies (mAb) to adhesion molecules on endothelial cells (i.e., endothelial leukocyte adhesion molecule-1 (ELAM-1) and intercellular adhesion molecule-1 (ICAM-1)) or on PMN (CD18) to assess the role of PMN adhesion to the activated endothelium on LTB4 potentiation. Both anti-ELAM-1 mAb and anti-ICAM-1 mAb inhibited PMN adhesion (by 55 and 41%, respectively) as well as LTB4 production (by 65 and 50%, respectively). Anti-CD18 mAb also reduced the adhesion (65%) and the LTB4 production (66%). Furthermore, combination of anti-ELAM-1 mAb (H18/7) and anti-ICAM-1 mAb (RR1/1) or of anti-ELAM-1 mAb (H18/7) and anti-CD18 mAb (IB4) had an additive effect in inhibiting both PMN adhesion as well as LTB4 production. PMN adherence to immobilized recombinant soluble rELAM-1 or rICAM-1 also increased LTB4 production, which was prevented with relevant mAbs. However, neither rELAM-1 nor rICAM-1 stimulated LTB4 production of PMN in suspension. We conclude that PMN adhesion to TNF alpha-stimulated endothelial cells enhances LTB4 production by PMN, a response activated by binding of PMN to expressed endothelial cell surface adhesion molecules.  相似文献   

7.
8.
BackgroundHeart failure with preserved ejection fraction (HFpEF) is a heterogeneous disease presenting a substantial challenge to clinicians. Currently, there is no safe and efficacious HFpEF treatment. In this study, we reported a standardized herbal medicinal product, QiShenYiQi (QSYQ), that can be used in the treatment of HFpEF.MethodsHFpEF mice were established by infusing a combination of Nω-nitro-L-arginine methyl ester (L-NAME) and feeding them a high-fat diet for 14 weeks. In the 10th week, the HFpEF mice were given dapagliflozin or QSYQ via oral gavage for four weeks. The blood pressure, echocardiography, hemodynamics, leukocyte infiltration, and oxidative stress in HFpEF mice were evaluated. Besides, inflammatory factors, endothelial adhesion factors, and endothelial-mesenchymal transformation (EndMT) markers were investigated.ResultsQSYQ significantly attenuated concentric cardiac remodeling while improving diastolic function and left ventricular compliance in HFpEF mice. QSYQ also inhibited inflammation and immunocyte recruitment during HFpEF. The infiltration of CD8+, CD4+ T cells, and CD11b/c+ monocytes was substantially mitigated in the myocardium of QSYQ-treated mice. TNF-α, MCP-1, NF-κB, and NLRP3 levels also reduced after QSYQ treatment. Furthermore, QSYQ significantly reversed the elevated expression of endothelial adhesion factors and EndMT occurrence. These effects of QSYQ were demonstrated by the activation of NO-cGMP-PKG pathway and reduction of eNOS uncoupling in the HFpEF heart.ConclusionThese results provide novel evidence that QSYQ treatment improves HFpEF by inhibiting microvascular endothelial inflammation and activating NO-cGMP-PKG pathway.  相似文献   

9.
《Cytotherapy》2014,16(10):1345-1360
Background aimsStem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow–derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model.MethodsGroups received either 1 × 105, 5 × 105, or 1 × 106 BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days.ResultsTortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions.DiscussionWe demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.  相似文献   

10.
Extracellular ATP (released by endothelial and immune cells) and its metabolite ADP are important pro-inflammatory mediators via the activation of purinergic P2 receptors (P2Y and P2X), which represent potential new targets for anti-inflammatory therapy. Endothelial P2Y1 receptor (P2Y1R) induces endothelial cell activation triggering leukocyte adhesion. A number of data have implicated melatonin as a modulator of immunity, inflammation, and endothelial cell function, but to date no studies have investigated whether melatonin modulates endothelial P2YR signaling. Here, we evaluated the putative effect of melatonin on P2Y1R-mediated leukocyte adhesion to endothelial cells and TNF-α production, using mesenteric endothelial cells and fresh peripheral blood mononuclear cells isolated from rats. Endothelial cells were treated with the P2Y1R agonist 2MeSATP, alone or in combination with melatonin, and then exposed to mononuclear cells. 2MeSATP increased leukocyte adhesion to endothelial cells and TNF-α production in vitro, and melatonin inhibited both effects without altering P2Y1R protein expression. In addition, assays with the Ca2+ chelator BAPTA-AM indicate that the effect of melatonin on 2MeSATP-stimulated leukocyte adhesion depends on intracellular Ca2+ modulation. P2Y1R is considered a potential target to control chronic inflammation. Therefore, our data unveiled a new endothelial cell modulator of purinergic P2Y1 receptor signaling.  相似文献   

11.
We studied the effects of the CuZn superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) on endothelial permeability to 125I-albumin after activation of neutrophils (PMN) with phorbol 12-myristate-13-acetate (PMA; 10?8M). PMN were either in direct contact with the endothelial cell monolayer grown on a porous gelatin-coated microporous 10-μm-thick polycarbonate filter (upright system) or separated from the endothelium by a similar filter (inverted system). Transendothelial 125I-albumin clearance rates were measured as an index of endothelial permeability. In the absence of antioxidants, activation of PMN increased transendothelial 125I-albumin clearnace rates in both systems from 0.041 ± 0.006 μl/min (baseline) to 0.262 ± 0.18 μl/min (upright system) and from 0.063 ± 0.02 μl/min to 0.244 ± 0.06 μl/min (inverted system). PMA induced 80–90% of PMN to adhere to either gelatin-coated filters or to endothelial cells, from the basal PMN adhesion value of 5.3 ± 2.2% and 4.3 ± 1.1%, respectively. SOD, which dismutates superoxide anion to hydrogen peroxide (H2O2), did not alter the transendothelial 125I-albumin clearance rates in either systm at any concerntration from 10–300 U/ml. CAT (100–1,000 U/ml) and GSH (0.5–10 mM), which remove the H2O2 generated during PMN activation, did not alter the increase in transendothelial 125I-clearance rates after PMN activation in the upright system, but both agents prvented the increase in transendothelial 125I-clearance rates in the inverted system. We conclude that PMN activation with PMA causes endothelial injury irrespective of PMN contact to the endothelial monolayer. Moreover, H2O2, a release product of PMN activation, is a critical mediator of PMN-dependent endothelial injury. Finally, the results indicate that CAT and GSH prevent endothelial injury only in the absence of direct PMN contact with endothelial cells, suggesting that antioxidants such as GSH and CAT are excluded from sites of PMN-endothelial contact and thus are ineffective antioxidants. © 1993 Wiley-Liss, Inc.  相似文献   

12.
The renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS) each encompasses a large number of molecules, with several participating in both systems. The RAS generates a family of bioactive angiotensin peptides with varying biological activities. These include angiotensin-(1-8) (Ang II), angiotensin-(2-8) (Ang III), angiotensin-(3-8) (Ang IV), and angiotensin-(1-7) [Ang-(1-7)]. Ang II and Ang III act on type 1 (AT(1)) and type 2 (AT(2)) angiotensin receptors, whereas, Ang IV and Ang-(1-7) act on their own receptors. The KKS also generates a family of bioactive peptides with varying biological activities. These include hydroxylated and non-hydroxylated bradykinin and kallidin peptides and their carboxypeptidase metabolites des-Arg(9)-bradykinin and des-Arg(10)-kallidin. Whereas bradykinin and kallidin act mainly via the type 2 bradykinin (B(2)) receptor, des-Arg(9)-bradykinin and des-Arg(10)-kallidin act mainly via the type 1 bradykinin (B(1)) receptor. The AT(1) receptor forms heterodimers with the AT(2) and B(2) receptors and there is cross talk between the AT(1) and epidermal growth factor receptors. The B(2) receptor also interacts with angiotensin converting enzyme and nitric oxide synthase. Both angiotensin and kinin peptides are metabolised by many different peptidases that are important determinants of the activities of the RAS and KKS, and several of which participate in both systems.  相似文献   

13.
The binding of polymorphonuclear granulocytes (PMN) to activated vascular endothelium is a crucial step in the recruitment of PMN to an inflammatory site. Studies employing cytokine-activated endothelium in culture have shown that PMN binding involves the CD18 family of leukocyte integrins, but also CD18-independent adhesion mechanism(s) on PMN that have not been defined. We unify here two previously disparate approaches to study cell adhesion events between endothelial cells and leukocytes. We show that antibodies to human LECAM-1, the peripheral lymph node homing receptor that is also expressed on PMN, partially inhibit the adhesion of human PMN not only to HEV in frozen sections of lymph node tissue, but also to cytokine-activated human umbilical vein endothelium in vitro. Inhibition with anti-LECAM-1 antibodies and anti-CD18 antibodies is additive. Furthermore, the anti-LECAM-1 antibodies inhibit the adhesion of CD18-deficient PMN to cytokine activated human endothelial cells. These findings indicate that LECAM-1 and CD18-mediated binding mechanisms are independent, and act coordinately or sequentially to mediate PMN attachment to cytokine activated endothelium.  相似文献   

14.
rIL-1 beta treatment of cultured human endothelial cells (HEC) promotes polymorphonuclear leukocyte (PMN) adhesion and transmigration. Using in vitro quantitative monolayer adhesion and videomicroscopic transmigration assays, we have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1), intercellular adhesion molecule-1 (ICAM-1), and the leukocyte adhesion complex, CD11/CD18, to these processes. Maximal enhancement of PMN adhesion and transmigration were observed after 4 h of rIL-1 beta treatment, when surface expression of ELAM-1 had peaked and ICAM-1 was modestly increased. Blocking mAb directed to either ELAM-1 or ICAM-1 inhibited greater than 90% of the up-regulated PMN transmigration. Blocking mAb directed to either CD11a/CD18 (LFA-1, a ICAM-1 counter-receptor), CD11b/CD18 (Mo-1), or CD18 (common beta 2-integrin) also blocked greater than 90% of PMN transmigration. At later time points (24 or 48 h), ELAM-1 surface expression was markedly decreased, whereas ICAM-1 expression was increased over the 4-h level; PMN adhesion remained elevated (approximately 50 to 60% of 4 h level), but transmigration returned to levels seen with unactivated HEC. These data indicate that PMN interaction with at least two distinct HEC adhesion molecules is necessary for transendothelial migration and suggests that PMN adhesion and transmigration, although interrelated, are mechanistically distinct processes.  相似文献   

15.
Eicosanoid formation by transcellular routes can amplify the levels and types of lipid mediators within a local milieu. To evaluate the role of adhesion in this process, we assessed the influence of mAb against adhesion molecules on LTC4 generation by PMN-endothelial cell interaction. Transcellular LTC4 generation was initiated by addition of fMLP to coincubations of GM-CSF-primed PMN and TNF-activated endothelial cells cultured from kidney glomeruli. Both PMN-endothelial cell adhesion and transcellular LTC4 generation were inhibited by mAb against leukocyte L-selectin and CD18. These results indicate that cytokine-treated PMN and endothelial cells generate LTC4 via transcellular routes by receptor-triggered mechanisms. They suggest that adhesion promotes transcellular eicosanoid biosynthesis and that adhesion molecules may also be targets for blockade of transcellular biosynthesis of lipid mediators.  相似文献   

16.
Thrombospondin (TSP), a 450-kDa trimeric glycoprotein secreted by platelets and endothelial cells at sites of tissue injury or inflammation, may play an important role in polymorphonuclear leukocyte (PMN) adherence to blood vessel walls before diapedesis. We have examined the adherence of PMN to TSP and compared it to adherence to other extracellular matrix proteins. PMN adherence to TSP-coated plastic was complete by 60 min with spreading completed by 2 h. The kinetics of adhesion and spreading on TSP were similar to that of vitronectin (VN), laminin (LN), and fibronectin (FN). Activation of PMN with the calcium ionophore A23187 or the chemotactic peptide FMLP increased PMN adherence to LN and FN, but not to TSP or VN, suggesting that PMN activation may differentially regulate expression of TSP and VN receptors as compared to LN and FN receptors. The specificity of PMN adherence to TSP was confirmed by competition with saturating amounts of TSP and inhibition with anti-TSP antibodies. mAb A6.1, which binds to the protease-resistant core of TSP, was the most effective in blocking PMN adherence to TSP. Using TSP proteolytic fragments, we demonstrated that the primary interaction of PMN with TSP was mediated through the 140-kDa COOH-terminal domain. Inasmuch as the 140-kDa fragment of TSP contains an Arg-Gly-Asp sequence similar to the cell recognition site of FN and VN, we determined whether RGDS peptides would inhibit PMN adhesion. RGDS did not significantly inhibit PMN adhesion to TSP, VN, or LN, but reduced PMN adhesion to FN by 50%. To determine if PMN adhesion to TSP was mediated by a beta 2 integrin receptor such as LFA-1, MO-1, or p150,95, we performed adhesion assays using PMN isolated from patients with leukocyte adhesion deficiency that lack beta 2 receptors. Leukocyte adhesion deficiency PMN exhibited normal adherence to TSP. In contrast, adherence to VN, LN, and FN was reduced by 95%. Therefore, adherence to TSP is probably not mediated by a beta 2 integrin receptor. These data contribute to the accumulating evidence that PMN can interact with extracellular matrix proteins through a CD11/CD18-independent process.  相似文献   

17.
By using immortalized and normal endothelial cells, we were able to detect inhibitory effects of type specific polysaccharides from Streptococcus agalactiae on adhesion of cancer cells to endothelial cells, which is an essential step of cancer metastasis. The inhibition was probably due to specific structures of the bacterial polysaccharides, since the structures of the saccharides are very similar to those of cancer specific sialyl Lewis carbohydrates (sialyl Lea and Lex) which bind to ELAM-1 of endothelial cells. This result indicated that the bacterial polysaccharides from S. agalactiae could be very useful and hopeful as cancer metastasis inhibitors.Abbreviations HUVECs human umbilical cord vein endothelial cells - ELAM-1 endothelial leukocyte adhesion molecule-1  相似文献   

18.
Tumor angiogenesis and immune response have in common to be cell recognition mechanisms, which are based on specific adhesion molecules and dependent on nitric oxide (NO). The aim of the present study is to deepen the mechanisms of angiogenesis and inflammation regulation by NO to find out the molecular regulation processes that govern endothelial cell permeability and leukocyte transmigration.Effects of NO, either exogenous or produced in hypoxic conditions, were studied on microvascular endothelial cells from skin and lymph node because of their strong involvement in melanoma progression. We found that NO down-regulation of pseudo-vessel formation was linked to a decrease in endothelial cell ability to adhere to each other which can be explain, in part, by the inhibition of PECAM-1/CD31 expression. On the other hand, NO was shown to be able to decrease leukocyte adhesion on an endothelial monolayer, performed either in static or in rolling conditions, and to modulate differentially CD34, ICAM-1/CD54, ICAM-2/CD102 and VCAM-1/CD106 expression.In conclusion, during angiogenesis and leukocyte recruitment, NO regulates cell interactions by controlling adhesion molecule expression and subsequently cell adhesion. Moreover, each endothelial cell type presents its own organospecific response to NO, reflecting the functions of the tissue they originate from.  相似文献   

19.
We have characterized the mechanisms by which thrombin enhances neutrophil leukocyte (PMN) adhesion to human endothelial cells in vitro. Thrombin rapidly and transiently increased PMN adhesion by an action on the endothelial cells. The transience of the response was due to at least two factors: desensitization of the endothelial cell responsiveness to thrombin in the continued presence of the agonist; and the lability (t1/2 less than 15 min) of the effector molecules expressed by the endothelium. Experiments with exogenous platelet-activating factor (PAF) and with PAF antagonists demonstrated that PAF production, although it may facilitate the enhanced PMN adhesion seen in response to thrombin, is not sufficient to explain the reaction. By using a variety of antibodies directed against cell surface ligands, and comparing adhesion of PMN to endothelium and to protein-coated surfaces, we deduce that several endothelial ligands not previously reported as playing a role in PMN adhesion are involved in these interactions. Of particular interest was the finding that antibodies recognizing two thrombin-regulated endothelial cell surface ligands, GMP-140 and the CD63-related Ag, both inhibited adhesion of PMN to thrombin- or LPS-pretreated endothelium. We conclude that thrombin acts to enhance PMN adhesion to endothelium at least in part by transiently altering the conformation or level of expression of these ligands.  相似文献   

20.
Escherichia coli, as one of the gut microbiota, can evoke severe inflammatory diseases including peritonitis and sepsis. Gram-negative bacteria including E. coli constitutively release nano-sized outer membrane vesicles (OMVs). Although E. coli OMVs can induce the inflammatory responses without live bacteria, the effect of E. coli OMVs in vivo on endothelial cell function has not been previously elucidated. In this study, we show that bacteria-free OMVs increased the expression of endothelial intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1, and enhanced the leukocyte binding on human microvascular endothelial cells in vitro. Inhibition of NF-κB and TLR4 reduced the expression of cell adhesion molecules in vitro. OMVs given intraperitoneally to the mice induced ICAM-1 expression and neutrophil sequestration in the lung endothelium, and the effects were reduced in ICAM-1-/- and TLR4-/- mice. When compared to free lipopolysaccharide, OMVs were more potent in inducing both ICAM-1 expression as well as leukocyte adhesion in vitro, and ICAM-1 expression and neutrophil sequestration in the lungs in vivo. This study shows that OMVs potently up-regulate functional cell adhesion molecules via NF-κB- and TLR4-dependent pathways, and that OMVs are more potent than free lipopolysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号